
SIOG 231 GEOMAGNETISM AND ELECTROMAGNETISM

Lecture 17: Regularized Inversion

Introduction

With properly migrated seismic reflection data you can see the geology in the patterns of reflections.
Similarly, with aeromagnetic data the tectonic fabric can be seen in the patterns of magnetic intensity. But
with magnetotelluric and other electromagnetic data, you just have some complex numbers as a function of
frequency. At best, you could inspect the apparent resistivity curves and tell whether resistivity increases or
decreases with depth. And even that could be misleading in complex geology. We have seen how nonlinear
parameter fitting can handle simple problems such as a small number of layers. However, as you increase
the number of parameters this approach becomes unstable. Models will either simply not converge, or the
parameters will oscillate and become extreme. Indeed, we know from the D+ solution that the true least
squares solution in 1D is extreme, and something similar happens in 1D resistivity. We don’t have such
analytical solutions in 2D and 3D, but we do know that as you try to drive down misfit to the data, the
models do become rougher and rougher. The solution to this is to introduce some form of regularization,
and minimize the roughness in the model as well as the misfit to the data.

We have seen that for some simple problems, least squares analytical solutions can be found. Although
important from an inverse theory point of view, the models are not geologically useful. The 1D MT sounding
problem is one of the few (3?) geophysical problems for which an analytical least squares solution exists,
derived by Parker and Whaler (1981) and called the D+ solution. Unfortunately, the D+ solution, although
best fitting in a least squares sense, is pathologically rough (delta functions of conductance (conductivity
times thickness) in an infinitely resistive half-space). However, the misfit measure obtained from D+ can be
a useful guide to data quality.

One approach to fitting models to data is trial and error modeling. This can work quite easily for simple 1D
models but becomes challenging in 2D (and probably impossible in 3D). However, prior to the development
of 2D regularized inversion codes around 1990 this was the only possible way, and Phil Wanamaker produced
a complicated 2D model of the EMSLAB data set in 1988, guided no doubt by lots of prior understanding
of the geology.

Another approach is stochastic modeling, also called Monte Carlo modeling, in which models are generated
quasi-randomly and tested to see if they fit the data. Truly random model generation would be prohibitively
inefficient, and so this approach relies on algorithms that increase the efficiency of the model generation,
which include Markov chains, genetic or evolutionary algorithms, simulated annealing, etc. These ap-
proaches are often classed as Beyesian inversion, although strictly speaking most approaches to inversion,
including regularized inversion, can be viewed through the lens of Bayes’ theorem. Because literally mil-
lions of models and forward calculations are required, stochastic inversion is still limited to relatively sparse
parameterizations. The advantages are that one can generate some measure of the uncertainty in the model,
one should be able to avoid local minima in misfit space, and only forward model calculations are required
(no Jacobian matrix is needed).

Deterministic methods use the Jacobian matrix to guide a solution from a starting model to a model that fits
the data. We have seen how this works when we discussed the Marquardt method. Other Newton methods
are used in higher dimensions, and the conjugate gradient approach only uses the Jacobian matrix a single
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column at a time, avoiding the storage and inversion of what can be a very large matrix for 3D problems.
For all but sparsely parameterized 1D problems, deterministic approaches are invariably regularized.

For non-linear problems, one cannot generally guarantee that deterministic inversions will converge to the
global minimum of misfit. Since they are designed to find a minimum, they can get “stuck” in a local
minimum, especially if they are dependent on the starting model.

It is worth noting that all these approaches are exercises in model construction, and all these models are
non-unique and uncertain. A true inverse theoretician would seek something that the data could constrain
uniquely. A good example of this is excess mass in gravity. For EM methods, this approach is limited to
rigorous bounds on average conductivity over some depth range, as was done by Medin et al. (2017).

For most problems, geophysical inversion is non-unique, in that if you have a model space (defined by your
forward modeling – 1D, 2D, or 3D with a given parametrization) that can fit the data adequately, then an
infinite number of models will fit the data. If your model space cannot fit the data (say you are trying to fit
3D MT data using a 2D model) then no models can be found. Thus, a single misfit in misfit space will map
into an infinite number of models, or none at all.

Geophysical inversion is also usually poorly constrained, or ill-posed, in that a small variation in misfit can
map to a large distance in model space. Again, the D+ solution provides some insight here – the last little bit
of misfit improvement is associated with an infinite distance in 1D model space, assuming that your model
space can accommodate delta functions.

Regularization

We have seen that the true LS solution is too extreme to be useful and sparse parameterizations limit the
solution to a fixed, small number of layers. Indeed, the inversion of the curvature matrix in the sparse
parameter solution provided by the Marquardt algorithm isn’t defined when the model parameters exceed
the number of data, and since individual data points are rarely fully independent (i.e. MT sounding curves
are smooth functions) this problem arises much sooner than this limit. Also, when a Marquardt inversion
is given so many parameters that the individual parameters are not independently resolvable, the solution
becomes unstable, either oscillating wildly or simply not converging. Since the model update is solved for,
there will inevitably be an imprint of the starting model in any solution that is obtained.

What to do? One approach, suggested by Backus and Gilbert (1967), is to allow a large number of parameters
but minimize ∆m. This and related algorithms converge extremely slowly and are called by Parker (1994)
creeping methods. Almost all high-dimensional inversion today incorporates some type of regularization,
an approach suggested by Tikhonov and Arsenin (1977), which explicitly penalizes bad behavior in the
model. Instead of must minimizing the misfit to the data, we add a µ||Rm||2 term, where Rm is some
measure of model roughness or complexity, and µ is a trade-off parameter:

U =
(
||Wd−Wf (m)||2

)
+ µ||Rm||2

The roughness measure, Rm is often taken to be first differences between adjacent model parameters and
easily generated by a matrix R consisting of (-1, 1) entries. For a stack of layers R is a diagonal matrix that
looks like:
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R1 =


−1 1 0 0 0 . . . 0
0 −1 1 0 0 . . . 0
0 0 −1 1 0 . . . 0

. . . . . .

−1 1



m1

m2

m3

m4

m5

m6

m7

m8

-1

+1 -1

+1 -1

+1 -1

+1 -1

+1 -1

+1 -1

+1

For a second difference roughness you could use

R2 =


1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
0 0 1 −2 1 . . . 0

. . . . . .

1 −2 1

 . (1)

We can weight the rows of R with layer thickness, depth, or whatever we desire. We can even neglect them
or zero them out (which amounts to the same thing) if we want to allow an un-penalized jump to appear in
the model. When µ is small, the model roughness is ignored and we try and fit the model. Indeed, if µ = 0
then we just have a least squares solution again. When µ is large, the misfit is ignored and we try and we
try to reduce the roughness of the model, that is, make it smooth.

So how to choose µ? One approach is to choose a fixed µ based on experience or some algorithm, and then
minimize U . However, this is in effect determining a priori how rough your model will be, and we don’t
know much about the model – presumably that is why we collected the data in the first place. On the other
hand, if we have done a good job of estimating our error bars, we should have a good idea of how well we
should be fitting our data, and we can choose a target misfit, χ2

∗ which is greater than the minimum possible,
but statistically acceptable. For well behaved, well estimated errors, this will be close the the expectation
value, M , or equivalent to RMS = 1. Then we have

U =
(
||Wd−Wf (m)||2 − χ2

∗
)

+ µ||Rm||2

or equivalently
U = ||Rm||2 + µ−1(||Wd−Wf (m)||2 − χ2

∗
)

where µ−1 is a Lagrange multiplier, such that we minimize the roughness of the model subject to the
constraint that the second term goes to zero (i.e. ||Wd−Wf (m)||2 = χ2

∗).

For example, instead of minimizing χ2, we minimize an unconstrained functional

Next we linearize f (m) around a starting model m0 in the usual way, introducing the Jacobian matrix J

U = ||Rm1||2 + µ−1
(
||Wd−W

(
f (m0) + J(m1 −m0)

)
||2 − χ2

∗

)
and noting that we apply the roughness penalty to the new model, not the starting model, and differentiate
U with respect to m1, which may be rearranged to get m1:

m1 =
(
µRTR + (WJ)TWJ

)−1(WJ)TW(d− f (m0) + Jm0) .
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Compare this to the Gauss-Newton iteration:

∆m =
(
(WJ)TWJ

)−1(WJ)TW(d− f (m0))

We need only to choose the tradeoff (Lagrange) multiplier µ. The approach of Constable et al. (1987) was
to note that for each iteration χ2 is a function of µ, and to use 1D optimization (simply a line search) to
minimize χ2 when χ2 > χ2

∗ and to find µ such that χ2 = χ2
∗ otherwise. Constable et al. called this approach

‘Occam’s inversion’. Although the Occam algorithm is reliable and has good convergence behavior, the
computation and storage of J for large models can be limiting, but for 1D and 2D models there is no problem.

There are many advantages to this approach:

We are solving for the next model, m1, directly, not the model update ∆m, so there is less memory of the
starting model and we can take large steps in model space. Thus convergence is fast.

The matrix inversion is stabilized by the addition of the diagonal matrix RTR, not unlike how Marquardt
inversion is stabilized.

The smoothing term defines model parameters that are not resolved by the data, again stabilizing the
inversion.

The smooth models are easier to handle by finite difference and finite element forward calculations.

The process converges, that is once the smoothest model is found, you can continue to iterate but nothing
changes.

bf Most importantly, a problem that had an infinite number of solutions is reduced to one that has a single
unique solution: there is only one smoothest model. OK - you could think up ways that would have two
equally smooth models that both have the same misfit, but the only time these tend to show up in practice is
if the set of acceptable models intersects the line of complete smoothness.

Practical considerations

It is generally best to start the models from a featureless half-space, because the Jacobian matrix depends
of the conductivity and also directions the direction of the search. If you put in a conductive feature in a
MT model where there should not be a conductor, the Jacobian is large within the conductor and it is hard
to get rid of it.

For moderately large numbers of data, the expectation value of χ2 is not very different from the 95%
confidence value, both close to RMS=1.

“L-curves” show how misfit and model roughness trade off, but they are not reliable ways of estimating an
appropriate misfit, since they depend on how the axes are scaled and how much data are plotted.

The χ2 quadratic misfit measure is remarkably unforgiving of outliers - the probability of a data point being
misfit by 6 error bars is one in a billion. If your data have 2% error bars, a data point that is twice as
large as it should be will have the same influence as 2,500 valid data. Check your residuals and remove or
down-weight outliers.
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Check how your misfit budget is distributed across various parts of your data - RMS misfit is just one
number. For example, in MT is the amplitude and phase misfit the same? Is the TE and TM mode misfit the
same – in 2D modeling, the TE mode tends to be misfit when there are along-strike variations in resistivity,
that is the 2D approximation is breaking down. Does a single site have a much bigger misfit than the rest?

The inversion grid and the computational mesh can be different – this is the “dual grid” approach. Using a
dual grid minimizes the size of J and reduces both storage and computational time.

The regularization matrix R should be scaled with depth and parameter size, or artifacts can develop.
Some inversion algorithms, including the popular ModEM 3D MT inversion program, regularize against
the starting model, which can have a big effect.

It has been shown (Wheelock et al., 2015) that inverting log(apparent resistivity) is much more stable
than linear resistivity or complex impedance. Most 3D codes do not do this because the diagonals of the
impedance matrix are zero for the starting half-space model.
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