
SIOG 231: GEOMAGNETISM AND ELECTROMAGNETISM

Chapter 11: The Lithospheric Magnetic Field

1. Introduction

Magnetic anomalies are the signals of the internal geomagnetic field left behind after the part generated by
Earth’s core has been removed from the observations. Most of the mantle and some of the lower portions of
the crust are above the Curie point of magnetic minerals; thus the source of the magnetic anomalies must
lie in the crust or uppermost mantle. We see this from the Lowes spectrum; if there were significant mantle
sources, the spectrum would not die away exponentially, but more as a power law, which is the case for
the gravitational SH spectrum. Magnetic anomalies have of course played a very important role in earth
sciences: the correlation of lineated magnetic anomalies roughly parallel to mid-oceanic ridge crests with
the geomagnetic reversal time scale provided the final evidence for seafloor spreading. With the advent of
the satellite era they are now studied on a global scale through Comprehensive Magnetic Field Modeling
(e.g. Sabaka et al., 2020, https://doi.org/10.1186/s40623-020-01210-5) and compilations of aeromagnetic
and marine survey data merged to provide the World Digital Magnetic Anomaly Map.

2. Regional Surveys of the Scalar Field

Regional magnetic surveys, both on land and under the oceans used to be performed by taking spot readings
of the magnetic field. Now, however, aircraft or shipboard surveys are commonly carried out with a towed
proton precession magnetometer, which often measures only the field intensity not its direction. In order
to study magnetic anomalies a standard core field model plus large scale external fields, B0, is subtracted
from the observations; this is often called the regional magnetic field. Suppose the sum of all contributions
to the field is B. The total field anomaly is the difference between the magnitudes of the observed and core
magnetic fields:

∆T = |B| − |B0|. (150)

Now we will let ∆B be the contribution to B of some anomalous magnetic source. Then

B = B0 + ∆B. (151)

We would like to know ∆B to study the crustal source, so

∆T = |B0 + ∆B| − |B0|

=
√
|B0|2 + |∆B|2 + 2∆B · B0 − |B0|. (152)

Neglecting quantities O|∆B|2/|B0|2 we find

∆T = |B0|[1 + 2∆B · B0/|B0|2]
1
2 − |B0|

= |B0|[1 + ∆B · B0/|B0|2] − |B0|

= ∆B · B0/|B0| = ∆B · B̂0. (153)

Thus ∆T ≈ ∆B · B̂0, that is, it is the component of the anomaly field in the direction of the regional field,
provided the anomaly field is small in magnitude relative to the total field. The validity of this approximation
depends on the size of ∆B relative to B. Typical crustal magnetic anomalies range in magnitude from a few
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nT to several thousand nT, but are usually less than 5,000 nT, so this provides an adequate representation
for total field anomalies.

Is the total field harmonic? Approximately, to the extent that the regional field direction remains constant
in the survey region. We can see this easily, writing ∆B = −∇V with harmonic V ,

∇2
∆T = −∇2(∇V ˆ·B0) = −B̂0 · ∇∇2V = 0. (154)

If B0 is not effectively constant, the algebra is messy and the subject not worth much effort.

As with satellite observations, the reason one prefers to measure the field magnitude |B| at sea is that there
is no need to keep an accurately oriented platform, and total field data can be made to ±1 nT in 60,000
nT with very robust instruments, and ±0.1 nT with only a little more effort. As we asked in 3.4.1 we can
inquire whether knowledge of ∆T is actually sufficient to describe the harmonic field of crustal sources. If
B0 is effectively constant, and not horizontal, then knowledge of ∆T is fully equivalent to knowledge of ∆B
itself, since one can then construct ∆B from ∆T . But as usual, things aren’t quite so simple. One collects
survey data on long lines in the oceans, and it really is not possible to know B everywhere on a surface. If
instead of ∆T on a long line one actually has the vector data ∆B, then valuable information can be obtained
about the accuracy of the measurements and other useful things, like across track lineation, by looking at
the correlations between the components. See Parker and O’Brien, J. Geophys. Res. 102, pp 24815-24,
1997. Over the past two decades there has been a move towards measuring the vector field in some marine
surveys, particularly on Japanese ships and on near-seafloor instruments.

3. Magnetic Permeability and Susceptibility

In chapter 2 we outlined the relationship between magnetic displacement H and magnetic induction B

H = B/µ0 − M (155)

with M representing the magnetic polarization or magnetization of the material. In the region where we
make measurements it is unnecessary to distinguish between B and H because there are no currents flowing
and no magnetization. Inside the crust, however, M depends on the atomic and macroscopic properties of
the material. Materials can acquire a component of magnetization in the presence of an external magnetic
field (such as that generated in Earth’s core). The so-called induced magnetization is often considered to be
proportional in magnitude to and along the direction of the external field and

M = χH (156)

and χ is called the magnetic susceptibility. Then we can write

B = µ0(1 + χ)H = µH (157)

where µ is the magnetic permeability. In practice χ may be dependent on field intensity, negative or need
to be represented by a tensor (magnetically anisotropic materials).

Although diamagnetism due to perturbations of electron orbits in an applied field and paramagnetism (pertur-
bations of atomic magnetic moments) are important physical processes, these are insignificant contributors
to the geomagnetic field. The important contributions come from materials with atomic moments that
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interact strongly with each other as a result of quantum mechanical exchange interactions. These are called
ferrimagnetic materials and they can carry either an induced or remanent magnetization, and are the most
important contributors to the lithospheric geomagnetic field. The total magnetization of a rock will result
from the sum of these two contributions

M = Mi + Mr = χH + Mr. (158)

The stability and acquisition of magnetization depends on temperature and history of exposure to magnetic
fields: above the Curie temperature thermal perturbations destroy the spontaneous magnetization so that the
only remaining magnetization is from diamagnetic or paramagnetic effects.

Iron-nickels are important in extra-terrestrial magnetic studies. Iron-oxides, iron-oxyhydroxides, and iron
sulfides are most important for paleomagnetic studies. Magnetite (Fe3O4, Curie temperature 580◦C) and
its solid solutions with ulvospinel Fe2TiO4) are the most important magnetic minerals in crustal rocks
(see Figure 5.1.1) and both Curie temperature and magnetization vary substantially with composition
of the solid solution. Hematite, greigite and pyrhotite play an important role in paleomagnetic stud-
ies, and for much more on this topic see Lisa Tauxe’s online book Essentials of Paleomagnetism at
https://earthref.org/MagIC/books/Tauxe/Essentials/ .

Figure 5.1.1: Ternary diagram showing solid solutions of iron and titanium oxides

3:1 A Digression: Back to Some Physics of Magnetism

The existence of a magnetic field in a volume of space means that there is a change of energy within the
volume, and furthermore there is an energy gradient so that a force is produced. The force can be detected
by the acceleration of a charged particle moving in the field, by the force on a current carrying conductor,
by the torque on a magnetic dipole (e.g.a bar magnet, or compass needle), or even by reorientation of spins
of electrons within certain types of atoms.
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Magnetic fields are caused by electrical charge in motion. In 1819 Oersted discovered that electric currents
produce a magnetic force when he observed that a magnetic needle is deflected at right angles to a conductor
carrying a current. Magnetic fields are also produced by permanent magnets: although there is no conven-
tional electric current in them, there are orbital motions and spins of electrons (sometimes called “Amperian
currents") which lead to a magnetization within the material and a magnetic field outside. The cooperative
behavior that leads to permanent magnetization is a quantum mechanical effect: however for our purposes
we can describe the macroscopic effects of the observed magnetization and associated magnetic fields using
classical electromagnetic theory. Magnetic fields exert a force on both current-carrying conductors and
permanent magnets.

So far we have not been very explicit about distinguishing magnetic field from magnetic induction and
magnetization. The distinction is often not clearly made and units are used interchangeably, especially
between H and B, so it is important to be careful. To simplify things we will only consider SI units. There
are three kinds of magnetic vectors:

(1) Magnetic field H, measured in A/m;

(2) Magnetization M; also known as the intensity of magnetization or magnetic moment per unit volume
(M = m

V
with m the magnetic moment). It is also measured in A/m

(3) Magnetic induction B, measured in Tesla.

These quantities are related through the equation B = µ0(H + M), where µ0 is the permeability of free space
(µ0 = 4π × 10−7NA−2).

The primary role of electric currents in generating magnetic fields is illustrated in Figure 5.2.1, where
current, i, flows in a loop of radius r. The loop has a magnetic moment m associated with it.

Figure 5.2.1: A current loop has a magnetic moment m and generates a magnetic field

Gravitational, electrostatic and magnetic forces all have fields associated with them. The field is a property
of the space in which the force acts, and the pattern of a field is portrayed by field lines. At any point in
a field the direction of the force is tangential to the field line, and the intensity of the force is proportional
to the density of field lines. Unlike gravitational and electrostatic forces, both of which act centrally to the
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source of the force and follow an inverse square law, magnetic fields vary with azimuth and even in the
simplest case of a magnetic dipole the field strength falls off as the cube of distance. Although magnetic
monopoles do not really exist, they provide a useful mechanism for describing the effects of magnetic fields
and the concept of a magnetic potential analogous to gravitational potential.

3:2 Magnetic Poles and Dipoles and their Potentials

In 1785 Coulomb showed that the force between the ends (or magnetic poles) of long thin magnetized
steel needles obeyed an inverse square law. Thus supposing that monopoles existed and we have two with
strengths p1 and p2 we can write an inverse square law for the force between them, a Coulomb’s Law for
magnetic poles

F (r) = K
p1p2

r2 . (5.3.1)

By analogy with the gravitational case we can define the magnetic field associated with a monopole p as

B(r) = K
p

r2

In SI units K = µ0
4π where µ0 = 4π × 10−7NA−2 (or equivalently henry/meter) is the permeability constant.

The magnetic potential W at a distance r from a pole of strength p is defined in terms of the work required
to move a pole of unit strength from position r to infinity

W = −
∫ −∞
r

Bdr =
µ0p

4πr
(5.3.2)

In contrast to electrostatic charges magnetic poles cannot exist in isolation: each positive pole must be paired
with a corresponding negative pole to form a magnetic dipole. (One consequence of this is that ∇ · B = 0.)
We can construct the potential for a dipole by summing the potential for two equal but opposite poles p and
−p located a distance d apart, and then letting their separation become infinitesimally small compared with
the distance to the point of observation.

Referring to figure 5.3.1 we can calculate the potential W at a distance r from the mid-point of a pair of
poles in a direction that makes an angle θ to the axis passing through both poles p and −p. if the distances
to the respective poles are r+ and r− respectively the net potential at (r, θ) will be

W =
µ0p

4π
( 1
r+
− 1
r−

)
=
µ0p

4π
(r− − r+

r+r−

)
(5.3.3)

Now we suppose that d << r and use the approximations

r+ ≈ r −
d

2
cosθ

r− ≈ r +
d

2
cosθ′

Since d << r we can write θ ≈ θ′ and on negelcting terms of order (d/r)2 we find

r− − r+ ≈ dcosθ
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Figure 5.3.1: Building a magnetic dipole from two fictitious monopoles

r+r− ≈ r2 − d2

4
cos2θ ≈ r2

and that the dipole potential at the point (r, θ) is

W (r, θ) =
µ0

4π
(dp)cosθ

r2 =
µ0mcosθ

4πr2

We call the quantity m = (dp) the magnetic moment of the dipole. Note that it is a vector quantity: our
coordinate system is defined relative to the axis of the dipole.

3:3 A Further Digression on Dipoles

From the perspective of potential theory, the dipole represents the point source obtained by allowing two
point charges of opposite sign to approach each other, in such a way that the product of the charges and the
separation p = qd is fixed, as the distance is decreased. This picture is artificial in every realistic system,
since there are no point electric dipoles in electricity, there are no point charges in magnetism, and there are
no negative sign masses in gravity. None-the-less the dipole is fundamental for static magnetism because it
appears as the first term in the SH expansion of an internal magnetic field. When B = −∇Ψ, we have in a
fully normalized form for fields with interior sources:

Ψ(r) =
∞∑
l=1

(
1
r

)l+1
l∑

m=−l

bml Y
m
l (r̂) (5.4.1)
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where r > 0 here and in all our manipulations. The scalar magnetic potential of an axial dipole (the one
symmetric about the z axis) is just the l = 1, m = 0 term

ΨD(r) =
b0

1Y
0

1 (r̂)
r2 =

N 0
1 b

0
1cosθ
r2 . (5.4.2)

This agrees of course with the traditional multipole way of writing it: for an axial point dipole at the
coordinate origin

ΨD(r) =
µ0

4π
mcosθ
r2 , r > 0 (5.4.3)

where m is the dipole moment. The constant µ0
4π makes its appearance because the field variable H is

conventionally attached to the scalar potential (recall here ∇ × H = 0), and the 4π is a feature of the SI
system. In that system the units of magnetic dipole moment are A m2, also sometimes written as J T−1.

In geomagnetism it is more traditional to use the Gauss coefficients in the semi-normalized expansion; recall
that

Ψ(r) = a
∞∑
l=1

(
a

r
)l+1

l∑
m=0

N̂m
l [gml cosmφ + hml sinmφ]Pm

l (cosθ). (5.4.4)

Then for the axial dipole term we extract the single term

ΨD(r) =
a3g0

1cosθ
r2 . (5.4.5)

Notice a simplification here because the normalizing constant N̂ 0
1 = 1. Identifying coefficients in (5.4.3)

and (5.4.5), we see that

m =
4πa3g0

1

µ0
. (5.4.6)

The multipole interpretation of (5.4.3) leads to another way of expressing ΨD. Since the separation of the
fictitious charges is a vector quantity, so is the dipole moment. In (5.4.2) - (5.4.5) we have looked only at
an axial dipole, that is, the one with circular symmetry about ẑ. Clearly (5.4.3) can be written in a way that
works for a dipole pointing in any direction:

ΨD(r) =
µ0

4π
m · r̂
r2 =

µ0

4π
m · r
r3 (5.4.7)

where m is the vector dipole moment. You will ready confirm that the Gauss coefficients g1
1, h

1
1 or the fully

normalized b±1
1 express the potentials due to x and y components of the vector m. For the general case

(5.4.6) must be revised:

m =
4πa3((g0

1)2 + (g1
1)2 + (h1

1)2))
1
2

µ0
. (5.4.8)

Another way that (5.4.7) has already been expressed, in the Equivalent Source Theorem (see Gravity section
12), is

ΨD(r) == −µ0

4π
m · ∇1

r
. (5.4.9)

In electromagnetic theory the physical model for a magnetic dipole is not the pair of opposite sign poles, but
the tiny current loop. To the accuracy set by classical physics, electrons and other elementary particles are
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point dipoles; and the circulation of electrons within atoms comprises elementary current loops. We will
merely state a number of results about dipoles related to this approach. Proofs will be found in most books
on classical electromagnetism or in Foundations of Geomagnetism, Chapter 2. The natural vehicle for this
theory is of course the vector potential A with B = ∇× A. Then the analog of (5.4.9) is

AD(r) = −µ0

4π
m×∇1

r
(5.4.10)

where m, the dipole moment can be computed for a set of divergence-free currents by

m =
1
2

∫
V

(s× j) d3s. (5.4.11)

We will demonstrate the equivalence of (5.4.9) and (5.4.10) later. For an elementary circular current loop
with radius r and normal n̂, (5.4.11) integrates to

m = n̂πr2j (5.4.12)

so that the magnitude of the dipole moment is just the area times the current; it is this picture that motivates
the usual units of amp meter-squared for dipole moment.

What happens if we carry through the calculation to produce the actual field, rather than merely displaying
the potentials? The grand result, proved in the next Section is this: the vector field B at r due to a dipole m
at O is

B(r) = −µ0

4π
∇(m · ∇1

r
) = −µ0

4π
m · ∇∇1

r
(5.4.13)

B(r) = −µ0

4π
(3m · rr

r5 − m
r3

)
. (5.4.14)

Finally, we can use (5.4.13) to show the equivalence of (5.4.9) and (5.4.10). Note that since m is constant,
vector identity #5 for the curl shows that

AD(r) = −µ0

4π
∇×

(m
r

)
. (5.4.15)

Then, taking the curl of (5.4.15) together with identity #9 yields

B(r) = −µ0

4π
∇×∇× (

m
r

) (5.4.16)

and
= −µ0

4π
[∇∇ · (m

r
) − ∇2(

m
r

)]. (5.4.17)

Again, since m is constant, the second term is just m∇2(1/r) which vanishes, and we can use identity #4 to
expand the remaining term:

B(r) = −µ0

4π
∇(m · ∇1

r
+

1
r
∇ ·m) (5.4.18)
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= −µ0

4π
∇m · ∇1

r
= −µ0

4π
m · ∇∇1

r
(5.4.19)

which is identical to (5.4.13).

4. Crustal Magnetic Models

The ultimate goal of a regional magnetic survey is to make some inferences about the spatial distribution and
nature of the magnetic sources generating the anomalies and hence to draw conclusions about the geological
processes active in the earth. The first step in understanding this problem is to calculate the fields from
a model: that is for a given distribution of magnetization predict the expected observations; this is called
solving the forward problem.

How can we do this? We start by considering Equation 5.4.9 in the form of the magnetic scalar potential Ψ

at position r due to a point dipole m located at s:

Ψ(r) =
µ0

4π
m(s) · ∇s

1
|r − s|

. (159)

To find the potential for a distribution of magnetization, we consider it to be a sum of contributions from
elemental dipoles (recall the magnetization vector M is just a density of dipole moment per unit volume):

Ψ(r) =
µ0

4π

∫
V

M(s) · ∇s
1

|r − s|
d3s (160)

where V is the magnetized source region. Then to get the magnetic field

B = −∇rΨ(r) = −µ0

4π
∇r

∫
V

M(s) · ∇s
1

|r − s|
d3s

= −µ0

4π

∫
V

M(s) · ∇r∇s
1

|r − s|
d3s. (161)

You can easily verify that

∇r∇s
1

|r − s|
= −∇s∇s

1
|r − s|

. (162)

Now let’s evaluate (162). By using the summation convention (recall Gravity notes by Bob Parker, Section 1,
Page 1) and keeping calm, it’s quite straightforward. First some abbreviations: let R = r− s; ∂j = ∂/∂sj
and also recall from Part I that ∂jsk = δjk = −∂jRk.

Then we can write 1
|r−s| = (RkRk)−

1
2 and in summation notation (162) becomes

Gij = ∂i∂j(RkRk)−
1
2 = ∂i[−

1
2

(RkRk)−3/2∂j(RkRk)]

= ∂i[−
1
2

(RkRk)−3/2(∂jRkRk +Rk∂jRk)]

= ∂i[−
1
2

(RkRk)−3/2(−δjkRk −Rkδjk)] = ∂i[Rj(RkRk)−3/2]

= (∂iRj)(RkRk)−3/2 + Rj∂i(RkRk)−3/2

= −δij(RkRk)−3/2 + Rj[−3/2(RkRk)−5/2](−2Rkδik)

=
3RiRj

(RkRk)5/2 −
δij

(RkRk)3/2 .

(163)
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Substituting (163) into (161) and restoring vector notation gives us

B(r) =
µ0

4π

∫
V

[
3M(s) · RR
|R|5

− M(s)
|R|3

]
d3s

=
µ0

4π

∫
V

[G(r− s) ·M(s)] d3s
(164)

where you will recall R = r− s. The expression in brackets is nothing more than the vector magnetic field
at r from a point dipole, moment M at s as we asserted in equation (5.4.14) Most geophysicists seem afraid
of this formula and it doesn’t appear very often in texts.

Finally if we have measured the total field anomaly and the regional core field has constant direction B̂0,
then

∆T = ∆B · B̂0 =
µ0

4π

∫
V

[
3M · RB̂0 ·

R
|R|5

− M · B̂0

|R|3

]
d3s

=
µ0

4π

∫
V

G′(r− s) ·M(s) d3s. (165)

Note that here

G′(r− s) = B̂0.∇r∇r
1

|r− s|
=
[

3(r− s)B̂0 · (r− s)
|r− s|5

− B̂0

|r− s|3

]

Solving the forward problem thus comes down to evaluating the above integral for an appropriately shaped
body. In practice this is usually done by making approximations to the shape of the body.

For compact regions such as seamounts (which are isolated submarine volcanos) a favorite plan is to divide
the region V into a set of smaller elementary shapes, like cuboids, over which the integral can be done
exactly, then sum. See Blakely’s book for some references to this approach. Sometimes it is permissible
to take M = constant in space. Then one can apply identities and get (165) into a surface integral with the
divergence theorem. The surface can be conveniently approximated by a set of triangular faces, called a
tessellation; see Parker, Shure, and Hildebrand, Rev. of Geophys. 25, pp 17-40, 1987.

In the early days of marine magnetic survey work it was discovered, as you will know, that in many places the
magnetic anomaly pattern takes the form of a series of stripes, caused by reversals of the ancient geomagnetic
field and linear emplacement at the ocean ridges. This geometry allows a simplification by assuming that
the magnetization M is constant in one direction, usually identified with the y axis. Then (165) can be
reduced to an integral of the x-z plane, and is much easier to do; the formula for a polygon shape is quite
simple.

Often it can be assumed that the magnetic layer is very thin, so that one can ignore variations of M in the
vertical z direction. You will appreciate that when the thin-layer assumption is made, (165) has the form
of a convolution and then Fourier methods can be invoked. This is very popular in marine magnetic work,
both for the older single-profile data sets and the more modern surveys of an area. Again Blakely devotes a
lot of space to this issue.

Exercise:
(a) As suggested, with M constant rewrite (165) in a form that you can apply the divergence theorem
and reduce the integral to a surface form.
(b) Find out about Poisson’s relationship. Explain what it is and when its use might be appropriate.
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5. The Magnetic Annihilator and Runcorn’s Theorem

The object of the process of magnetic modeling is to learn about the state of the crust, first its magnetic
state, and then, if we’re lucky, other things too. In the last section we assumed that M was known and we
calculated ∆B from it, but in reality we don’t know the magnetization and we do know the anomaly. We need
to reverse the process, which is called solving the inverse problem. A major question in any inverse problem
is that of uniqueness: does a (complete and exact) set of data determine the unknown magnetization, or
is there ambiguity, even with ideal data? It turns out the inverse problem for magnetization is ill-posed,
which means that there are infinitely many possible solutions to choose from, unless further restrictions or
simplifying assumptions are brought in. You might perhaps have come to this conclusion from the equivalent
source theorem for gravity, (see Section 12 of Parker’s notes on trying to infer density inside a body), which
informs us that the potential due to any internal density distribution can be reproduced by equivalent sources
distributed on the surface of the body. This theorem applies equally well here: if B = −∇Ψ and all magnetic
sources are confined to compact region V

Ψ(r) =
1

4π

∫
∂V

d2s
[

Ψ
∂

∂n

1
|r− s|

− 1
|r− s|

∂Ψ

∂n

]
. (166)

This equation tell us that we can mimic the potential of a magnetized body by poles and dipoles on the
surface, whatever the true interior distribution of M may be. The need for (mono)poles is a bit disturbing,
however.

Here is another, perhaps more startling example. In (165) let the magnetization be N = ∇q where q(s) is any
smooth function that vanishes on the boundary ∂V . It will be seen from (162) that G = ∇p and ∇2p = 0
provided r is outside V , which it always is. Then

4π
µ0

∆T =
∫
V

∇p · ∇q d3s =
∫
V

[∇ · (q∇p) − q∇2p] d3s

=
∫
∂V

q∇p · ŝd2s = 0. (167)

Thus the anomaly caused by this whole family of functions is zero. Hence if we have a magnetization M
that matches observation, then so does M + N. The function N is an example of a magnetic annihilator, a
function with no observable magnetic field, yet nonzero internal magnetization. Of course we have already
encountered toroidal magnetic fields, whose currents in a sphere are also annihilator sources.

The existence of annihilators means that we cannot ever know what a magnetic source is based solely on its
magnetic anomaly. The problem is ill-posed.

It was assumed in the marine world that if the magnetic layer was very thin, this problem would be eliminated.
But Parker and Huestis (J. Geophys. Res., 79, pp 1587-93, 1974) showed there was ambiguity even then, in
the form of a single function which can be added in arbitrary amounts to any solution, without disturbing
the agreement.

Finally, an important example of an annihilator was discovered by Keith Runcorn in studies of the moon’s
magnetic field (Nature 253, 1042, pp 701-3, 1975). Runcorn was convinced the moon had once had an
internal dynamo which has ceased to operate because the lunar core became solid. Samples from the moon
have proved to be magnetic, yet there appears to be almost no lunar magnetic field. Critics of Runcorn
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asked, If there is a general lunar magnetization from the ancient dynamo, why can’t we see the field from
these fossil sources? Here is Runcorn’s surprising answer: If the magnetization of the moon is induced
magnetization in a shell, no matter what form the internal dynamo field was like, the resulting magnetization
would be an annihilator – no observable magnetic field even though the rocks could be strongly magnetic.

Here is a proof. Consider the induced lunar magnetization in the shell c ≤ r ≤ b: we suppose M = κ∇Φ

where κ = −χ/µ0 assumed constant, and so ∇2Φ = 0, since Φ is the scalar potential of the dynamo source
in the moon’s core. Now consider the scalar potential Ψ from the induced sources, outside the shell. Let
R = |r− s|, then by (160):

Ψ(r) =
µ0

4π

∫
V

M · ∇ 1
R
d3s =

µ0

4π

∫
V

κ∇Φ · ∇ 1
R
d3s. (169)

We can now apply our favorite vector identity and the divergence theorem:

Ψ =
µ0κ

4π

∫
V

d3s
[
∇ · ( 1

R
∇Φ) − 1

R
∇2

Φ

]

=
µ0κ

4π

[∫
S(b)
−
∫
S(c)

]
d2s

1
R
∂rΦ = Ψb − Ψc (170)

where we have used the fact Φ is harmonic; notice in (170) that the normals on S(c) and S(b) point in
opposite directions and so the two surface integrals must be subtracted. Let us look at the contribution Ψb

from the outer surface S(b); we introduce the SH expansion of 1/R from Part I (equation 138), and an
expansion in cml for the potential Φ:
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l (ŝ)∗

∑
l′,m′

− l
′ + 1
bl′+2 c

m′

l′ Y
m′

l′ (ŝ)
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The remarkable thing about (171) is that it is independent of the radius of the surface b; so the same answer
will be obtained for Ψc, the integral over S(c). But Ψ = Ψb −Ψc, and so Ψ(r) is identically zero for all r.

This argument is applicable to the Earth to some degree. The induced crustal magnetization from a uniform
medium in a shell will produce no observable anomaly. You will easily see this generalizes to any series
of shells, so χ can vary with depth, and the annihilator property persists. Thus the crustal fields we see are
due to lateral variability, changes in layer thickness, and other departures from uniformity. Of course the
Earth’s crust is so heterogeneous we are not surprised to see very large anomalies almost everywhere. Why
would one expect the upper regions of the moon to be less heterogeneous than the Earth’s crust?

5:1 Results – Magnetic Anomalies Everywhere

The major triumph for magnetic anomalies has been the discovery of the Vine-Mathews magnetic stripes,
the discovery of sea-floor spreading, and the mapping of the ages of the ocean basins. Reversal of direction
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results in a very strong, short wavelength contrast in magnetization which gives rise to intense magnetic
anomalies (200-2,000 nT) in the scale range 10-100 km at the sea surface. Traditionally these anomalies
have been modeled by thin layers (500 - 1,000 m thick) with blocks of magnetization where the direction
is constant, except for changes in sign, and the intensity is constant too. This kind of model never fits
the observations exactly, but does a reasonably good job if geological ages are needed. If one wishes to
get more detail, and allow more flexibility in the models the annihilator remains a problem. The next
step in sophistication is to allow the models to vary in intensity with x, and to make the layer follow the
topographic variations. The magnetic annihilator then has a large scale component and another that varies
like the bathymetry. Adding or subtracting this function can make the magnetization change sign and appear
more-or-less correlated with topographic relief. When one is seeking geomagnetic intensity histories, the
ambiguity is troublesome.

One of the happy exercises carried out on profile data is to apply spatial linear filters to change the apparent
dip of the magnetization vector. It can be shown that there is a filter which after application to an anomaly
results in the profile that would have been observed at the north pole, with vertical magnetization. This
activity is called reduction to the pole (see Blakely for more). The idea here is that magnetizations measured
or acquired in different latitudes yield anomalies that differ widely in appearance even if the underlying
block pattern is similar; reduction to the pole makes profiles much easier to compare, and also offers some
information about the latitude of formation of that piece of crust.

Another (but less successful) application of geomagnetism to marine anomalies is the analysis of the
anomalies from seamounts. The major piece of information required here is the average direction of
magnetization, which gives the usual paleomagnetic clues about where the volcano was formed. To
overcome a serious ambiguity problem the first studies simply assumed the magnetization vector within
the seamount was quite constant, both in direction and in intensity. Now with only three parameters to
fit nonuniqueness disappears. Of course the constant-M models don’t fit the observations very well at all,
but marine geologists have generally ignored this difficulty. Various methodologies have been invented for
improving the fits and estimating the error in the resulting direction. One approach that worked reasonably
well recognized the observation from drilling the oceanic crust that direction of M is much more nearly
constant than |M|, which varies by more than one order of magnitude in a single body. So we ask, What
uni-directional magnetizations fit the given anomaly pattern, if any? It turns out that in some cases, quite a
close clustering of directions will fit the anomaly, thus providing a direction and uncertainty. For details see
Parker, R. L., A theory of ideal bodies for seamount magnetism, J. Geophys. Res. B10, pp 16101-12, 1991.

Magnetic anomalies observed near the surface over land are generally smaller in amplitude than the marine
ones. This is assumed to be because continental rocks are on the whole comprised of much less magnetic
types: granitic, metamorphic and sedimentary rocks are orders of magnitude less magnetizable, and have
no thermoremanent component. But aeromagnetic surveys are relatively cheap and are routinely used to
locate and delineate ore bodies. At the longest wavelength (> 1,000 km) however, as mapped by satellite,
the continents have larger magnetic anomalies than the oceans. It is assumed that this is because on the
longest scales induced magnetization is at work, and the extra thickness of the continental crust (or greater
depth to Curie isotherm) gives the continents an advantage.

13


