
CHAPTER 1

PROBABILITY, STATISTICS, AND
REALITY

If your experiment needs statistics, you ought to have done a
better experiment.

ERNEST RUTHERFORD, attributed

A branch of Science that must depend heavily on statistical
inference is therefore in grave peril of error. Without the most
rigorous and critical analysis of its concepts and methods it may
fall to worshiping very strange gods.
JOHN ZIMAN, Public Knowledge: an Essay Concerning the Social

Dimension of Science (1968)

1.1 The Aim of the Exercise
The quotations above give some of the rationales for a course devoted to
statistical methods for geophysics. First, for many geophysical topics we
can only observe, not do experiments: for example, we have to understand
the magnetic field of the Earth as it is, not as it might be if we changed
part of the system that produces it. So Rutherford’s dictum is unhelpful.
Statistical methods are certainly not confined to observational science –
even nuclear physicists use them1 – but they are central to working with
geophysical data, and learning them is part of learning to be a geophysicist.

Our second quotation, and the epigraph for the text, illustrate that
these methods are difficult to learn and to do correctly: hence the need for
a course, and this text. Much of the difficulty comes from the challenge of
thinking correctly about random events: a challenge that benefits casinos

1 And have for as long as there has been nuclear physics: for example, using the
statistics of a Poisson process (Section 3.4) to show the randomness of radioactive decay ?.
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2 Chapter 1. Probability, Statistics, and Reality

and frustrates students. We hope this course will help you with learning
about statistics and how to use it, though there is really no substitute for
lots of experience, careful thought, and a willingness to subject one’s intu-
ition to careful checks.

In a one-quarter course we can cover only a few topics; we have selected
ones that cover much of what is needed in geophysics. The analysis of data
arranged in time or space deserves fuller treatment, so much of that is
postponed to the second part of the course:

We neither seek nor shirk mathematics, though we rarely aim for rigor,
and mostly do not include proofs of results. An adequate mathematical
background would be familiarity with calculus, at least through multivari-
ate calculus, and with vectors, vector spaces, and matrices. We aim to pro-
vide an understanding of concepts and terminology that should be useful if
you need to learn more.

In the rest of this chapter we try to give the flavor of statistical reason-
ing by some examples – including one case of it being applied badly. These
examples introduce terms from probability and statistics: some, we hope,
will be familiar, though others may not be. We use boldface when we in-
troduce these, and again when we re-introduce and define them in later
chapters.

1.1.1 What Kind of Problem Are We Trying to Solve?

Our first two examples are datasets that illustrate different settings in
which statistical reasoning would be appropriate. The first dataset is two
years of measurements between a pair of geodetic markers about 50 meters
apart; in the left-hand panel in Figure 1.1. We summarize these using a
histogram to show how many data are in various intervals. From this plot
we see that the data clump around a value of 50327 mm, and are spread
around this over a range of ±1 mm. The usual way to understand this
spread we call the “physics-lab” view: there is a single, true value of the
distance, and we get numbers scattered around this only because of “errors”
in the measurements. Statistics then becomes just a tool for dealing with
something (errors) that just gets in the way of the truth.

Sometimes this view is useful; but more often it is not. The right-hand
panel of Figure 1.1, is another histogram, this one of the lengths of seg-
ments of oceanic spreading centers, a segment being terminated by some
other kind of plate boundary. Here there is no “true” length, and the idea
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Figure 1.1: Left: histogram of estimated distance between two contin-
uous GPS stations (PIN1 and PIN2), found using L1/L2 processing
with no estimation of atmospheric zenith delays. See ? for more in-
formation. Right: histogram of lengths of oceanic spreading centers,
from the digitized plate boundary of ?.

of measurement error is simply inappropriate.2 Rather, how the numbers
are distributed is itself information about spreading centers.

What these examples share is numbers that are somehow scattered or
varying. We use probability theory, and the statistical methods that flow
from it, because this is a mathematical construct well-suited to dealing
with such variations. Our purpose in applying this theory, is to develop
a mathematical model for a dataset. Such models are called probability
models or stochastic models.

An Example of a Stochastic Model

To show what we mean by a probability model, we start with a made-up “toy
model”. Table 1.1.1 gives 100 pairs of numbers (x1, x2); these numbers vary
considerably, though (by design) they are all integers. The first thing you
should do with any dataset is to plot it: it is foolish not to take advantage

2 There is a kind of error possible because we do not have complete maps of all spread-
ing centers, and the better-surveyed a spreading center is, the more likely some break in it
will be found – long segments may just be ones that do not have many ship tracks crossing
them; without the detail available from echo sounding, small offsets in spreading centers
are not otherwise detectable.
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2, 7 2, 10 5, 5 7, 4 7, 9 4, 8 10, 5 6, 8 7, 9 5, 7
8, 3 4, 9 8, 7 5, 6 5, 7 9, 7 6, 7 8, 11 3, 5 7, 6
6, 3 8, 5 10, 8 6, 5 3, 4 10, 3 9, 6 5, 6 10, 7 3, 5
9, 3 5, 8 4, 4 8, 7 6, 3 4, 6 5, 10 5, 8 6, 8 9, 8
8, 11 5, 5 8, 8 9, 7 8, 6 7, 8 10, 5 7, 5 8, 6 7, 6
2, 7 7, 7 9, 5 5, 4 12, 6 7, 6 2, 6 6, 5 6, 6 2, 9
9, 7 5, 5 8, 5 5, 6 8, 5 5, 6 4, 6 4, 3 8, 8 9, 7
7, 8 5, 5 6, 6 8, 8 7, 5 8, 7 10, 5 4, 6 9, 5 4, 5
6, 8 7, 5 2, 6 2, 5 4, 6 3, 8 6, 7 6, 5 7, 6 7, 4
5, 7 11, 4 10, 7 5, 5 4, 4 4, 8 7, 4 11, 5 7, 9 2, 6

Table 1.1:

Figure 1.2: Left: plot of 1000 data pairs produced by an invented
probability model. The actual values are all integers, so we have
moved each point away from its value by a small random amount:
a plotting trick known as dithering, which allows us to see the rela-
tive number at each value much better. Right: the number of points
with particular values of x1 and x2.
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of how much better humans are at understanding visual depictions than
numerical lists. Figure 1.2 is a plot of more data pairs from our toy model,
and shows a clear pattern to the relative occurrences of the different values.
The model used to produce these data can be described by the following
rule: take three numbers, each with an equal chance of being 1, 2, 3, or
4, and add them up to get the value of x1; then take two numbers, each
with an equal chance of being 1, 2, 3, 4, 5, or 6, and add these up to get
the value of x2. We could produce the numbers by rolling tetrahedral and
cubical dice; the values listed and plotted actually came from a software
simulation of that procedure.

Our brief description is an example of how a probability model can
explain data. More generally, a probability model is a mathematical con-
struction that we develop to explain some set of observations. Such a model
includes some aspects that are “random”, meaning that they do not have
definite values, but only different chances of taking on different values. In
our toy model we started with elements that have equal chances of tak-
ing on integer values within certain ranges, and combined them to get our
final result. These elements are called random variables; much of de-
veloping probability models comes from deciding what parts of your data
are best modeled by this type of “variable variable”, and which by variables
that take on only one value. The mathematics of random variables is part
of probability theory, which like any mathematical theory is the logi-
cal development of the behavior of certain kinds of mathematical entities.
Random variables are such an entity, designed (as their name suggests) to
mimic outcomes that in the real world are the result of “chance”.

1.1.2 Distance Measurement (I): Point Estimation
For our first illustration of a statistical procedure, we return to the GPS
data set of Figure 1.1, the histogram of which we repeat in the left panel
of Figure 1.3. Drawing a more precise conclusion than that the data are
“clumped” requires us to assume that the data can be represented by a
mathematical model that includes random variables. This is a very big step
– and, like most applications of mathematical models to the real world, not
one that can be justified in simple terms. You should always remember that
assuming a relationship between data and a model that describes them
should be done with care, for it is, in its own way, chancy: a particular
probability model might be appropriate – or it might not.

The specific mathematical model we adopt is to regard the length as a
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Figure 1.3: Left: histogram of distance data, repeated from Figure
1.1. Right: histogram expected for a stochastic model that has been
fit to these data.

random variable X ; this variable is described by the equation

Pr[X < x]= 1

σ(2π)1/2

∫ x

−∞
exp

[
−1/2

(u−m
σ

)2
]

du (1.1)

The right-hand side of this equation should pose no difficulty: it de-
scribes a function of x that depends on two parameters m and σ, both of
which have definite (but at this point unknown) values. The novelty, both
in notation and in concept, is on the left-hand side. The expression there
means, “The probability that the random variable X is less than a value x.”

But what do we mean by probability? We will describe its mathemat-
ical properties in the next chapter. What it “really means”, in the sense
of what it corresponds to in the real world, is a deep, and deeply contro-
versial, question. In applying it to this particular dataset, we can most
usefully view it as a way of representing the fraction of times that we get
a particular result if we repeat something, which is called the frequency
of occurrence. The simplest example of this interpretation is when we
say that the probability of getting heads on tossing a fair coin is 0.5.3 Cer-
tainly this frequency interpretation is the most straightforward way to
connect equation (1.1) to the data summarized in Figure 1.3.

So, we have data, and we have assumed a probability model for them.
What comes next is statistics: using the model to draw conclusions from
the data. Probability theory is mathematics, with its own rules – albeit

3 Note that we give probabilities as values from zero to one, not as percentages. You
should too.
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rules inspired by real-world examples. Statistics, while it makes use of
probability theory, is something else, namely the application of this theory
to data so as to draw actual conclusions. Though for historical reasons
nobody calls Statistics a branch of applied mathematics, that is, we think,
the best way to classify it.

Given our model, as expressed by equation (1.1), and given these data,
an immediate statistical question is, what are the “best” values for m and
σ? Assuming that (1.1) in fact correctly models these data, the formulas for
finding the “best” m and σ, (symbolized by m̂ and σ̂) are

m̂ = 1
n

n∑
i=1

di σ̂2 = 1
n−1

n∑
i=1

(di − m̂)2 (1.2)

where d1, d2, . . . dn are the n data. Applying these expressions to the data
from which Figure 1.2 was drawn, we get m̂ = 50326.795 and σ̂ = 0.175.
The parameters m and σ in equation (1.1) are called the mean and stan-
dard deviation; the values m̂ and σ̂ that we get from the data using the
formulas in (1.2) are called estimates of these.4 In Chapter 5 we will de-
scribe in what sense these estimates might be termed “the best;” finding
and evaluating procedures such as equation (1.2) is the area of statistics
known, unsurprisingly, as estimation theory. Finding the best values of
parameters such as m and σ is called point estimation: perhaps the com-
monest, but not always the most relevant, statistical question to ask and
answer.

So far we have, intentionally, said nothing about “errors”; but if we in-
terpret these data representing a true value contaminated by errors, we
get a formally similar but philosophically quite different statement, which
is that the data can be modeled as

di = t+ e i (1.3)

where t is the true value of the distance, and the e i are the errors. We
then can model the errors as being represented by a random variable E,
the probability model for which is

Pr[E < e]= 1

σ(2π)1/2

∫ e

−∞
exp

[
−1/2

(u
σ

)2
]

du (1.4)

Mathematically, equations (1.3) and (1.4) are equivalent to equation
(1.1) if we have t = m, which means that if we assume these two equations,

4 Using a superposed hat to denote an estimate of a variable is standard in statistics.
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our “best estimate” of t is m̂. This is, by far, the most frequent statistical
computation scientists make: given a collection of repeated measurements,
we form the average, and say the answer is the true result we are trying
to find. There is nothing really wrong in this – until we start to ask ques-
tions such as “How uncertain is t?” Such a question, while tempting, is
nonsense: if t is the true value, it cannot be uncertain; in mathematical
terms t is some number, not (like the e’s) a random kind of thing.

We will avoid this approach, which (as we have noted) is often inappro-
priate in geophysics; instead we will pose problems in terms of equations
such as (1.1). In such expressions the non-random variables are all on the
same footing: they are parameters in a formula describing a probability.

We can use our estimates m̂ and σ̂ to find how the data would be dis-
tributed if they actually followed the model (1.1); the right side of Figure
1.2 shows the result in the same histogram form as the left side. You might
wish to argue, looking at these plots, that the model is in fact not right,
because the data show a sharper peak, just to the left of zero, than the
model; and the model does not show the few points at large distances that
are evident in the data. These are quite valid objections: the data are not
completely represented by this model. We could find a better model; but if
our goal is the get a best estimate of the length, we should instead consider
what is known as robust estimation: point estimation procedures that
are not affected by small errors in the model.

1.2 Magnetic Reversals, Earthquakes, and
Hypothesis Testing

In the previous section we estimated parameters of a statistical model; but
how might we decide the underlying question of whether or not our model
is valid for the data? This is a different kind of statistical question. For
our first example, we use the data plotted in Figure 1.4: reversals of the
Earth’s magnetic field for the interval 0–159 Ma. This is an example of a
particular kind of geophysical data that happens over time, this kind being
called a point process. This name is used because the behavior over time
is defined by the particular times, or points, at which something happens:
for example, a field reversal, an earthquake, or a disk crash.

The simplest probability model for this behavior is called a Poisson
process. An approximate description is easy: we divide time into equal
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intervals, and assume the probability of an event in each interval is the
same value p; in particular, p is the same whether it it has been a long time
or a short time since the previous event. This specification says nothing
about absolute time, so it cannot describe the times of the reversals; what
it instead describes is the lengths of the intervals between them. The lower
left histogram in Figure 1.4 is of the intervals observed for the magnetic
reversals, plotted on a logarithmic scale because the range is from 2×104

to 4×107 years. The longest interval (the “Cretaceous Normal Superchron”
or CNS) ran from 124 Myr ago to 83 Myr ago. Looking at the time series,
and even more the histogram, raises an obvious question: is this very long
interval “unusual” compared to the others? If we decide that it is, we could
argue more strongly that the core dynamo (the source of the field) changed
its behavior during the CNS.

In statistics this kind of question about “unusualness” is an example
of a hypothesis test – the reason being that we say that a behavior is
unusual only if we compare it against what would be expected from some
probability model, which we call a “hypothesis”. The random element that
is basic to any probability model means that we cannot say that some data
make a model impossible, only that it is very improbable that the data could
come from a specific model. Testing for improbability involves reasoning in
an unfamiliar way, one that can seem backwards. We first create a model
(called the null hypothesis) opposite from the one that would describe
what we want to show. We then look for a negative conclusion, namely that
the observed data are very unlikely to come from such a null model – so the
(other) model we want to show is more likely to be a valid description.

For testing if the CNS interval is unusual compared to the others, we
chose a null hypothesis (probability model) that describes all of these oth-
ers. A simple model would be the kind of Poisson-like process we described
above, with an equal probability p of a reversal in any 40,000 year interval;
we choose this basic length because shorter intervals are rare. An estimate
of p from the data is p = 0.1; this would produce the histogram of interval
lengths shown in the lower right of Figure 1.4; at least a crude approxi-
mation to the data. The 40 Myr of the CNS has 1000 intervals of 40 kyr;
the probability of there not being a reversal over this many intervals con-
secutively is (1− p)1000, or 2×10−46. So, over the 160 Myr of data we have
(four 40-Myr intervals), we would expect to get such a long reversal-less
span about one time out of 1045. This is so very unlikely that we can be
comfortable rejecting the Poisson model for the CNS period, even though,
given that there is only one field, it may seem odd to say “one time out of
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Figure 1.4: The top two plots show the reversals of the Earth’s mag-
netic field, mostly reconstructed from marine magnetic anomalies,
over the last 159 Myr; a positive value means that the dipole has the
same direction as now, and negative ones that it was reversed. The
lower plots are histograms of the intervals between reversals, binned
in log time: on the left, the histogram for the data, and on the right,
one for for a Poisson process with the same rate as the data, and a
minimum interval of 40,000 yr.
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N”. We should always remember that in using a low probability to reject a
model we are making an arbitrary judgment about how small a probability
we will tolerate.5

We use another data set, earthquakes in California, to introduce an-
other example of hypothesis testing, this time to rule out the “non-null”
hypothesis. It is sometimes said that large California earthquakes tend to
occur in the early morning because this was true for shocks in 1906 (San
Francisco), 1971 (San Fernando), 1992 (Landers), 1994 (Northridge), and
1999 (Hector Mine). Early morning is a good time to have an earthquake,
since most people were at home, which in California is a relatively safe
place to be. We guessed this behavior from a few (selected) examples); we
can ask if it is supported by a full earthquake catalog.

Figure 1.5 shows the data, which we plot in four different ways to em-
phasize that there are often more effective ways to plot data than what
might seem most obvious. The obvious plot as in Figure 1.1 is a histogram
(upper left plot in Figure 1.5), but this places the two end times far apart,
when they are actually close. One cure for this is a radial histogram, or
coxcomb plot, shown in the upper right plot in Figure 1.5; the sizes are
scaled so that the number of events is proportional to the area of each sec-
tor.

Both of these plots have a defect (shared with Figure 1.1: we have to
decide how big to make the bins. Too small, and there will be wide varia-
tions in the sizes, too large, and we might lose interesting detail. We can
say, with emphasis, never bin data unless they come in bins or you have no
choice. Fortunately, for the earthquake data we do have a choice, which
we show in the bottom left plot in Figure 1.5: use the magnitude (certainly
important) as a second variable and plot the individual earthquakes as a
function of magnitude and of time of day. We repeat part of the left-hand
side on the right so we can see the distribution around the day boundary.
But we can do better if we use a polar plot, where time is the angle, and
magnitude is related to the radius. If we make the radius larger for smaller
magnitudes, the many smaller earthquakes are spread over a larger area
and so are easier to see. In the last two plots we use different symbols
to separate earthquakes recorded on seismometers from those known only
from felt reports: this plot easily combines three types of information.

5 A more thorough analysis by ? shows that a Poisson model can be used, provided
the probability p can change with time: p has a very low value during the Cretaceous
Superchron, and increases from then to the present.
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Figure 1.5: Four plots of the local-time distribution of earthquakes
from 1890 on in California and Nevada, with magnitude 5.5 or larger,
The data are from the catalog of the Working Group on California
Earthquake Probabilities, combined with the list in ?, and with im-
mediate aftershocks removed. In the two bottom plots, pluses are for
the 41 shocks during 1890-1909, circles for the 239 during 1910-2011.
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Certainly this last plot does not suggest any concentration around one
range of times. We postpone our actual test to Chapter 6.

1.3 Distance Measurement (II): Error
Bounds

In Section 1.1.2 we used a stochastic model for the distance measurement
to make a “best estimate” of the parameter m. But usually we do not want
only this, but also some characterization of how well we think we know it
– in the conventional phrasing, how large the error of m̂ is. This question
can actually be framed as a whole series of such hypothesis tests, for each
of which the hypothesis is “m really is equal to a particular value”. Given
a probability model we can ask if this is likely given the data observed. In
this case, if the value was assumed to be 50320 or 50330 mm, the answer
would be, not very likely; if the assumed value were 50326.8, the answer
would be, quite possible. We can in fact work out what this series of tests
would give us for any assumed value of m; then we choose a (low) probabil-
ity value corresponding to “not very likely”, and say that we will accept any
value of m for which the hypothesis test gives a higher value. We thus get
not just a value for m, but (more usefully) a possible range for it, known as
the confidence interval. As with the point estimate, our result will de-
pend on the stochastic model we choose; if the model is bad, our conclusions
will be too.

1.4 Predicting Earthquakes: A Model
Misapplied

We close with an example where bad conclusions were drawn from an in-
correct model – and these conclusions were not just false, but costly. Our
example comes from the field of earthquake prediction, which probably has
more examples of inept statistical reasoning, and of blissful unawareness
of the need for such reasoning, than any other branch of geophysics.

This prediction was for an earthquake at Parkfield, a very small set-
tlement on the San Andreas fault in Central California. Earthquakes hap-
pened there in 1901, 1922, 1934 and 1966; seismometer records showed the
last three shocks to have been very similar. Nineteenth-century reports of
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Figure 1.6: Left: times of Parkfield earthquake, 1857 through 1966,
plotted against earthquake number, with lines fit to the data values
with the 1934 earthquakes included and excluded, and the resulting
times predicted for the next earthquake. Right: intervals between
earthquakes (starting with the 1881-1901 interval), ranked by inter-
val length. The solid line for the 2004 earthquake shows the time
between the original prediction and the actual event.

felt shaking suggested earthquakes at Parkfield in 1857 and 1881. This
sequence of dates could be taken to imply a moderately regular repetition
of events.

You might think, from our discussion in Section 1.2, that a model should
be derived for the times between earthquakes – and you would be right.
But the actual analysis took a different approach, shown in the left panel
of Figure 1.6: the event numbers were plotted against the date of the earth-
quake, and a straight line fit to these points. The figure shows two fits, one
including the 1934 event and the other omitting it as anomalous. If the
1934 event is included, the straight line reaches event number seven in
1983 (the left-hand vertical line); this was known not to have happened
when the analysis was done in 1984. Excluding the 1934 event yielded a
predicted time for event seven of 1988.1, with an “error” of 4.5 years.

Partly because this prediction promised a payoff in the near future, a
large monitoring effort was set up around Parkfield. This effort continued
long after the “end” of the prediction – very long after, because the seventh
earthquake happened in September 2004, 19 years “late”.

What went wrong? The biggest, and all too common, mistake was to
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adopt “standard” methods without checking to see if the assumptions be-
hind them were appropriate: an approach often, and justly, derided as the
“cookbook method”. The statistical methods used to fit the line and find the
range for the predicted date, assumed that both the x- and y-coordinates
of the plotted points were random variables with a probability distribution
somewhat similar to equation (1.1). But the event numbers, one through
six, are as nonrandom as any sequence of numbers can be; and the dates
are not random either, since they increase with event number. A more care-
ful analysis of the series showed that, in 1984, a time near 1990 would be
the best point estimate of when the next earthquake would happen. But
the range of “not-improbable” times would be much larger than nine years,
so the next earthquake was nowhere near as imminent as the incorrect
analysis suggested. No doubt some level of monitoring would have been un-
dertaken anyway but a more thoughtful approach might have been taken
if the statistical analysis had been done properly.6

But if the data had been plotted properly this error would most likely
have been avoided. The right-hand panel in Figure 1.6, is an alternative
plot: it shows the intervals, ordered by size and labeled by the date when
each ended. The longest interval has an arrow extending from 1984 (when
the prediction was made) to the actual time of the earthquake. The range
of prior intervals suggests that in 1984 a reasonable prediction for the next
earthquake would have been would have been “probably soon, but a 10-20
year wait might well be expected”.

This example shows that you need to learn not only techniques to use,
but also when not to use them; it also shows that how you plot data can
easily affect your conclusions.

6 The original prediction was by ?; the correct analysis is ?. This particular misappli-
cation of statistics was not unique to the Parkfield analysis; see ?.


