
SIOG 231: GEOMAGNETISM AND ELECTROMAGNETISM

Chapter 3: Lorentz Force, Diffusion Equations, Electromagnetic Sounding

1. The Electromagnetic Diffusion Equation

Here we are going to show that in a uniform conductor, time varying electric and magnetic field decay in a way
described by the diffusion equation. We are going to need a couple of vector calculus identities introduced in the last
lecture, so here they are again:

∇ · (∇× A) = 0 (I1)

∇× (∇s) = 0 (I2)

∇(st) = s∇t + t∇s (I3)

∇ · (sA) = A · ∇s + s∇ · A (I4)

∇× (sA) = s∇× A +∇s× A (I5)

∇(A · B) = (A · ∇)B + (B · ∇)A + A×∇× B + B×∇× A (I6)

∇ · (A× B) = B · ∇ × A− A · ∇ × B (I7)

∇× (A× B) = A∇ · B− B∇ · A + (B · ∇)A− (A · ∇)B (I8)

∇×∇× A = ∇(∇ · A)−∇2A (I9)

We introduced the use of∇ in Lecture 2, but it will be worth reminding ourselves of the definition of the cross product:

A× B = [AyBz −AzBy , AzBx −AxBz , AxBy −AyBx]

Recall from Lecture 2 that if we are not dealing with magnetizable or polarizable media, and we can neglect the
displacement term at the frequencies and conductivities we generally deal with, we are left with what we call the
pre-Maxwell’s equations:

Faraday’s Law:

∇× E = −∂B
∂t

Coulomb’s (Gauss’) Law:

∇ · E =
ρ

εo

Ampère’s Law:

∇× B = µoJ

Gauss’ Law of magnetism (no monopoles allowed!):

∇ · B = 0

The only constitutive equation we need is Ohm’s Law:

J = σE
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Electrical conductivity, σ, has units of S/m, where the S is the siemen. Broken down, conductivity has units of
A2.s3/(kg.m3), or amps per volt per m. The reciprocal of conductivity is electrical resistivity, ρ (not to be confused
with charge density above or density in gravity), which has units of volts per amp times meters, or Ωm.

If we substitute Ohm’s Law into Ampère’s Law we get :

∇× B = µoσE

We take the curl of this
∇×∇× B = µoσ∇× E

and use Faraday’s Law to substitute for ∇× E to get

∇×∇× B = −µoσ
∂B
∂t

.

Now we need the vector identity number I9 ( ∇×∇× A = ∇(∇ · A)−∇2A ) to get

∇(∇ · B)−∇2B = −µoσ
∂B
∂t

.

But, the no-monopoles law (Gauss’ Law for magnetism) says that ∇ · B = 0, so ...

∇2B = µoσ
∂B
∂t

.

Similarly, we can take the curl of Faraday’s Law and substitute Ampère’s and Ohm’s Laws to get

∇×∇× E = − ∂

∂t
(∇× B) → ∇×∇× E = −µoσ

∂E
∂t

.

To pull the same vector identity trick we need to take the divergence of both sides of Ampère’s Law and use vector
identity I1 (∇ · (∇× A) = 0) to get

∇ · J = 0 .

Up until now everything is general, but we need to assume that conductivity is constant σo in order to go from the
divergence of current density to divergence of electric field:

∇ · E = 0

giving

∇2E = µoσo
∂E
∂t

.

Although this last result only holds in regions of constant conductivity, this is not a big limitation, since regions with
varying conductivity can be divided into subregions of constant conductivity with boundary conditions applied between
them.

These two equations in B and E

∇2E = µoσo
∂E
∂t

∇2B = µoσo
∂B
∂t

are diffusion equations. (Wave propagation went away with the displacement current.) That is, we could write them
in the same way as the heat equation

∂B
∂t

= η∇2B
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where η = 1/(µoσo) is the magnetic diffusivity, which depends on conductivity. Magnetic diffusivity will become
important when we look at the physics of Earth’s core, but it also describes electromagnetic induction since the electric
field works in exactly the same way.

Consider the following figure (courtesy Bob Parker):

time

depth

It shows the effect of a sudden magnetic field pulse propagating into a uniformly conductive Earth at seven equally
spaced time steps t = 1 − 7 from left to right (the pulse originates at time zero). Depth increases downwards. The
amplitude decays as t−1, and the depth to the peak amplitude grows as t1/2.

Because electromagnetic induction methods are governed by the diffusion equation, they can only detect conductivity
variations that are of comparable size to the depth of burial. The idea that EM induction is a bit like heat flow might
seem a bit grim, but it is not so bad. Unlike heat flow, we can control the geometry of the source field, and by choice
of frequency we can control the decay rate. We will consider the latter now.

2. Skin Depth

Now it is time to consider a single frequency ω = 2πf , so

B = B(t) = Boe
iωt and so

∂B
∂t

= iωB

and the same for E, so our diffusion equations become

∇2E = iωµoσoE ∇2B = iωµoσoB .

Let us consider an external source of magnetic field at Earth’s surface, B, which is purely horizontal and uniform with
frequency ω. Remember, we have had to assume that conductivity σ is constant, so in this case the earth is what we call
a half-space. (We don’t need to consider a vertical source field because, since no significant electric current can flow
in the atmosphere, we are essentially above a uniform current sheet if there are no lateral variations in conductivity,
and a vertical field cannot exist.) So we have at z = 0

B = Boe
iwt

(usually z is considered to be positive downwards). Going back to our definition of the Laplacian, we have that

∇2B =
∂2Bx

∂x2 +
∂2By

∂y2 +
∂2Bz

∂z2
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but for a uniform horizontal field the first two derivatives in x and y must be zero, and B can only vary with z, so our
diffusion equation becomes

d2B

dz2 = iωµoσoB(z) .

The next step will be simpler if we define a complex wavenumber k2 = iωµoσo so that

d2B

dz2 = k2B(z) .

This is a second order linear ODE with solutions of the form

B(z) = c1e
kz + c2e

−kz .

The first term grows with depth so c1 must equal 0, and considering z = 0 we can infer that c2 = Boe
iωt. We can write

k as

k =
√
iωµoσo = (1 + i)

√
ωµoσo

2
=

(1 + i)
zo

where

zo =

√
2

ωµoσo

is called the skin depth. We finally have

B(z) = Boe
iωte−(1+i)z/zo = Boe

−z/zo
(

cos(ωt− z

zo
) + i sin(ωt− z

zo
)
)

.

So B(z) falls off exponentially with a characteristic distance of zo, and with a phase shift of one radian or 57◦ every
multiple of zo.

The skin depth of EM energy determines how deeply it will penetrate the rocks, since at every skin depth the field has
decayed to 1/e (≈37%) times its previous value. An easy way to remember the skin depth relationship is to convert
conductivity to resistivity ρ and angular frequency to period in seconds T :

skin depth =

√
2ρ
ωµo

=

√
2ρ

2πfµo
≈ 500

√
ρT metres.

The following plots show the amplitude and phase of a magnetic field in a uniform conductor over a depth of five
skin depths. Assuming that the magnetic field at the surface is purely real (or in-phase), then we can also see how the
imaginary component (out-of-phase) builds and then decays.
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The skin depth is important in all types of EM prospecting, because it determines the depth of penetration that can be
expected at a given frequency. The higher the frequency and the higher the conductivity, the shallower the induced
currents. The lower the frequency and higher the resistivity, the deeper. Substituting a few numbers into the equation
shows that skin depths cover all geophysically useful length scales from less than a meter for conductive rocks and
kilohertz frequencies to thousands of kilometers in mantle rocks and periods of days.

Period
material σ, S/m 1 year 1 month 1 day 1 hour 1 min 1 s 1 ms
outer core 105 8.9 km 2.6 km 470 m 95 m 12 m 1.6 m 50 mm
lower mantle 10 890 km 260 km 47 km 9.5 km 1.2 km 160 m 5 m
seawater, basaltic lava 3 1.6 Mm 470 km 85 km 17 km 2.3 km 290 m 9 m
marine sediments 1 2.8 Mm 820 km 150 km 30 km 3.9 km 500 m 16 m
cont. sediments 0.1 8.9 Mm 2.6 Mm 470 km 95 km 12 km 1.6 km 50 m
warm upper mantle 10−3 89 Mm 26 Mm 4.7 Mm 950 km 120 km 16 km 500 m
cool mantle, granite 10−5 890 Mm 260 Mm 47 Mm 9.5 Mm 1.2 Mm 160 km 5 km

Thus if one where prospecting for ore bodies in a basement which was buried beneath 100 m of 10 Ωm sediment, no
matter what sort of EM method was being employed, a frequency lower than 250 Hz (which has a skin depth in the
sediment of 100 m) would have to be used. Operating at 1 kHz would fail to discover anything in the basement rocks.
On the other hand, using energy at a period of 1,000 seconds on a granite batholith of resistivity 1,000 Ωm will allow
energy to penetrate more than 500 km into Earth (although the granite would give way to more conductive mantle
rocks long before this distance was reached).

What is physically going on to attenuate the magnetic field?

primary 
magnetic field electric field  current

secondary
magnetic field

We started with a time varying primary magnetic field a Earth’s surface. Faraday’s Law tells us that the time variations
in the magnetic field will generate an electric field. Inside the conductive Earth, Ohm’s Law says that the electric field
will drive current flow. Ampère’s Law says that the electric current will generate a magnetic field. We call this the
secondary magnetic field and the consequence of the minus sign in Faraday’s Law is that this secondary magnetic field
opposes the primary field, weakening it. (This can be referred to as Lenz’s Law, but Lenz’s Law is just a statement
about the sign of Faraday’s Law.)

The magnetotelluric method uses measurements of both the electric and magnetic fields at Earth’s surface, and to
understand this better we need to do some more math.
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3. The Magnetotelluric Method

For the magnetotelluric method, natural variations in Earth’s magnetic field are used as the source. These variations
are a consequence of the interaction of the solar wind with Earth’s internal magnetic field (0.0001 Hz to 10 Hz),
along with higher frequency energy excited by lightning in the atmosphere (10–100 Hz). At even higher frequencies
man-made radio signals can be used. We will look at these phenomena in more detail in Chapter 10. In every case the
magnetic source field can be considered horizontal, just as we have above in deriving the skin depth formula. Induced
electromagnetic fields are measured by grounded electrodes making an electric field measurement. We will consider
instrumentation in the next chapter.

Recall that substituting Ohm’s Law into Ampere’s Law we got

∇× B = µoσE .

From the definition of the curl given in Lecture 1:

∇× A =
(
∂Az

∂y
− ∂Ay

∂z
,
∂Ax

∂z
− ∂Az

∂x
,
∂Ay

∂x
− ∂Ax

∂y

)
we can see that if the horizontal magnetic field as derived above varies only in the x direction and is uniform in the y
direction, the only component of the curl operator that isn’t zero is ∂Bx/∂z, which appears in the y-component of the
curl, so

Ey =
1

µoσo

dBx

dz
.

We showed above that
B(z) = Boe

iωt−(1+i)z/zo

so we can calculate the derivative of Bx as
dBx

dz
= −1 + i

zo
Bx

giving

Ey = − 1 + i
µoσozo

Bx = − k

µoσo
Bx .

Similarly,

Ex =
1

µoσo

−dBy

dz
=

1 + i
µoσozo

By =
k

µoσo
By

noting that the x-component of the curl is −∂By/∂z. This equation is valid for any depth z, but in practice we are
only interested in the surface where z = 0 and Bx = Boe

iwt. We can take the ratio of the electric to magnetic field at
any particular frequency to obtain an expression for half-space resistivity:∣∣∣∣Ey

Bx

∣∣∣∣2 =
(

k

µoσo

)2

=
ωµoσo
(µoσo)2 =

ω

µoσo

ρ =
µo
ω

∣∣∣∣Ey

Bx

∣∣∣∣2 .

This is the MT equation made famous in Cagniard’s 1953 paper (or nearly so – Cagniard used H rather than B). The
phase betweenEx andBy is given by the (1 + i) term, which is 45◦. ForEy andBx there is also a 180◦ phase difference
associated with the minus sign, which means the phase differnce is -135◦ (but only for a half-space).
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Even though the earth is not a half-space, we make the resistivity calculation and call it apparent resistivity, the
resistivity the earth appears to have based on a single measurement at a single frequency. We can in any case compute
the phase between E and B, which may well not be 45◦. Because the earth may in fact be 3 dimensional (or if 2D
may not line up with the measurement directions x and y), there may be cross coupling between Ex and Bx (and the y
components), so in practice a 2×2 impedance matrix is calculated:(

Ex

Ey

)
=
(
Zxx Zxy
Zyx Zyy

)(
Hx

Hy

)
.

Note that many practitioners use H , not B, for the impedance matrix, so the apparent resistivity and phase formulas
now become

ρa =
1
ωµo

∣∣∣∣EH
∣∣∣∣2 φ = tan−1

(
E

H

)
.

Remember, all these values are functions of frequency, and in practice the elements of Z are obtained by taking
cross-spectra between the magnetic and electric field measurements. We will learn more about this later.

Another representation of the transfer function between E and B is called the c-response (Weidelt, 1972) (also called
admittance by Parker, 1994), given by

c = − 1
iω

Ey

Bx
=

1
iω

Ex

By
.

Note that c is complex, and for causal systems the real part of c is positive, and the imaginary part is always negative.
It can be seen that

ρ = ωµo|c|2

and of course the phase is the same as for the MT response. If you do a units analysis, with E being V/m and B being
V.s/m2 (and of course 1/ω being seconds), you see that c has units of meters, and so is sometimes called the inductive
scale length.

4. Lorentz Force.

If we recall the Lorentz force on a moving charged particle:

F = q(E + v× B)

we can infer that the electromotive force (EMF) generated by a conductor moving with velocity v in a magnetic field
acts as a sort of electric field

E′ = v× B

which allows us to write the time derivative of the magnetic field in a moving conductor as

∂B
∂t

= ∇× (v× B) + η∇2B

where B is the magnetic field, v is the velocity field, η is the magnetic diffusivity (1/µσ). This approach is useful
when considering the geodynamo in Earth’s core, where the physical meaning of the first term on the right hand side
represents the interaction of the magnetic field with the velocity field, and the second term represents the diffusion of
magnetic field through the material.
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The Lorentz force is also applicable when conductive seawater moves through Earth’s magnetic field, which generates
an electric current given by

J = σ(E + v× B) .

For some simplifying assumptions (horizontal ocean currents, constant water conductivity, flat seafloor with no
coastlines, low frequencies), the conduction term can be ignored and

Eh = C(vh × Bz)

where C = [0, 1] is a correction factor associated with seafloor conductivity and can be taken as nearly equal to 1.
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