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Designing Compact Causal Digital Filters for Low-Frequency

Strainmeter Data

by Duncan Carr Agnew and Kathleen Hodgkinson

Abstract For the strainmeter component of the Plate Boundary Observatory, fil-
ters are needed to produce low-frequency series (5-minute samples) from the higher-
frequency (1 Hz) data generated by the instruments. We present design methods for
finding filters that are efficient, causal, and compact. We use standard methods for
generating symmetric finite impulse response filters, followed by root finding, selec-
tion of roots, and reconstruction of the weights, using procedures that make these
processes numerically stable. The final filters show appropriate performance even in
the presence of large teleseismic signals, but introduce unavoidable artifacts for strain
data from large local earthquakes.

Introduction

Most seismic data are collected from sensors that (often
by design) do not respond to signals at periods much longer
than those of seismic radiation: though a suitably equipped
vertical seismometer can measure changes in gravity, or a
horizontal one tilts, they are not usually designed to do
so with low noise levels. Most earth strain measurements
have, in contrast, focused on much longer period variations,
though some have provided seismic data (Benioff, 1935; Fix
and Sherwin, 1970; Sacks et al., 1971; Johnston et al., 1987;
Borcherdt et al., 1989).

The Plate Boundary Observatory (PBO) component of
the EarthScope project will include a large number of strain-
meters capable of recording strain from periods of years to
frequencies of 1 Hz or more. Recognizing that many users
of these data will wish to study variations over very long
times, the PBO is providing data that are sampled at a rate
low enough (300 sec) to keep data files manageable even if
they cover long spans of time. Digital filtering is used to
create these low-frequency data from the original 1-Hz data.
For data with seismic signals, the filters have to meet slightly
unusual goals.

Because the resulting filters may be applicable to other
situations, we have therefore written this article both to doc-
ument the PBO strainmeter filters and to provide a detailed
guide to the procedures used to design them. The digital
signal-processing literature offers a somewhat bewildering
panoply of methods. In the hope of assisting others in choos-
ing from these, we have sought to use methods that are the
most conceptually obvious; because these often entail nu-
merical instabilities, we provide ways to minimize these.

Goals for Filters
We start with the properties we wish the filter to have,

namely:

1. Efficiency (that is, reasonably small amounts of compu-
tation) for large decimation. This is measured by the
number of arithmetic operations (multiplications and ad-
ditions) needed by the filter. In what follows we assume
an initial sample interval of one second, so that we will
be decimating by 300, to a final Nyquist frequency, fN,
of 0.001666 Hz.

2. Adequate reduction of energy above fN to minimize
aliasing of the final series. In particular, since many of
the signals being studied are at much lower frequencies
than fN, the filter should especially reject frequencies at
aliases of zero frequency.

3. Causality. If the data have sudden changes (from earth-
quakes or from possible instrument problems), it is de-
sirable (Scherbaum and Bouin, 1997) that there be no
leakage of energy into earlier times.

4. Finiteness. Again, given the potential for sudden large
changes, we want the effects of these to extend over only
a finite, and known, time.

5. Compactness. Further, we would like the filter to spread
any impulses or steps over the minimum possible time
span. As we will see, this is equivalent to minimizing the
filter phase lag and group delay.

Our filter design is based on a multistage procedure with
modest decimation at each stage. The filtering at each stage
is done with a finite impulse response (FIR) filter; given an
input series xk, we convolve it with a set of N weights wk to
form

N�1

y � w xm � k m�k
k�0

and then decimate (downsample) the series y by some factor
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to form a new series x for the next stage. The sum as written
enforces causality. For decimation by 300, we use stages of
filtering and decimation by factors of 2 (twice), 3, and 5
(twice), at each stage combining the downsampling and con-
volution to avoid excess computation. This multistage method
greatly simplifies the filter design, since for each filter N can
be small.

Filter Theory: Minimum-Delay Filters

To describe the design methods, we first review, some
aspects of FIR filters (Oppenheim and Schafer, 1975, 1989).
The convolution filter of equation (1) has a complex-valued
frequency response:

N�1
�2pifkW( f ) � w e (2)� k

k�0

over the range of frequencies �0.5 � f � 0.5. (We have
assumed a sample interval of one unit.) This can be gener-
alized to the entire complex plane by forming the polynomial

N�1
�kW(z) � w z (3)� k

k�0

where z is a complex number; this is called the z-transform.
W( f ) is then W(z) evaluated on the unit circle, z � e�2ipf.

The complex polynomial of equation (3) is degree N �
1, and so must have N � 1 roots, which we term r1, r2, . . . ,
rN�1; these are the zeros of W(z). Given these roots, the
z-transform can be written as a product of degree-one
polynomials:

N�1
�kW(z) � w (1 � r z ) (4)0 � k

k�1

with the w0 providing appropriate scaling.
For common choices of wn there are several “symmetry”

relationships that apply to the roots rk. First, for real weights
wk, the roots rk must either be real, or occur as complex
conjugate pairs. Second, most FIR filter-design methods are
for filters with a phase response that is linear with frequency,
equivalent to a pure time delay. Such filters usually have an
odd number N � 2M � 1 of weights that are symmetric
around the midpoint of the filter:

w � w for k � 0, 1, … , M.k 2M�k

For symmetric weights, if rk is a root, so is rl � 1/rk:
the roots occur as reciprocal pairs unless they are on the unit
circle. To see this, write the z-transform as

2M
�kW(z) � w z� k

k�0
M�1

�M M�k k�M� z w � w (z � z )M � k� �
k�0

�2M �1� z W (z )

so that if W(rk) � 0, then W(1/rk) � 0 as well. So, for real
and symmetric weights, the roots of W(z) occur in reciprocal
pairs plus single roots on the unit circle, and all pairs (or
singlets) not purely real occur as complex conjugates. In this
case the response on the unit circle is:

M�1
�2pfMW( f ) � e w � 2 w cos 2pkfM � k� �

k�0 (5)
�2pfM� e W ( f ),a

where Wa( f ) is the amplitude response, which is purely real.
If there are single roots of W(z) on the unit circle, there are
values of f for which Wa( f ) � 0. If Wa( f ) � 0 for all f, there
are, obviously, no roots on the unit circle, but only reciprocal
pairs. And if Wa( f ) � 0 for all f, the values of f at which Wa

� 0 correspond to double roots of W(z), for which the root
and its reciprocal are equal.

We describe the z-transform polynomial in terms of its
roots because the locations of these affect the compactness
of the filter. Suppose some sequence wn, with z-transform
W(z), has a root within the unit circle; without loss of gen-
erality we can take this to be the “last” root rN�1. Now con-
sider another z-transform polynomial

�1 *z � rN�1 .W�(z) � W(z) (6)�11 � r zN�1

In the polynomial W� the root at rN�1 has been divided out
and replaced by its reciprocal complex conjugate, which
is outside the unit circle. It is not difficult to show that, for
z � e�2ipf,

2*1 � r zN�1�1z � 1, (7)� �1 �1 � r zn

so that the amplitude responses |W( f )|2 and |W�( f )|2 are
identical.

For our purposes the important result is a relationship
for the corresponding sequences wk and . It can be shownw�k
(Appendix A) that

N�2
2 2 2 2⎢w ⎥ � ⎢w�⎥ � (1 � ⎢r ⎥ )⎥v ⎥ , (8)� k k N�1 N�2

k�0

where vN�2 is the last term of the sequence corresponding to
the z-transform of w with the last root factored out (deflation
of the polynomial). But because |rN�1| � 1, the sum (8) has



Designing Compact Causal Digital Filters for Low-Frequency Strainmeter Data 93

Figure 1. Ideal responses for the decimation filters
for the three stages, shown schematically. The black
line shows the ideal response, and the gray band
shows the acceptable deviation from it, which is e1

over most of the stopband, and a smaller value e2

around the aliases of zero frequency. There is a
“don’t-care” transition band between the passband
(ideal response 1) and stopband (ideal response 0).
The frequency is always dimensionless, with assumed
interval 1 unit. Vertical dashed lines are the new Ny-
quist frequency and its aliases, and vertical solid lines
the aliases of zero frequency.

to be positive; this means that the sequence wk has more
energy (measured by the sum of squared amplitudes) con-
centrated before the last point than does the sequence . Itw�k
is also true (Appendix A) that, if we express W( f ) in terms
of amplitude and phase (W( f ) � A( f ) , then �( f ) ���( f )e
��( f ); that is, the phase lag of W( f ) (lags being negative) is
less than that of W�( f ). And, finally, for the group delay D,
defined by �f �( f ), D( f ) � D�( f ).

This result can be extended to show that, among all FIR
filters with the same amplitude response |W( f )|2, the one
whose z-transform has all its roots on or inside the unit circle
will have the most concentration of energy toward the early
terms of the sequence; that is,

m
2⎢w ⎥� k

k�0

will be maximized for all m � N � 1. (For m � N � 1 the
sum is the same, being the filter response at f � 0.) This
makes the filter as compact as possible, satisfying goal (5).
The additional results show that the sequence with this prop-
erty also minimizes the group delay and makes the phase
lag as small as possible for a given amplitude response. Such
sequences are therefore usually referred to as providing
minimum-phase FIR filters.

Filter-Design Methods

The results just given show that to approach our design
goals, we need to find weights for FIR filters that, at each
stage,

• Minimize aliasing into frequencies below the new Nyquist
frequency fN, especially aliasing to very low frequencies;

• Have an amplitude response very close to 1 over most of
the range from 0 to fN;

• Have all the roots inside or on the unit circle; and
• Have as few weights as possible.

There are trade-offs between these different goals, no-
tably between the first two and the last one: fewer weights
give a poorer approximation to the ideal frequency response.
Figure 1 shows the ideal response for the three different
filters, with (1) a passband with unit amplitude response;
(2) a stopband with ideal response close to zero throughout,
but constrained to be closer to zero in the bands that will alias
to the frequencies near zero; and (3) a “don’t care” band be-
tween the passband and stopband, which is needed to allow
the response to vary gradually. Because the high-frequency
data remain available for those who wish to study signals
near the Nyquist of the low-frequency series, we have not
been concerned by aliasing at these frequencies, and so have
allowed this last band to span the Nyquist in each case.

Usually, the error introduced by filtering and aliasing
data with a given power spectrum defines how poor an ap-
proximation to the ideal we can accept. In the seismological

case two issues complicate this approach: first, that the larg-
est signals, being the transients from earthquakes, do not
possess a power spectrum, and second that there is no stan-
dard level for acceptable contamination of low-frequency
data. We have therefore proceeded somewhat intuitively,
trying to produce short filters that will only rarely cause sig-
nificant aliasing. We demonstrate below that, even for large-
earthquake signals, the low-passed data are not affected in
ways that are likely to alter their interpretation.

To obtain each filter we need to:

1. Find symmetric real weights that approximate the ideal
response.

2. Find the roots of the corresponding z-transform poly-
nomial, and modify them so that all roots are on or within
the unit circle.

3. Construct the sequence corresponding to the modified set
of roots.

There are two different ways to accomplish step 2; which
one we choose will set requirements on step 1. We have
used two approaches for step 1, giving four choices in all.

One way, suggested by equation (7), is to replace all
roots outside the unit circle with their reciprocal complex
conjugates, leaving roots on the unit circle in place. This
procedure is called the allpass decomposition, because the
factors of the from (7) describe allpass filters, which have
amplitude response of one. Equation (6), generalized to con-
tain as many such factors as there are roots outside the unit
circle, becomes the result that any FIR filter can be expressed
as the convolution of a minimum-phase FIR filter and an
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allpass filter. Note that the allpass filter itself is not a FIR
filter, but must be computed recursively; although this is
acceptable for correcting for the application of a noncausal
FIR filter (Scherbaum, 2001), it is not for our application.

A second approach, called spectral factorization, is
much more common in the signal-processing literature, be-
cause it (in general) performs better (less delay) for a given
number of weights. This method depends on the result that,
for symmetric filters, if Wa( f ) � 0 on the unit circle, all the
roots can be paired into reciprocals, with double roots on the
unit circle. The factorization consists of taking all the roots
inside the unit circle and half of the roots on it, and con-
structing the corresponding sequence. The resulting filter
will have an amplitude response |W( f )| .� W ( f )� a

To use spectral factorization we first need to construct
a filter with nonnegative amplitude response, |W( f )| � 0.
One way to do this is to use a filter-design method that al-
lows such a constraint; for example, the METEOR program
of Steiglitz et al. (1992), which uses linear programming to
solve the filter-design problem. An advantage of this ap-
proach is that it allows constraints on dWa/df as well as
on Wa; we may, for example, make the amplitude response
monotonically decrease within the passband.

However, there appear to be limits to the number of
weights for which this approach can be made to work. An
alternative procedure (and so far as we know a novel
one) is to use the well-known Parks–McClellan algorithm
(McClellan et al., 1973) in a different way than usual. This
algorithm finds the filter that, over J specified frequency
bands, satisfies |Wa( f ) � Wj | � e/sj, where Wj is the desired
response in the jth band, sj is a relative weighting, and e
is the overall error level. The level e, which depends on N,
is found in the course of determining the weights. Usually
Wj is set to zero in the stopband, which gives a filter with
Wa( f ) � 0 for some frequencies. Although the entire re-
sponse can be shifted to make Wa( f ) nonnegative (Herr-
mann and Schuessler, 1970), this is suboptimal if the con-
straints sj vary, as they do in our case. To allow such
variation, we first design the filter with Wj � 0 to find e for
a given N. Then we rerun the design with Wj set to e/sj in
the stopbands, which gives Wa( f ) a minimum value of 0
and a maximum of 2e/sj . This procedure allows the design
of factorizable filters with variable stopband response and
large N.

For a filter constructed using the allpass decomposition,
we can have Wa( f ) � 0, so the most straightforward ap-
proach is to use the Parks–McClellan algorithm.

Once the starting filter is designed, we need to find the
roots of the associated z-transform polynomial. This proce-
dure is nonlinear and subject to numerical instability, espe-
cially for large numbers of roots. Alternative methods to
perform the factorization have therefore been suggested,
such as cepstral analysis (Damera-Venkata et al., 2000), or
direct solution for the coefficients (Orchard and Willson,
2003). (We attempted the second of these but were not suc-
cessful.) Working with the roots is the most conceptually

obvious approach, and we found no difficulty in using it for
filters of the size we were developing. However, some care
was needed. We found it necessary to use an optimized root-
finding algorithm; both the rootsl program of Lang and Fren-
zel (1994) and the MATLAB root-finding routine roots were
satisfactory. The most important step was to follow a sugges-
tion of Orchard and Willson (2003) and make Wa( f ) � d,
where d is a value smaller than the allowed stopband rejec-
tion. Making Wa( f ) positive (rather than nonnegative) sepa-
rates any double roots on the unit circle (of which there are,
usually, many) into reciprocal pairs. Because double roots
are intrinsically determined with much less precision than
single roots, this stabilizes the root finding considerably. In
the event that double roots did occur, we found the roots of
the polynomial corresponding to dW(z)/dz; any double roots
on the unit circle for the original polynomial are replaced by
single roots for the derivative.

Having found the roots and either changed them (in the
allpass method) or discarded half of them (in spectral fac-
torization) we need to construct the coefficients of the as-
sociated polynomial. As with the factorization, this proce-
dure can be numerically unstable; but this instability can be
avoided if the multiplication of roots is done in the right
order, which is called Leja ordering (Calvetti and Reichel,
2003). An algorithm for sorting N � 1 roots r1, r2, . . . ,
rN�1 into this order is as follows.

First find the root (call it ) with maximum magnituder�1
|r|. Then to find the kth Leja-ordered root , out ofr�k

, select from all the roots ri, the one thatr�, r�, . . . , r�2 3 N�1

maximizes

k�1

⎢r r�⎥.� i � j
j�1

(Obviously those roots already selected will give a product
of zero, which will not be a maximum; so this method, while
simple, has some redundancy.) Double roots off the unit
circle, which will occur if the allpass decomposition is used,
should be put in together. Once the roots have been Leja
ordered, a recursion can be used to find the coefficients.
Start by finding . Then repeat the following steps1a � �r�0 1

N � 2 times, for k � 1, . . . , N � 1:

(k�1) (k)a � a � r�k k�1 k

(k�1) (k) (k)a � a � r�a for j � 1, … , k�1j j�1 k j

(k�1) (k)a � �r� a0 k 0

where the superscripts refer to the order of the recursion (and
of the polynomial). Note that the as are complex; a useful
check on the whole procedure is that the final coefficients
should have imaginary parts that are zero to within machine
precision.
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Figure 2. Actual responses for the deci-
mation filters for the three stages. For the final
(decimation by 5) filter two responses are
shown: solid for the spectral factorization filter
derived from METEOR, and dashed for the all-
pass decomposition filter derived from the
Parks–McClellan algorithm. Vertical lines are
as in Figure 1.

Design Results

We now describe the specific designs we developed;
inevitably, these are compromises among the several goals.
As a check on our work, we used (aside from METEOR) two
sets of programs: D.C.A. used various stand-alone routines,
and K.H. used MATLAB; both of these were satisfactory.

We designed the filters for decimation by 2 and by 3
using spectral factorization, with the initial filter designed us-
ing METEOR, using the specifications given in Appendix B.
We constrained the passband to have an amplitude response
that monotonically decreased with increasing frequency, and
was 1 at zero frequency. This minimizes variations in the
passband. This program can also specify the response at a
particular frequency, so we set the response to zero at exact
aliases of zero frequency. Otherwise the response in the stop-
band was constrained to be positive, usually by an amount
that was one-tenth or less of the maximum amplitude re-
sponse allowed. Figure 2 (top) shows the amplitude response
for both filters.

We developed two designs for the decimate-by-5 filter,
perhaps the most important part of the system, since its am-
plitude response dominates the overall response. The first
filter used spectral factorization of a design found from
METEOR. Although this gives the smallest delay, it proved
difficult to get adequate rejection in the stopband. We there-
fore developed an alternative filter using the allpass decom-
position applied to an initial filter design from the Parks–
McClellan algorithm. Although even better rejection could
be obtained using spectral factorization applied to positive-
response filters designed with this algorithm, the resulting
delays were larger, so we used only the combination of all-
pass decomposition with this algorithm. The lower panel of
Figure 2 shows the amplitude response for both versions.

The final response and the filtering efficiency depend

on the order in which the stages of filtering and decimation are
combined. Because all the filters have about the same number
of weights, minimizing the total length of the filter means ap-
plying the greatest decimation (by 5) to the final stages, since
this minimizes the sample interval for the final filter. For the
filters as designed, the shortest effective length and the min-
imum delay occurs for the stages in order 2-2-3-5-5. If the
last two stages use the spectral factorization filter, the group
delay at zero frequency is 305 sec; if they use the allpass-
decomposition filter, it is 356 sec. The effective lengths of
the two cases are 2552 sec and 2624 sec. We can construct
a filter equivalent to the multistage processing by convolving
together the individual filters, each one interpolated with ze-
ros to place its weights at the correct interval. Figure 3 shows
the resulting time-domain weights for the two cases. If these
weights were applied to the data with a decimation of 300,
there would be about 8.7 multiplications and additions per
output point; if the filters are applied sequentially, this num-
ber is 25.2, about three times as large. Given the data rates
involved, these differences are not significant in practice.

Figure 4 shows the passband responses of the combined
filter. Because of the monotonicity constraint the design us-
ing only spectral factorization is more nearly constant than
is the equiripple design produced by the Parks–McClellan
algorithm. The latter, however, gives a more nearly constant
group delay. Over the band usually used for long-term strain
studies (hourly sampling) the differences are small; at the
periods of the tides they are negligible.

Filter Performance: Noise, Teleseisms, and
Local Earthquakes

Whether the filters described perform adequately de-
pends on the spectrum of the input, especially on the relative
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Figure 3. Time-domain response for the com-
bined filters; as in Figure 2, the solid line is for the
case of using the spectral factorization filter for the
last two stages (decimation by 5); the dashed curve is
if the allpass decomposition filters are used for these
stages.

Figure 4. Passband response for the combined fil-
ters; dashed and solid as in Figure 3. The vertical solid
line shows what the Nyquist frequency would be for
hourly sampling; the vertical dashed line is at the fre-
quency of the semidiurnal tides.

amplitudes of the spectrum in the final band of interest, and
at frequencies that alias into this. Between earthquakes, the
spectrum of earth strain up to 10 sec (Fix and Sherwin, 1972;
Berger and Levine, 1974; Beavan and Goulty, 1977) dimin-
ishes smoothly with frequency. There will thus be little alias-
ing from frequencies just above the final Nyquist frequency.
The largest levels at higher frequency are in the microseism
band. A maximum plausible value comes from taking the
high-noise model of Peterson (1993), and converting the
levels to strain using a phase velocity of 3 km/sec. The re-
sulting power spectral density is �175 dB (e2/Hz), compa-
rable to the level shown for storm microseisms by Beavan

and Goulty (1977). For periods from 3 to 10 sec the com-
bined filter has at least 96 dB of rejection, making the aliased
signal no larger than �270 dB, some 70 dB below the spec-
tral level found by Berger and Levine (1974) at the 10-min
period.

A much more severe test comes from large transient
signals from earthquakes. Although ranges for these signals
could be found from models, we have preferred to work with
actual examples to capture the full complexity of real sig-
nals. Because the PBO strainmeters have not been operating
very long, our examples come from earlier records from
long-base laser strainmeters, which have broadband re-
sponse and high-dynamic range. Our examples are for two
large earthquakes, one at regional distances, for which the
filter performs well, and one local, which shows the un-
avoidable limitations of any filtering scheme.

Our first example is for a magnitude 7.2 event off Cape
Mendocino in 2005. Figure 5 shows data from the laser
strainmeter installed at Yucca Mountain, Nevada, the closest
laser strainmeter (960 km away) and a seismically quiet site.
The top panel of the figure shows 0.6 hours (36 minutes)
of 1-Hz data as recorded, with peak strains approaching
0.5 � 10�6. The bottom panel shows the low-passed data
that is produced if we convolve these data with the 1-sec
weights of Figure 3, and the decimated 5-min data (crosses).
The energy above the Nyquist frequency is reduced by a
factor of 10,000, to well below the level of the variation
between samples (the noise level at long periods).

Our second example is the 1999 Hector Mine earth-
quake, a magnitude 7.1 shock 110 km from the strainmeters
at Piñon Flat Observatory. Figure 6 shows the data from the
northwest–southeast laser strainmeter there, plotted as in
Figure 5. In this case the original data are clipped by the
dynamic range limitations of the recorder (not the instru-
ment). Again, the filter has completely removed the high-
frequency energy. However, at this distance there is a step
in strain created by the near-field source terms. In the filtered
version this step shows several features (a delay, overshoot,
and subsequent ringing) that result from the form of the fil-
ter, not the actual strain. This “distortion” of the step is in
fact unavoidable. The step has a rise time comparable to the
rupture time, which is about 20 sec (Ji et al., 2002); to rep-
resent it correctly without aliasing would require data sam-
pled at a much higher rate than 300 sec. Getting unaliased
data with 300-sec sampling requires removing energy actu-
ally present in the strain step, with effects (overshooting and
ringing) that are as expected from the Gibbs phenomenon in
Fourier theory. Any study of a local earthquake with strain
data should not be based on low-frequency data.

Conclusions

The two main results from this article are the actual
filters, and the methods used to design them. Our primary
conclusion is that this type of filter can be designed most
easily, and perfectly adequately, by finding roots of the
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Figure 6. Data from the Hector Mine earthquake,
16 October (day 289) 1999, as recorded at one of the
long-base laser strainmeters at Piñon Flat Observa-
tory, California (33.609� N �116.455� W, oriented
135� east of north). (Top) Raw data recorded at 1 Hz.
(Bottom) The data after filtering with the minimum-
phase filters without decimation (line) and decimated
to 5-min samples (pluses).

z-transform, and manipulating these to create a minimum-
phase system. Although there can be problems with numer-
ical stability, these can be avoided by using well-designed
algorithms, aided by some specific methods we described
previously—most notably by requiring a positive (nonzero)

amplitude response for filters that will be factored. We be-
lieve that the methods we have described are relatively easy
to understand—advantages for users who, like ourselves,
need to design only a few filters.
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Appendix A: Root Locations and Minimum
Filter Responses

We begin with equation (6). Rearranging this, we get

�1W(z) � V(z)(1 � r z ) andN�1

�1 *W�(z) � V(z)(z � r ) (A1)N�1

where V(z) is a z-transform (polynomial) of degree N � 2.
From these polynomial relationships the expressions for the
coefficients of W and W� are

w � v � r v andk k N�1 k�1

w� � � r v � v (A2)k N�1 k k�1

from which it is easy to find the result (8) for the difference
in sums of squares up to the penultimate term.

For the phase and group delay, we can use the results
(Oppenheim and Schafer, 1989) that the phase of the allpass
term in equation (6) is, for rN�1 � ae2pih,

a sin 2p( f � h)
�2pf � 2 arctan

1 � a cos 2p( f � h)� �
and the group delay is

21 � a ,
2pih �2pif 2⎢1 � ae e ⎢

which is positive for a � 0 (the root inside the unit circle)
so that W�( f ) has a greater delay, and a larger (more nega-
tive) phase than W( f ).

Appendix B: Specifications for Initial Filters

In this section we give the detailed specifications used
for the design of the initial FIR filters and the final results
for the minimum-phase filters.

METEOR requires the responses in different frequency
bands, each band extending from fl to fh. For each band, the
specification needs a minimum and maximum amplitude re-
sponse. Wl and Wh); these may in general vary across the
band, but in all cases we held them constant. The program
also requires that we specify if the limit is “hugged” or not;
the design moves the response as far as possible from limits
that are not hugged, allowing the response to be arbitrarily
close to those that are. So, for example, in a passband,
we would hug the upper limit of 1, and not the lower limit;
the latter will, in practice, set the response at the edge of the
frequency band. The program also allows us to specify if
the amplitude response is concave up or down in a band;

we always specified this, for the passband only, as concave
down.

For the decimate-by-two filter we specified a stopband
closer to zero in the region that would alias into the pass-
band, with the response set to zero (but still nonnegative) at
the original Nyquist. This last feature, while desirable, could

Table B1
Specification for Decimate-by-Two Filter

Band fl fh Wl Wh Hugged

1 0.0 0.2 0.81 1.00 Wh

2 0.25 0.40 0.0001 0.001 Wl

3 0.40 0.45 0.0 —
4 0.45 0.49 0.000001 0.0000003 Wl

5 0.49 0.50 0.0 —
6 0.50 0.50 — 0.0

Table B2
Specification for Decimate-by-Three Filter

Band fl fh Wl Wh Hugged

1 0.0 0.137 0.81 1.0 Wh

2 0.14 0.20 0.0 — Wl

3 0.197 0.280 0.00001 0.003 Wl

4 0.303 0.363 0.0000001 0.000001 Wl

5 0.38 0.50 0.00001 0.001 Wl

Table B3
Specification for Decimate-by-Five Filter

Band fl fh Wl Wh Hugged

1 0.0 0.085 0.81 1.0 Wh

2 0.09 0.12 0.0 —
3 0.125 0.165 0.0001 0.01 Wl

4 0.170 0.195 0.000001 0.00001 Wl

5 0.198 0.202 0.0000003 0.000001 Wl

6 0.205 0.220 0.000001 0.00001 Wl

7 0.225 0.375 0.00001 0.0001 Wl

8 0.380 0.420 0.0000003 0.00001 Wl

9 0.440 0.500 0.00001 0.001 Wl

Table B4
Specification for Decimate-by-Five Filter

Band fl fh R Weight

1 0.0 0.01 1.0 10
2 0.02 0.07 1.0 1
3 0.13 0.18 0.0 1
4 0.19 0.21 0.0 30
5 0.22 0.38 0.0 1
6 0.39 0.41 0.0 30
7 0.42 0.50 0.0 1
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not be included in the filters for more decimation without
rendering the design problem insoluble.

These specifications (given in Table B1) could be
met by a FIR filter with 51 weights; spectral factorization
produced a minimum-phase filter with 30 weights. The
specifications for the decimate-by-three filter are given
in Table B2; these could be satisfied by a filter with
45 weights; spectral factorization produced a minimum-
phase nta filter with 23 weights. The specifications for the
decimate-by-five filter using METEOR are in Table B3; these
could be satisfied by a filter with 67 weights; spectral fac-
torization produced a minimum-phase filter with 34 weights.
As can be seen in Figure 2, the resulting response had rela-
tively large sidebands that could alias into the upper part of
the passband. We therefore designed a filter using the Parks–
McClellan method, for which the specifications are given in
Table B4; for this design we also need to specify the number
of weights (35).

Finally, Table B5 gives the filter weights: wII for the
decimate-by-two; wIII for the decimate-by-three; and wVa and
wVb for the decimate-by-five.
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Table B5
Weights for Minimum-Phase Filters

k wk
II wk

III wk
Va wk

Vb

1 0.0983262 0.0373766 0.0218528 0.0137003
2 0.2977611 0.1165151 0.0458359 0.0323895
3 0.4086973 0.2385729 0.0908603 0.0627611
4 0.3138961 0.3083302 0.1359777 0.1018581
5 0.0494246 0.2887327 0.1830881 0.1454735
6 �0.1507778 0.1597948 0.1993418 0.1742102
7 �0.1123764 0.0058244 0.1957624 0.1888950
8 0.0376576 �0.0973639 0.1561194 0.1786665
9 0.0996838 �0.1051034 0.0994146 0.1440888

10 0.0154992 �0.0358455 0.0346412 0.0931153
11 �0.0666489 0.0359044 �0.0236544 0.0316546
12 �0.0346632 0.0632477 �0.0580081 �0.0217322
13 0.0322767 0.0302351 �0.0703257 �0.0580216
14 0.0399294 �0.0168856 �0.0555546 �0.0707892
15 �0.0097461 �0.0356758 �0.0287709 �0.0601628
16 �0.0341585 �0.0190635 0.0032613 �0.0350987
17 �0.0039241 0.0126188 0.0267938 �0.0047034
18 0.0246776 0.0159705 0.0358952 0.0202246
19 0.0099725 0.0082144 0.0311186 0.0332569
20 �0.0157879 �0.0087978 0.0134283 0.0322796
21 �0.0099098 �0.0037289 �0.0028524 0.0222429
22 0.0078510 �0.0017068 �0.0170042 0.0075065
23 0.0081126 0.0028335 �0.0176765 �0.0051609
24 �0.0026986 �0.0123123 �0.0117785
25 �0.0061424 �0.0036798 �0.0142579
26 0.0007108 0.0057730 �0.0085583
27 0.0039659 0.0059817 �0.0023946
28 �0.0006209 0.0083501 0.0030231
29 �0.0017117 0.0000581 0.0062511
30 0.0007240 0.0005724 0.0017000
31 �0.0033127 0.0019444
32 0.0004411 0.0000312
33 �0.0030766 �0.0014347
34 0.0016604 �0.0030002
35 0.0018199


