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Lecture 9a: Geomagnetic Depth Sounding

Geomagnetic Depth Sounding

If we want to look deep into Earth using electrical techniques, to study the properties of the deeper mantle, then the
MT method is not the ideal tool. Firstly, you need very long time series of the EM fields, spanning perhaps years, and
while magnetic observatories have been collecting records for more than a hundred years, there are few observatories
collecting electric field data. Secondly, if we examine the MT relationship:

ρa =
Tµo
2π

∣∣∣∣EB
∣∣∣∣2

(where we have replaced frequency with period, T ), we observe that for a given magnetic field and resistivity the
amplitude of the induced electric field decreases with period:

E = B

√
2πρa
Tµo

which is exacerbated by a falling ρa with depth and period. At long periods the assumption that the source field
morphology is uniform over scales comparable to the depth of penetration in Earth breaks down, particularly for
the daily variation and harmonics. Finally, there will be an ambiguity in the absolute value of mantle conductivity
associated with unknown static/galvanic effects in the electrical data caused by lateral conductivity contrasts near
Earth’s suface.

We can derive other types of electromagnetic response functions, similar in nature to the magnetotelluric response,
using only the three components of the magnetic field recorded by geomagnetic observatories (geomagnetic depth
sounding, or GDS, responses). Much of this work is still based on techniques developed by Banks (1969). The figure
below shows a combination of MT and GDS response functions from Egbert and Booker (1992). Magnetotelluric data
are available to a maximum of 10 days period (about 106 seconds), while GDS data can extend this to periods of many
months.

MT

GDS
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Using Observatory Records

We can again write the observed field as the gradient of a scalar potential Φ expressed as a spherical harmonic expansion
of associated Legendre polynomials Pm

l , with Schmidt quasi-normalized spherical harmonic coefficients representing
the internal iml and external eml magnetic fields:

Φ(r, θ, φ) = ao

∞∑
l=1

l∑
m=−l

{
iml

(
ao
r

)l+1

+ eml

(
r

ao

)l}
Pm
l

(
cos θ

)
eimφ .

Previously, we carried out the spherical harmonic expansion in geocentric coordinates, but here we will use geomagnetic
coordinates in order to minimize non-axisymmetric terms. Geomagnetic coordinates are defined by the axis of the
best-fitting dipole, and so necessarily will vary over time as secular variation occurs. Note that by using the exponential
term the Gauss coefficients iml and eml are implicitly complex in this equation. Now θ is geomagnetic co-latitude, but
ao stays the radius of Earth and r remains the radius of observation.

Let us assume that the non axisymmetric terms are small enough to be neglected. Then we lose the terms in m and

Φ = ao
∞∑
l=1

{
il

(
ao
r

)l+1

+ el

(
r

ao

)l}
P 0
l (cosθ) .

Notice that by making m = 0 the exponential term eimφ goes away and the Gauss coefficients become real. The il and
el and can be functions of time or frequency when we consider time variations in the external field. If we start with
magnetic observatory measurements, it is usual to work in the frequency domain, but note that conversion to frequency
gets us back into the complex plane in order to capture both amplitude and phase.

We can define a geomagnetic response for a radially symmetric Earth as the ratio of induced (internal) to external
fields:

Ql(ω) =
il(ω)
el(ω)

where the frequency domain is made explicit, and will be implicit in the following. This definition makes sense because
for a given external field variation, the bigger the electrical conductivity, the bigger the induced field. Also, the lower
the frequency, the larger the skin depth and the deeper the depth of the induced fields.

In certain circumstances, such as satellite observations or using a global array of observatories, we have enough data
to fit the el and il directly. However, much of the time we consider just the horizontal and vertical components
of B as recorded by a single observatory. (Since we are working in geomagnetic coordinates and have ignored the
non-axisymmetric components, the horizontal component always points north or south.) We can obtain expressions
for the horizontal component H of B and the vertical component Z of B at the surface of Earth (r = ao) from the
appropriate partial derivatives of Φ:

H =
(
−1
r

∂Φ

∂θ

)
r=ao

=
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r
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r
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r

ao
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)
r=ao

=
∑
l
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∂P 0

l (cos θ)
∂θ

and

Z =
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−∂Φ

∂r

)
r=ao

=
(
ao

∞∑
l
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−ilal+1

o (l + 1)r−l−2 + ela−lo (l)rl−1}P 0
l (cosθ)
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r=ao

=
∑
l

AZ,lP
0
l (cos θ)
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where we have defined new expansion coefficients

AH,l = il + el

AZ,l = lel − (l + 1)il .

Two equations in two unknowns, so we can solve for il and el:

il =
lAH,l −AZ,l

2l + 1
el =

AZ,l + (l + 1)AH,l

2l + 1

and our electromagnetic response Q is related to the A’s by

Ql =
il
el

=
l −AZ,l/AH,l

l + 1 +AZ,l/AH,l
=

l −Wl

l + 1 +Wl

where we have introduced the ratio of A’s as a new electromagnetic response

Wl =
AZ,l

AH,l
.

It turns out that the inductive scale length or c-response is related to Wl by

cl =
aoWl

l(l + 1)
.

By looking at the geometry of simultaneous observatory records as a function of geomagnetic colatitude, Roger Banks
showed that except for the daily and annual variations, the magnetic field was dominantly of P 0

1 geometry as a result
of the nature of the ring current. Thus, the above analysis could be simplified some more by assuming the simple
degree-one field geometry. In this caseW becomes simply the ratio of vertical to horizontal fields with a co-latitudinal
trigonometric term:

W =
AZ,1

AH,1
=

Z/P 0
1 (cos θ)

H/ ∂
∂θP

0
1 (cos θ)

and recalling that P 0
1 (cos θ) = cos θ,

W =
Z sin θ
H cos θ

=
Z(ω)
H(ω)

tan θ

remembering that Z(ω)/H(ω) is complex and a function of frequency. (This method blows up at θ = [0, 90, 180].
Why?) The c-response becomes simply c = aoW/2 and the magnetotelluric apparent resistivity and phase are

ρa = ωµo|c|2 φ = arg(c) .

The workflow for geomagnetic depth sounding is to take H and Z records from a single observatory and Fourier
transform them to get the field ratio as a function of frequency. One could take the individual records, transform them,
and then take the ratio of the Fourier components, but since there is noise in both the records this isn’t great. A better
way is to take a cross-spectrum which pulls out the coherent signal in both records. Since some observatories have
been recording for over a hundred years, this allows response functions to be computed out to periods of at least 6
months.

Of course, by using a number of observatories distributed across colatitudes, one could fit the P 0
1 field geometry rather

than assuming it a priori . This is rarely done for a number of reasons. First, not all observatories are created equal, in
terms of noise in the records and the length of time they have been operating. However, the bigger reason is that even
though the above analysis implicitly assumes the electrical conductivity is radially symmetric, there will be variations
in conductivity beneath various observatories, which can be identified by variations in the response functions.
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Magnetic Satellite Studies

Just as magnetic satellites have provided additional data for main field modeling, they provide another way to estimate
GDS responses. They have the advantage that they provide continuous data from pole to pole, and sample the entire
Earth. However, because satellites move through the static parts of Earth’s magnetic field, folding spatial variations
into temporal variations within the satellite frame of reference, considerable effort is required to remove

• The main (core) field, and its secular variation.
• The crustal field due to remanent and induced magnetization.
• Ionospheric currents (daily variation)
• Field aligned and meridional currents, and seasonal variations.
• Equatorial electrojet.
• Coupling and induction of the above.

One tool that attempts to model all these phenomena simultaneously is the Comprehensive Model (Sabaka et al., 2004).
Even so, it is difficult to remove the effects of field aligned currents in the auroral zones, and so data are typically
processed between ±50◦ geomagnetic latitude, and residual effects of the daily variation are usually avoided by using
only night-time data.

Because we have continuous data as a function of geomagnetic colatitude, rather than assume a P 0
1 geometry at a single

position as we did for observatory data, we can compute the best fitting P 0
1 function directly from the magnetic field

data. We do this for each pass to obtain a time series of internal and external Gauss coefficients. Only after that do we
convert to the frequency domain.

As above, we keep only the P 0
1 contribution and use r, θ, φ in geomagnetic coordinates, and can then write the magnetic

potential as

Φ
0
1(r, θ, φ) = ao

{
i01(t)

(
ao
r

)2

+ e0
1(t)
(
r

ao

)}
P 0

1

(
cos θ

)
where i01 and e0

1 are real and we have made the function of time t explicit. The magnetic field B is derived from the
negative of the gradient in the usual manner

B(r, θ, φ) = −∇Φ
0
1(r, θ, φ)

recalling that the gradient operator in spherical coordinates looks like

∇Φ =
(
∂Φ

∂r
,

1
r

∂Φ

∂θ
,

1
r sin θ

∂Φ

∂φ

)
and that P 0

1 (cos θ) = cos θ, we can write the components Br, Bθ, Bφ of our spherical coordinate system:

Br = −∂Φ

∂r
=
[
−e0

1 + 2i01

(
a

r

)3]
cos(θ)

Bθ = −1
r

∂Φ

∂θ
=
[
e0

1 + i01

(
a

r

)3]
sin(θ)

Bφ = 0 .

The azimuthal (φ) component is zero because we have neglected all non-zonal components, and as for the observatory
records, when you do this the horizontal component is purely in the θ direction (north-south). Note that the altitude
of satellites varies along the orbit, so we need to keep the r dependence, unlike for observatory studies. The above
equations may be expressed in matrix form as:
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[− cos(θ) 2(a/r)3 cos(θ)

sin(θ) (a/r)3 sin(θ)

][
e0

1

i01

]
=

[
Br

Bθ

]
.

For an analysis using a single satellite, these equations can be fit to data from each satellite pass from north to south
(or vice versa) (e.g. Figure 4) having different values of altitude (r) and geomagnetic colatitude (θ), as was done by
Constable and Constable (2004b), providing estimates of i01(t) and e0

1(t) at about 100 minute intervals. Residuals from
the fitting were about 5–10 nT.
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Figure 4. Fits (solid lines) to data from a single 90-minute satellite pass (symbols) . From these fits we obtain two
real numbers, i01 and e0

1 for a time t taken to be the mean time of the pass.

The i01 and e0
1 estimates for single passes can be merged to form a time series for the entire satellite mission (Figure

5). It can be seen that the magnitude of both the internal and external fields are larger for the dusk passes than the
dawn passes, clearly indicating that the ring current is not symmetric about Earth, as often assumed by the induction
community, a feature well understood by the space physics community.

Response functions may be obtained from the i01(t) and e0
1(t) time series in the usual way by transformation into the

frequency domain to derive a complex geomagnetic response function of frequency:

Q0
1(ω) =

i01(ω)
e0

1(ω)

from which we get admittance by

c(ω) = ao
l − (l + 1)Ql

l(l + 1)(1 +Ql)
= ao

1− 2Q1

2 + 2Q1

where ao is still the radius of Earth and l is the order of the spherical harmonic expansion, which we have set to 1 in
this case.
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Figure 5 Time series of i01(t) and e0
1(t) for the entire MAGSAT mission, separated into dawn and dusk passes.

Kuvshinov & Olsen, 2006
Kuvshinov & Olsen, correctedKuvshinov & Olsen, 2006

Figure 6. Long period geomagnetic response functions computed from magnetic satellite records, after Kuvshinov and
Olsen (2006). The Olsen (1999) response is a traditional GDS response made using data from European observatories.
Kuvshinov and Olsen attribute the difference in the long period imaginary response between their data and those of
Constable and Constable (2004) as an artifact of Constables’ time series analysis. Their correction removes the 3D
effects of the oceans on the 1D response functions.
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Lecture 9b: Linear and Nonlinear Least Squares Fitting

Introduction

In geophysics we fit models to data all the time. The model could be a straight line (a classic problem found on most
programmable calculators in the past), a more complex but smooth trend you want to remove from a series of data, a
large but linear system (think lots of Gauss coefficients to fit the main magnetic field), a small number of parameters
describing a nonlinear problem (particle density and mobility describing conduction in a semiconductor as a function
of temperature – we will see this later), or a large number of parameters describing a nonlinear problem (a global 3D
electrical conductivity model or even a local 2D conductivity model). We will see all these things in this course. The
time-honored, and often the optimal way, to do this is by least-squares fitting.

Least squares as a measure

We start with a set of M observed data d:

d = (d1, d2, d3, ..., dM )T .

These data will have errors, or uncertainty, associated with them:

σ = (σ1, σ2, ..., σM )T

which may be estimated during the generation of the data set, an educated guess, or an assumption that all the errors
are the same (in which case the size of the constant error won’t matter). In practice, getting good error estimates can
be as hard as getting the actual data.

We have some mathematical description f which captures the physics of how some model m, which describes our
world, is related to the data:

d̂ = f (x,m)

where d̂ are the predicted response (i.e. estimates of the data given the model m):

d̂ = (d̂1, d̂2, d̂3, ....., d̂M )T

and x are independent data variables which describe the data (for GDS, frequencies or periods, for magnetic field
measurements, location on the globe) associated with the predicted responses. Let’s assume we only need one per
datum, although in practice several might be required (e.g. latitude, longitude, time, and an index of field component
if you are fitting a secular variation magnetic field model):

x = (x1, x2, x3, ..., xM ) .

Note that in the real world our model could be infinite dimensional, even for simple looking models. For example, if
we wanted to model electrical conductivity as a function of depth in Earth, there are an infinite number of possible
depths. For this reason f (m) is called a forward functional, because it maps a potentially infinite dimensional model
into a single data point at a time. In practice, however, we discretize our model into a finite number of N parameters:

m = (m1,m2, ...,mN )T .

The number of parameters could be very large in practice, especially if we want to approximate an infinite dimensional
problem, and we will get to how you handle such cases, but for now let’s assume that N < M (the size of the model
is smaller than the number of data).

One might think that we’d like a scheme for finding a model m∗ that exactly fits the observed data d such that

d = f (x,m∗) .
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In practice, it is unlikely that any model exists that will fit the data, which always have noise, perfectly, and it is often
true that your parameterization does not capture the complexities of the real world that generated the data. What we
do instead is define a measure of how well a model m fits the data, and find some way to reduce, or even minimize,
this misfit. For practical and theoretical reasons, the sum-squared misfit is a favored measure:

χ2 =
M∑
i=1

1
σ2
i

[
di − f (xi,m)

]2
which equivalently may be written as

χ2 = ||W(d− d̂)||2 = ||Wd−Wf (m)||2

where W is a diagonal matrix of reciprocal data errors

W = diag(1/σ1, 1/σ2, ....1/σM ) .

The least squares (LS) approach attempts to minimize χ2 with respect to all the model parameters simultaneously.
If the data errors σi are Gaussian (normally distributed) and independent, then least squares provides a maximum
liklihood and unbiased estimate of m∗, and χ2 is Chi-squared distributed with M − N degrees of freedom. It turns
out that having independent, normally distributed data is a fairly high bar, but the method is fairy tolerant to deviations
from this ideal.

Linear problems

For linear problems, our forward functional f (m) can be written as

d̂ = Fm

or
d = Fm + r

where F is an M ×N matrix, often called the design matrix, which linearly maps the model into the data, and r is an
M -column vector of residuals. If we write

r = d− Fm

the sum of squares misfit is rT r, which we can minimize by differentiating and setting to zero, to get the least squares
solution:

m∗ = (FTF)−1FTd

(don’t worry if this went fast - you will see the derivation, and a lot more, in SIOG 223 and SIOG 230). These are
called the normal equations.

What does F look like? Recall our P 0
1 fitting of satellite data:[
Br

Bθ

]
=

[− cos(θ) 2(a/r)3 cos(θ)

sin(θ) (a/r)3 sin(θ)

][
e0

1

i01

]
.

This maps a single pair of data Br and Bθ to a pair of Gauss coefficients. But looking at Figure 4 we have lots of data
(123 for each component to be precise) at lots of magnetic colatitudes. So what we really have is

Br(θ1, r1)
Bθ(θ1, r1)
Br(θ2, r2)
Bθ(θ2, r2)

...
Br(θ123, r123)
Bθ(θ123, r123)


=



− cos(θ1) 2(a/r1)3 cos(θ1)
sin(θ1) (a/r1)3 sin(θ1)
− cos(θ2) 2(a/r2)3 cos(θ2)

sin(θ2) (a/r2)3 sin(θ2)
... ...

− cos(θ123) 2(a/r123)3 cos(θ123)
sin(θ123) (a/r123)3 sin(θ123)


[
e0

1
i01

]
.
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Here the vector of magnetic colatitudes [θ1, θ2, ...θ123] are equivalent to the independent data variables x described
above.

Nonlinear problems

What happens if your forward solution is not linear? First, see if you can linearize it. We will see that a good model
for the electrical conductivity of minerals is the Arrhenius relation

σ(T ) = σoe−A/kT

where T is absolute temperature, σo is a constant, A is activation energy, and k is Boltzmann’s constant. This can be
linearized as

log(σ(T )) = log(σo)− (A/k)(1/T ) .

However, if this is not possible, most practical approaches to the least squares problem usually involve linearizing the
forward solution f around an initial model guess m0

f (m0 + ∆m) = f (m0) + J∆m +O(∆m2)

where J is a matrix of partial derivatives of data with respect to the model parameters

Jij =
∂f (xi,m0)
∂mj

(often called the Jacobian matrix) and
∆m = (δm1, δm2, ...., δmN )

is a model parameter perturbation about m0. Now our expression for χ2 is

χ2 ≈ ||W(d− f (m0)) + WJ∆m||2

where the approximation is a recognition that we have dropped the higher order terms. We will proceed on the
assumption that this linear approximation is a good one. (More on that later.) We can minimize χ2 in the usual way
by setting the derivatives of χ2 with respect to ∆m equal to zero:

∇χ2 = −2(WJ)T [W(d− f (m0))−WJ∆m] = 0

and solving for ∆m
∆m = [(WJ)TWJ]−1(WJ)T [W(d− f (m0))]

which may be equivalently written as N simultaneous equations:

β = α∆m

where
β = (WJ)TW(d− f (m0))

α = (WJ)TWJ .

These are equivalent to our normal equations for the linear problem, and the matrix α is sometimes called the curvature
matrix. This system can be solved for ∆m by inverting α numerically. If the forward model f is truly linear, then the
model m∗ = m0 + ∆m is the least squares solution.

For non-linear problems a second model m1 = m0 + ∆m is found and the process repeated in the hope that the process
converges to a solution. Note that because J depends on m, J will need to be re-computed every iteration. This is the
general form of the Gauss-Newton approach to model fitting.
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Near the least squares solution, the Gauss-Newton method will work, but any significant nonlinearity will result in
likely failure unless you start linearly “close” to a solution. Long, thin, “valleys” in the χ2 hyper-surface are common
and produce search directions which diverge radically from the direction of the minimum.

Another approach which does not depend on how large the second-order terms in the expansion of f are is based on
the expansion of χ2, rather than f :

χ2(m0 + ∆m) = χ2(m0) + ∆mT∇χ2(m0) +O(∆m2)

into which we can substitute our expression (19) for ∇χ2 (setting ∆m = 0) and drop the high order terms

χ2(m0 + ∆m) = χ2(m0)− 2∆mT (WJ)T [W(d− f (m0))] .

If we choose ∆m = µ(WJ)T [W(d− f (m0))] for some scalar µ then we get

χ2(m0 + ∆m) = χ2(m0)− µ||(WJ)T [W(d− f (m0))]||2

and there will always be a µ which keeps reducing χ2 (not all µ – at some point the higher order terms will take over).
Solutions of the form

∆m = µ(WJ)T [W(d− f (m0))]

go down the slope of the χ2 hyper-surface, and are thus called steepest descent methods. Although they are guaranteed
to reduce χ2, as they approach a least squares solution ∇χ2 → 0 and so does ∆m, and the method becomes very
inefficient.

An algorithm to compensate for this behaviour was suggested by Marquardt (1963). Consider a model perturbation
given by

∆m = [λI + (WJ)TWJ]−1(WJ)T [W(d− f (m0))]

for another scalar, λ. When λ = 0 it is easy to see that this reduces to the Gauss-Newton step. When λ is large,
it reduces to a steepest descent step with λ = 1/µ. Referring to our earlier, compact notation, this is the same as
increasing the diagonal terms of the curvature matrix by a factor λ:

αjk = αjk(1 + λ) for j = k

αjk = αjk for j 6= k .

By adjusting λ to be large far from the solution, and small as we approach the minimum, we have a fairly stable method
of determining a model composed of a small number of parameters.

The classic Marquardt algorithm is as follows:

i) Choose a starting m0 and a fairly small λ (say, 0.001). Compute the χ2 of the starting model.

ii) Compute m1 and a new χ2. If

a) the χ2 decreased, keep the model, reduce λ by 10, and go to (iii)

b) the χ2 increased, increase λ by 10 and go to (ii).

iii) If the change in χ2 or ∆m are very small, stop. Otherwise, go to (ii).

The assumption in the classic Marquardt algorithm is that forward model calculations are expensive. If they are not,
or if the cost of computing J is high compared with the forward solution, then a more efficient algorithm would be:

i) Choose a starting m0 and a fairly small λ (say, 0.001). Compute the χ2 of the starting model.
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ii) Do a line search over λ to find the minimum χ2 and the associated model.

iii) If the change in χ2 or ∆m are very small, stop. Otherwise, go to (ii).

What about calculating those derivatives in J? One approach is to do this numerically by first differences. Forward or
backward differences

d

dx
f (x) ≈ f (x + h)− f (x)

h
≈ f (x)− f (x− h)

h

have a relative error term that goes as

ε ∼ h

2
|f ′′(x)|

but a central difference
d

dx
f (x) ≈ f (x + h)− f (x− h)

2h
has an error term that goes as

ε ∼ h2

6
|f ′′′(x)| .

How to choose h? The tradeoff is to generate a computationally significant difference in f while not being so large
that nonlinearities compromise the result. Usually something like 5% works well enough, but make sure you don’t
take a percentage of anything that can go through zero.

Alternatively, one can do the derivative calculations analytically, which is usually computationally much faster and
more accurate but may take some math and coding. If you do, check the analytical results against the central differences
– if your derivatives are wrong, no gradient-based inverse method is going to converge.

The iterative parameterized LS approach may converge to a local minimum rather than a global minimum, and it may
not work (diverge) unless you start reasonably close to a solution. One approach to this is to run lots of inversions
using a fairly large random set of starting models, assuming the computation is fast enough.

For nonlinear problems that are truly parameterized the Marquardt method is pretty hard to beat. It also works fairly
well for problems where the number of degrees of freedom is large, given by M − N when the M data are truly
independent, and the starting model provides a rough fit to the data.

11


