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Lecture 2 - recap

Why are we here! Need for statistics

Geophysical Examples -
l. magnetic reversals, ll. earthquakes

Distances and error bounds

Predicting Earthquakes



Terminology- Chapter |

histogram
probability model
stochastic model
random variable
probability theory
statistics

mean

standard deviation

estimates

estimation theory
point estimation
robust estimation
hypothesis test
null hypothesis
point process
Poisson process
Coxcomb plot

confidence interval
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Times of California/Nevada Earthquakes
(1890—2012, magnitude 5.5 and above: 280 quakes)
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Predicting Earthquakes?
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Terminology- Chapter 2

frequentist

Bayesian

subjective

sample space
probability axioms
conditional probability
independent

Bayes’ Theorem

hypothesis

prior probability
likelihood

posterior probability
Bayesian inference
random variable

probability density
function

cumulative distribution
function

quantile



Chapter 2 Topics

What is probability? Frequentist vs
Bayesian

Basic axioms, sample space, and
probability

Conditional Probability
Foreshock application
Bayes’ Theorem

RVs: Probability Density and Distribution
Functions



Andrey Kolmogorov

Basic Axioms of Probability

® https://en.wikipedia.org/wiki/Andrey Kolmogorov

® Set theory: sample space, (), and
outcome sets A, B, C, etc., with ,
specified probability = mmEme e

Tambov, Russian Empire

Died 20 October 1987 (aged 84)
Moscow, Soviet Union
. b b . I ‘t f I I t Citizenship  Soviet Union
P rO a I I y O a O u C O I I l e S Alma mater Moscow State University

Known for Probability theory

combined Pr(£2) =1

Turbulence studies
Classical mechanics
Mathematical analysis
Kolmogorov complexity
KAM theorem

® probabilities are positive

Spouse(s) Anna Dmitrievna Egorova (m. 1942—
1987)

Awards Member of the Russian Academy of
Sciences!!]

® combinations of probabilities of

Balzan Prize (1962)
ForMemRS (1964) 2!

disjoint outcomes can be summed

Institutions  Moscow State University

Doctoral Nikolai Luzin®!
advisor


https://en.wikipedia.org/wiki/Andrey_Kolmogorov

Andrey Kolmogorov
- A

A B C

Born Andrey Nikolaevich Kolmogorov
25 April 1903
Tambov, Russian Empire

Died 20 October 1987 (aged 84)
Moscow, Soviet Union

— Citizenship  Soviet Union
— U U Alma mater Moscow State University
Known for Probability theory
Topology

For disjoint sets A,B,C e

Classical mechanics

Pr(QQ)= Pr(A) +Pr(B) +Pr(C) Soes

KPP equation

Spouse(s) Anna Dmitrievna Egorova (m. 1942-
1987)

Awards Member of the Russian Academy of
Sciences!']

Stalin Prize (1941)
Balzan Prize (1962)
ForMemRS (1964) 2!
Lenin Prize (1965)

Wolf Prize (1980)
Lobachevsky Prize (1986)

Scientific career
Fields Mathematics
Institutions  Moscow State University

Doctoral Nikolai Luzin®!
advisor




Conditional Probability

A B Outcomes A and B overlap

. If B has already occurred,

what is the conditional prob of A?
We know that

Pr(A|B)Pr(B)= Pr(An B)
SO
Pr(A|B)= Pr(AnB)/Pr(B)




Independence

If Pr(A|B)= Pr(A) then A and B are

independent

and
Pr(AnB)= Pr(A)Pr(B)



SIO223A, Lecture 4,01/16/2020
Today’s Topics
Bayes’ Theorem

RVs: Probability Density and Distribution
Functions, Quantiles

Empirical Cumulative Distributions
Probability Plots and Q-Q Plots
PDFs: mode, mean, variance, quartiles
PDFs: moments, skewness, kurtosis,

Functions of RVs: expectations,
transformations, sums and products



Earthquake example

B B is a background quake, which might
occur frequently

F is a foreshock before a large quake
C is a large quake

Not all large quakes have a foreshock
What is prob of C given that one of
either F or B has occurred!?




Bayes’ Theorem

Suppose we have N disjoint sets of outcomes, called B, Bs, ... By,
and another set A. The probability of both A and a particular one of the
B’s (say| B;) is, by the definition of conditional probability,

Prl[AnB;]=Pr[B;|A]Prl[A]=Pr[A|B;]Pr|B;] (2.7)

where you should remember that Pr[AnB ;] = PrlB;nA]. But, since the B’s
are disjoint, Pr[A] =) ;PrlA|B;]Pr[B;]. Combining this with 2.7, we find
that

Pr[A|B;]Pr[B;]
> ;PrlA|B;]Pr[B;]
The different parts of ¥his expression have special names: Each B is called

a hypothesis, Pr[B;] is called the prior probability of B;, and Pr[A|B;]
the likelihood of A given B;.

Pr(B;|A] = (2.8)

called the posterior probability for each hypothesis Bj
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Histograms provide empirical estimates of probability
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Continuous Random Variables X are specified by a
probability density function

A PDF (in part) and its CDF
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x+0x

Prlx=X <x+6x]= [ O(u)du

JX

For any x and small interval 6x this means
Prlx < X <x+6x]= ¢p(x)ox + (5x)?

so that ¢(x) represents the density of probability per unit value of x in the
neighborhood of x.
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Probability density functions have the following properties:

* ¢(x)=0 for all x: probabilities are always positive.

. II,: P(x)dx = 1: X must take on some value within its permissible
range. Often this range is all of the real line, with L = —oco and
L ; = oco; but sometimes it 1s only a part. Section |1.2| already gave an
example, which is that time intervals have to be positive, so Ly =0

and L; = oco. Or, if we were considering the direction of something, X
has to fall within [0, 2n).




CDFs have the following properties

0=dP(x)<1.

Imy . ®P(x)=0 lmy .. Px)=1 or DLy)=0 and D(L7p)=
1.

® i1s non-decreasing; ®(x + 1) = O(x) for h = 0.

® is right continuous; limy__.g+ ®(x + h)= ®(x); that 1s, as we approach
any argument x from above, the function approaches its value at x.



Distance (mm)

Interval Length (Myr)

Probability Plots

GPS Data
1.5
1.0F
4+
0.5F
1d+
0.0 /
—0.5F
+++
—1.0F
~1.5 —
-3 -2 -1 0 1 3
$~1(q)
Reversal Intervals
10"
4+t "
100 |
10—1 |
1072 - &
+
N
1073 % | ' '
1072 107" 100 10" 102

Distance (mm)

UT Time

0.2

0.1

N
o

&)

@]

GPS Data (expanded)

+

+
+
#

F
+
I?m- i i i I

-2 -1 0 1 2
¢~ 1(q)

Earthquake Times




20

19

UT times of Mag 3.5 to 5.5

Q—Q plot for earthquake times

Quantiles shown are

5%—95%, every +.

+ .
5% 4

5 10 15 20
UT times of Mag > 6

1.1

1.0

0.9

0.8

0.7

Distance, 2000:057—-2004:031

Q—Q plot for GPS Data

Quantiles shown are

57%—93%, every +

0.6

- 9% ,

A

4
- +
pf
i PB;PL
+
I
| 1 | 1 |
—0.2 0.0 0.2

Distance, 1999:269—-2000:057




4.0
3.0
2.0
1.0
0.0

First Moment Second Moment Mean Deviation




