
SIOG 231: GEOMAGNETISM AND ELECTROMAGNETISM

Chapter 10: Main Field Modeling and Regularization
1. Introduction

In our discussions of the field so far we have not dealt with the issue of how to determine the magnetic
field from a practical set of observations. In an earlier lecture it was stated that the spherical harmonic (SH)
representation provides a unique description of any magnetic field represented by a harmonic potential, and
we saw how in principle this allows unique separation of the internal and external field contributions to
spherical harmonic expansions. So far we have seen two different representations of a scalar potential for
the geomagnetic field. We’ve used both B = −∇Ψ and Ω = rBr (Neumann Boundary Value Problem) and
supposed that we had perfect knowledge of the field to write a general solution to Laplace’s equation in the
form of an SH expansion.

Continuing with the specialization to the internal field coefficients, we note that the field coefficients for
Ω(r, θ, φ) = rBr(r, θ, φ) on S(a), the surface of the sphere of radius a, can in principle be derived from the
equation below:

βml =
∫
S(a)

Br(a, θ, φ)Y m
l (θ, φ)∗

d2r
a2 (56)

but this evidently requires knowledge of Br all over S(a), which is not possible in practice. We will need
a strategy for dealing with incomplete and noisy observations. But before we tackle the question of finding
approximate models, (and here we will follow custom and say that a geomagnetic field model is a finite
collection of SH coefficients), we discuss the mathematical question of what are sufficient measurements to
define the field uniquely.

2. Geomagnetic Elements

Equation (56) relies on knowledge of the radial magnetic field, but these are not the only kind of observations
that are made; typically when surface survey, observatory, and satellite data are involved we may need to
consider all of the following kinds of observations:

Br, Bθ, Bφ – orthogonal components of the magnetic field in geocentric reference frame.
X , Y , Z – orthogonal components of the geomagnetic field in local coordinate system, directed north,

east, and downwards respectively. This is the geodetic (or geographic) coordinate system.
H = (X2 + Y 2)

1
2 – horizontal magnetic field intensity

B = (B2
θ + B2

φ + B2
r )

1
2 or F = (X2 + Y 2 + Z2)

1
2 – total field intensity

D = tan−1(Y/X) – declination
I = tan−1(Z/H) - inclination.

If we are prepared to accept the approximation that the Earth is a sphere, then we can write

X ≈ −Bθ; Y ≈ Bφ; Z ≈ −Br. (57)

But as you will have seen in gravity lectures the shape of the Earth is much better approximated by a spheroid
or ellipsoid of revolution, with equatorial radius a, polar radius b, eccentricity, e

e2 =
(a2 − b2)

a2 (58)

and flattening

f =
(a − b)

a
= 1/298.257. (59)
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In paleomagnetic field modeling it’s really not necessary to take account of the difference between geodetic
and geocentric latitude but in modern field modeling (usually based on both surface and satellite observa-
tions) the data are accurate enough for it to really matter. Since we make our SH models in geocentric
coordinates and surface observations are measured in geographic coordinates they must first be transformed
into geocentric.

Exercise:
What is the size of the error you make if you neglect to correct for the ellipsoidal shape of the earth
and use geocentric latitude and longitude in calculating the field from a spherical harmonic model?

As we already noted, it is impossible to acquire complete knowledge of the radial magnetic field (or indeed
any other component) on any spherical surface. Our data are always incomplete and noisy, and consequently
there will always be ambiguity in the models derived from them. Because of this it might be argued that
the issue of uniqueness in the case of complete and perfect data is of purely academic interest. However,
experience in making magnetic field models based exclusively on one kind of observation has shown that
this is not the case.

3. Fundamental Limitations on Uniqueness

Non-Uniqueness and |B|

The fact that Br on a surface S(a) uniquely determines the field (because it is the solution of a Neumann
boundary value problem for Laplace’s equation) might lead one to hope that complete measurements of
|B| (the magnitude of the field) would uniquely specify the internal magnetic field to within a sign. Until
relatively recently almost all marine observations have been of |B|, and so are many satellite measurements.
It is also the case that scalar observations are generally more accurate than their vector counterparts so there
might be advantages to just using those data in modeling. For the case of intensity data alone, George
Backus (now Professor Emeritus at IGPP) showed in 1968 (Q. J. Mech and Appl. Math 21, pp 195-221,
1968; and J. Geophys. Res. 75, pp 6339-41, 1970) by constructing a counter example that knowledge of
|B| was not sufficient. Backus’ counter example is constructed in the following way: first find a magnetic
field with potential ΨM that is everywhere orthogonal to a dipole field; then ΨD + ΨM and ΨD −ΨM have
the same B everywhere.

One might reasonably ask whether this counter-example matters or is merely an artificial mathematical
construct. If it does not one would surely be better off using scalar measurements, with typical accuracy
of < 1nT, than vector components which are usually only accurate to several nT because of the need
to orient a low earth orbiting measurement platform within an Earth centered reference frame. However
the effect is real. Independent field models using exclusively vector or scalar Magsat data predict similar
intensity at Earth’s surface, but show differences of up to 2000 nT in the individual vector components.
Backus’ example provided an explanation of the poor quality of directional information predicted by models
based on B alone, especially in equatorial regions. It reflects the fact that optimization in the |B| model is
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insensitive to errors perpendicular to the field, while the full vector is sensitive to misfit in all directions.
This perpendicular error effect is also referred to as the Backus effect.

Early satellites had only measured total field intensity, and Backus’ result led to the launching in 1979 of the
first vector field satellite, known as Magsat. Later satellites (Oersted, CHAMP, Swarm) launched to monitor
Earth’s magnetic field from low Earth orbit have routinely taken vector as well as scalar measurements
and use one or more star cameras to provide a means of transforming vector observations from the satellite
coordinates in which measurements are made to the geocentric coordinate system used for Earth observations.

Subsequently, Khokhlov, Hulot and Le Mouël (Geophys. J. Internat. 130, pp 701-3, 1997) showed that if
knowledge of the location of the dip equator is added to knowledge of |B| everywhere then uniqueness of
the solution is guaranteed. The practical usefulness of this result is debatable, and full field B measurements
are now routine.

Non-Uniqueness and B̂

Another potentially interesting case is exact knowledge of the direction of the field all over Earth’s surface,
S(a), which one might imagine could determine the field to within a multiplicative scaling constant.
Paleomagnetic observations can determine ancient field directions much more reliably than field intensities,
so one might hope to discover the shape of the geomagnetic field in those epochs when paleomagnetic data
are plentiful. Similarly to the intensity case, (despite an earlier inaccurate argument to the contrary) it was
shown in 1990 by Proctor and Gubbins, (Geophys. J. Internat. 100, pp 69-79, 1990) that B̂ on a spherical
surface does not determine the field to within a scalar multiple.

The counter examples might again be argued to be questionable representatives of Earth-like fields, being
axisymmetric, antisymmetric with respect to the Equator, and octupolar in type. This result too has been
investigated further and it has now been shown that if the magnetic field only has two poles on the surface
S(a) then knowledge of its direction everywhere allows the geomagnetic field to be recovered, except for
a constant multiplier (see Hulot, Khokhlov and Le Mouël, Geophys. J. Internat. 129, pp 347-54, 1997 for
details).

For much more discussion of uniqueness questions, including some extensions to the case where both
external and internal field are considered see Sabaka et al. (2010, Handbook of Geomathematics, doi:
10.1007/978-3-642-01546-5 17). The essential result of importance for geomagnetic field modeling using
observations from satellites and geomagnetic observatories is summarized in their Figure 4 and reproduced
below. This figure moves somewhat beyond our assumption that all observations are taken in a source free
region, as LEO satellites are typically fly at 400-1000 km elevation, outside of the neutral atmosphere, and
in the F-region above the E-region of Earth’s ionosphere. Despite intrinsic non-uniqueness one can recover
sufficient information for field modeling to be a useful activity. Our discussion of the basics of how to
construct geomagnetic field models in the next section is much simpler; we will ignore any external fields
and initially focus on reconstruction of the main part of the geomagnetic field generated in Earth’s core.

4. Construction of Field Models

We will suppose here that we have a finite collection of inaccurate observations of orthogonal components
of the geomagnetic fieldBj = B · r̂j in geocentric coordinates. Our goal is to derive from these observations
the spherical harmonic coefficients that best represent the real geomagnetic field. Clearly, we cannot use
(56) because our knowledge of Br(a, θ, φ) is incomplete. Also it would not make use of our measurements
of the tangential part of the field. Making a field model is a way of mapping the field everywhere outside the
source region and is analogous to (and in some respects identical with) that of interpolation to find a curve
passing through a finite number of data. Many curves will do the job, and we cannot choose which one is
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Mathematical Properties Relevant to Geomagnetic Field Modeling  

J (r > c)

r=a

r=c

r=b

r=R

J (r < a)

Jpol
Js (r=b)

Observatories No sources

Satellite

⊡ Fig. 
Uniqueness of a magnetic field recovered from partial informationwithin a current-carrying shell.
In this special case relevant to geomagnetism, it is assumed that any source can lie below r = a
(internal J(r < a) sources), and above r = c (external J(r > c) sources), no sources can lie within
the lower subshell (a < r < b, the neutral atmosphere), a spherical sheet current can lie at r = b
(the E-region Js(r = b) sources), and only poloidal sources can lie within the upper subshell (b <
r < c, the F-region ionosphere). The knowledge of B on a sphere r = R in the upper subshell (as
provided by, e.g., a satellite) and of enough components of B on the sphere r = a (as provided by,
e.g., observatories at the Earth’s surface), is then enough to recover the field produced by most
sources in many places (see text for details)

neutral atmosphere and is therefore source-free, while the spherical sheet current describes
the ionospheric E-region (which is again considered as in!nitely thin). Finally assume that the
upper subshell describes the ionospheric current-carrying F-region within which near-Earth
satellites orbit. Since those currents are known to be mainly the so-called !eld-aligned cur-
rents at polar latitudes (i.e., aligned with the dominant poloidal !eld, see, e.g., Olsen ), it is
not unreasonable to further assume that those currents have no toroidal components (they are
mainly in radial direction). In other words, assume that no Jshtor sources, but only Jshpol sources
lie in the b < r < c upper subshell.%ese assumptions, together with the previous uniqueness
theorem can then be combined in a very powerful way.

Indeed, since B(R, θ, ϕ) is already assumed to be known on a sphere r = R in the upper
subshell, the Gauss coe&cients (gmn (R), hm

n (R), qmn (R), smn (R)) can be inferred from Eqs. –
.%e (qmn (R), smn (R))Gauss coe&cients then describe the !eld produced below r = R by all
sources above r =R. But since between r =R and r = c only Jshpol sources are to be found which
only produce local toroidal !elds, the only sources contributing to the !eld described by the(qmn (R), smn (R)) coe&cients are the J(r > c) sources. It thus follows that the (qmn (R), smn (R))
are the (qmn , smn ) Gauss coe&cients describing the potential !eld produced below r = c by the
J(r > c) sources. A similar use of the Gauss coe&cients (gmn (R), hm

n (R)) recovered from
Eqs.  and  can then also be made. %ose describe the !eld produced above r = R
by all sources below r = R. But no sources between r = b and r = R contribute. Only
J(r < a) and Js(r = b) sources do. It then also follows that the (gmn (R), hm

n (R)) are the sums(gmn + amn , hm
n + bmn ) of the Gauss coe&cients describing the !eld produced above r = a by the

J(r < a) sources and above r = b by the Js(r = b) sources. %is then brings one back to a

more desirable without supplying additional information of some kind. One extra thing we know is that the
magnetic field obeys a differential equation, but that turns out not to be enough information by itself. When
the observations are not exact, but uncertain as in all real situations the issue is even more complicated. We
obviously shouldn’t expect the interpolant to pass through all (perhaps even any) of the observations. In the
case where we would like to downward continue a geomagnetic field model to the core-mantle boundary,
we need to be especially careful about how we deal with noise in the data; if we fit models with small scale
structure derived from this noise, then it may dominate the real signal after downward continuation.

4:0.0 Least Squares Estimation

We will start with the time-honored technique for the construction of geomagnetic field models (invented
by Gauss for this very purpose!), which was that of least squares estimation of the spherical harmonic
coefficients in a truncated spherical harmonic expansion for the measured field components. Instead of the
exact expansion with infinitely many terms, we decide ahead of time to model the data with an expansion
truncated to degree L: so the scalar potential becomes

Ψ(r, θ, φ) = a
L∑
l=1

l∑
m=−l

bml

(a
r

)l + 1
Y m
l (θ, φ) (60)

and we know
B = −∇Ψ. (61)

Once again we are using fully-normalized spherical harmonic functions here which simplifies things from
the theoretical perspective when we want to discuss regularized field models in the next section. If we
measure all three orthogonal components of the field Br, Bθ, Bφ in a geocentric coordinate system at P
locations we have a set of M = 3P observations of magnetic elements at sites designated rp = (r̂p, θ̂p, φ̂p),
the vector field is written B(rp), p = 1, . . . , P . Now we let ŝpi , for i = 1, . . . , 3 be the unit vector along one
of the orthogonal (r, θ, φ) directions at location rj , where the locations rj will not be distinct because of the
vector observations. Then
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dj = ŝpi · B(rj), j = 1, ...,M

= al + 2
L∑
l=1

l∑
m=−l

bml ŝpi · ∇

[
Y m
l (r̂j)
rl + 1
j

]
+ εj .

(62)

Note that we have allowed for uncertainty in each observation through εj , and that although we said each
location has 3 vector components measured it doesn’t matter if some of them turn out to be missing.

The data dj are linear functionals of the bml , the SH coefficients that specify the field. With an appropriate
indexing scheme for the bml we can write a prediction for our observations dj as a matrix equation.

d = Gb + e (63)

with vectors d representing theM data, e noise in measurements both ∈ RM , b ∈ RK is a vector containing
an ordered list of the spherical harmonic coefficients bml . G is an M ×K matrix that tell us how to predict
the observations based on their positions rj and the various Y m

l (θ, φ). For each dj we can compute gjk
(with j = 1, . . . ,M and k = 1, . . . ,K) the contribution of the relevant spherical harmonic at that point; the
vector e contains the misfits between the model predictions and the actual measurements. The total number
of parameters, the length of the vector b, is determined by the truncation level: K = L(L + 2). Thus

d =


d1
d2
d3
:
dM

 b =


b−1

1
b0

1
b1

1
:
bLL

 e =


e1
e2
e3
:
eM

 G =


g11 g12 g13 . . . g1K
g21 g22 g23 . . . g2K
g31 g32 g33 . . . g3K
:

gM1 gM2 gM3 . . . gMK

 (64)

The value of L is chosen so that K is (much) less than M , the number of data, so there are fewer free
parameters than data to be fit. This means that it is impossible to choose b to get an exact match to the data,
and so e is not a vector of zeros. Least squares estimation involves finding the values for b that minimize
||e||2 = ||d − Gb||2, where the notation || · || is called a norm – in this case it is the ordinary length of the
vector. The idea here is to do the best job possible with the available free variables and make the model
predictions as close to the data as they can be, as measured by the length of the misfit vector.

Straightforward calculus can be used to show that the LS solution vector b̃ can be written in terms of the
solution to the normal equations:

b̃ = (GTG)−1GTd. (65)

Note that (65) is for several reasons not a good way to find b̃ in a computer – first, linear systems of
equations ought never to be solved by calculating a matrix inverse (it wastes time and is inaccurate); second,
there is a clever way of writing the LS equations that avoids a serious numerical precision problem arising
in (65). (All this is essentially invisible in Matlab and Python!) A result from statistics, known as the
Gauss-Markov Theorem, shows that provided the misfits are due to random, uncorrelated perturbations
with zero mean, and have a common variance, then the least squares solution is the best linear unbiased
estimate (BLUE) available, in the sense that the resulting coefficients have the smallest variance (and thus
the smallest uncertainty in the result) amongst such estimates. Also, the expected value of ||e||2

E[||e||2] = (M −K)σ2 (66)

where σ2 is the variance of the noise process. If the noise has a known covariance structure, then the theory
can readily be adjusted to take this into account.
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A fundamental problem with this approach is that although we might have an idea of the size of the
uncertainty in the various observations, and we could choose the truncation level of the spherical harmonic
expansion so (66) is approximately satisfied, we do not know that theK spherical harmonics we have chosen
adequately describe the geomagnetic field. In other words, the misfit has two sources, not one: measurement
error and an insufficiently detailed model. To guarantee a complete description of the real field L = ∞; in
that case the Gauss-Markov theorem does not apply, nor does (66), and we have no uncertainty estimates
for our model. Truncation at finite L corresponds to an assumption about simplicity in the model that has
no physical basis – the resulting field model may be biased by the truncation procedure.

4:0.1 Regularization – an Alternative to Least Squares

An alternative to LS fitting that has been very widely used since the mid 1980s and is the basis of almost all
modern geomagnetic field modeling is to choose “simple” or minimum complexity models for the field of
an explicit kind. To illustrate the concept we return to our one-dimensional interpolation problem, where
we suppose we have pairs of observations (xk, yk) as shown in Figure 3.4.4.1 and we want to represent them
throughout the domain (x1, xN ) with a smooth function f (x).

One widely used solution to the problem of interpolation is to use what is known as cubic spline interpolation.
Data are connected by piecewise cubic polynomials, with continuous derivatives up to second order. The
cubic spline interpolant has the property that it is the smoothest curve connecting the points, in the precise
sense of minimizing the integrated squared value (ISV) of the second derivative:∫ xM

x1

[
d2f

dx2

]2

dx. (67)

The spline solution is the solid line in the Figure 3.4.4.1; any other curves, like the dashed ones, have a
larger value for the integral (67). In physical terms we can think of (67) as the quadratic approximation
to the stored elastic energy in a thin beam deformed to pas through the points, with the shape of the beam
given by the spline curve.

Figure 3.4.4.1
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Figure 3.4.4.2

If the data are noisy we can still model them by the same kind of curve, but we no longer require the curve to
pass exactly through the model points. Instead, we ask for a satisfactory fit, usually defined in terms of norm
of the misfit. So we seek the curve with the smallest ISV second derivative, that has a target misfit. This is
an example of a constrained minimization, and we can solve it with a Lagrange multiplier. The solution to
the constrained problem is determined by finding the stationary points of an objective functional, U , of the
following kind:

U =
M∑
j=1

(f (xj) − yj)2

σ2
j

+ λ

∫ xM

x1

[
d2f

dx2

]2

dx (68)

subject to
M∑
j=1

(f (xj)− yj)2

σ2
j

= T. (69)

The size of the Lagrange multiplier λ is dictated by the constraint that the data be fit to a reasonable tolerance
level. If the uncertainty in the observations, σj , is known, one reasonable choice for T is the expected value,
written here as E , of a chi-squared random variable with M degrees of freedom and

E[χ2
M ] = M

The same ideas are used in geomagnetic field modeling. However, the vector nature of the field makes the
choice of penalty functional more complicated – we want to find some property of the magnetic field that
can be used like (67) to minimize wiggliness or complexity in our models of the geomagnetic field, either
at Earth’s surface (r = a) or at the CMB (core-mantle boundary, r = c). The general idea of constructing
models that minimize a penalty other than just data misfit is called regularization.

One candidate penalty function is

E =
∫
r>a

|B|2d3r. (70)

Since |B(r)|2/2µ0 is the energy density of the magnetic field at r, E/2µ0 is the total energy stored in B
outside the sphere of radius a or c. We can reduce this integral to a manageable form in terms of spherical
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harmonics. We write B = −∇Ψ, then

E =
∫
r>a

∇Ψ · ∇Ψ d3r. (71)

Next we make use of a familiar vector identity (number 4, in our list: ∇· (sA) = ∇s ·A + s∇·A, and letting
A = ∇Ψ and s = Ψ) followed by Laplace’s equation to write

E =
∫

[∇ · (Ψ∇Ψ) − ∇2
Ψ] d3r

=
∫
∇ · (Ψ∇Ψ) d3r. (72)

Using Gauss’ Divergence Theorem we can rewrite the volume integral in terms of a surface integral over
S(a)

E =
∫
S(a)
−Ψ

∂Ψ

∂r
d2r. (73)

Now we simply substitute the spherical harmonic expansion (60) for the potential Ψ.

E =
∫
S(a)

[a
∑
l,m

bml Y
m
l (r̂)][

∑
l′,m′

(l′ + 1)bm
′

l′ Y
m′

l′ (r̂)]∗a2d2r̂

= a3
∑
l,m

∑
l′,m′

(l′ + 1) bml (bm
′

l′ )∗
∫
S(a)

Y m
l (r̂)Y m′

l′ (r̂)∗d2r̂

= a3
∞∑
l=1

l∑
m=−l

(l + 1)|bml |2. (74)

HenceE can be written as a positive weighted sum of the squared absolute values of the spherical harmonic
coefficients. This sum is now in a form we can use in minimizing an objective function like (71) for the
magnetic field. It’s usually the case that the factor of a3 is absorbed into the Lagrange multiplier in (71),
and then the weighting of the squared coefficients just becomes a polynomial in l.

The weighting by increasing l means that higher degree (shorter wavelength) contributions to the model
will be strongly penalized in minimizing the objective functional. (74) is one example of a set of norms
(measures of size) of the kind

||B||2w =
∞∑
l=1

wl

l∑
m=−l

|bml |2, wl > 0. (75)

Many interesting properties corresponding to smoothness or small size of the field can be written in this
form, for example, ∫

S(a)
B · B d2r̂ wl = (2l + 1)(l + 1) (76)

which you might recognize as the spatial geomagnetic power spectrum as a function of wavelength for a
fully normalized SHE of the internal magnetic field.

Here are a few more examples of functions used to penalize short wavelength structure in the field model
by applying successively heavier weight for large l:∫

S(a)
[∇1(r̂ · B)]2d2r̂ wl = l(l + 1)2(l +

1
2

) surface gradient of Br (77)
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∫
S(a)

[∇2
1(r̂ · B)]2d2r̂ wl = l2(l + 1)4 surface Laplacian of Br (78)∫
r<a

JT · JTd3r wl ≈ (l + 1)(2l + 1)2(2l + 3). (79)

In (79) JT is the toroidal part of the current flow in Earth’s core, whose significance will be discussed later.
These ideas were first set out in a paper by Shure, Parker, and Backus, Phys. Earth Planet. Inter. 28, pp
215-29, 1982.

4:0.2 Results - Gauss Coefficients

We have already discussed that in honor of Karl Friedrich Gauss, the expansion coefficients are invariably
called Gauss coefficients. In gravity the SHE is called Stokes’ expansion. There are some differences in
geomagnetism. First, the fundamental one, that makes geomagnetism more interesting than gravity – the
field is changing detectably on times scales of a human lifetime (not to mention the largest changes involve
geomagnetic reversals). So the coefficients must always be dated and as we have seen splines (linear, cubic, or
higher order) are often used to represent the time variations. Secondly, and almost trivially, geomagnetists
never use fully normalized spherical harmonics – instead they employ a theoretically awkward real (as
opposed to complex) representation in which the basis functions (spherical harmonics) are normalized so
that ∫

S(1)
(Y m

l )2d2r̂ =
4π

2l + 1
. (80)

Then the scalar potential is written

Ψ(r, θ, φ) = a
∞∑
l=1

(a
r

)l+1 l∑
m=0

Nlm(gml cosmφ + hml sinmφ)Pm
l (cosθ) (81)

where a = 6, 371.2 km, the mean Earth radius, the Pm
l are the Associated Legendre functions from Part I,

and
Nlm = 1, m = 0

=

√
2(l −m)!
(l +m)!

, m > 0.
(82)

In practice, the Nlm are not usually included in (81) by the geomagnetic community. Instead they are
implicitly integrated into the Pm

l which are identified as Schmidt semi-normalized harmonics and you will
find it simply written as

Ψ(r, θ, φ) = a
∞∑
l=1

(a
r

)l+1 l∑
m=0

(gml cosmφ + hml sinmφ)Pm
l (cosθ) (81a)

As you might expect this can cause a lot of confusion, especially in sharing computer codes. You will
find the numbers gml , h

m
l tabulated in many places. There are official models designated IGRF for the

International Geomagnetic Reference Field, agreed upon every five years by the International Association
for Geomagnetism and Aeronomy as a good approximation to the field. The values are in nanotesla. The
linearized rate of change of each Gauss coefficient is also given for interpolation or extrapolation across
the five year period. We are currently at Version 13, IGRF (2015-2020), and the model coefficients since
1900 can be found at http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html. The website also features Fortran
and Python code for evaluating the magnetic field either at a single location or on a grid. In the next
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figure we see various views of the radial component of the magnetic field from IGRF 2020: top is Br at
Earth’s surface; middle the non-dipole contribution to Br at Earth’s surface and the bottom panel gives Br

downward continued to the core-mantle boundary.

Below, the (now 21 year old) IGRF-9, for the year 2000 is tabulated up to degree and order 10. IGRF
models come with a Health Warning about their limitations, and there can be significant differences between
their predictions and what you measure at a given time and place. Recent versions extend to degree and
order 13, but they do not include crustal anomalies or detailed time variations both of which require a more
comprehensive approach to modeling than what we have described here.

Gauss Coefficients for IGRF-2000
l m gml hml l m gml hml l m gml hml

1 0 -29615 0 6 2 74 64 9 0 5 0
1 1 -1728 5186 6 3 -161 65 9 1 9 -20
2 0 -2267 0 6 4 -5 -61 9 2 3 13
2 1 3072 -2478 6 5 17 1 9 3 -8 12
2 2 1672 -458 6 6 -91 44 9 4 6 -6
3 0 1341 0 7 0 79 0 9 5 -9 -8
3 1 -2290 -227 7 1 -74 -65 9 6 -2 9
3 2 1253 296 7 2 0 -24 9 7 9 4
3 3 715 -492 7 3 33 6 9 8 -4 -8
4 0 935 0 7 4 9 24 9 9 -8 5
4 1 787 272 7 5 7 15 10 0 -2 0
4 2 251 -232 7 6 8 -25 10 1 -6 1
4 3 -405 119 7 7 -2 -6 10 2 2 0
4 4 110 -304 8 0 25 0 10 3 -3 4
5 0 -217 0 8 1 6 12 10 4 0 5
5 1 351 44 8 2 -9 -22 10 5 4 -6
5 2 222 172 8 3 -8 8 10 6 1 -1
5 3 -131 -134 8 4 -17 -21 10 7 2 -3
5 4 -169 -40 8 5 9 15 10 8 4 0
5 5 -12 107 8 6 7 9 10 9 0 -2
6 0 72 0 8 7 -8 -16 10 10 -1 -8
6 1 68 -17 8 8 -7 -3

10
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Figure 3.4.5. Radial magnetic field for 13th Generation IGRF 2020: Top panel is at Earth’s surface; Middle
has only non-dipole contributions to the field; Bottom has been downward continued to the CMB. Field
values are in µT.
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