CHAPTER 3

KINEMATICS: MOSTLY
DEFORMATION

We beat it out flat; we beat it back square; we battered it into
every form known to geometry-but we could not make a hole in
it. Then George went at it, and knocked it into a shape, so
strange, so weird, so unearthly in its wild hideousness, that he
got frightened and threw away the mast. Then we all three sat
round it on the grass and looked at it.

Jerome K. Jerome (1889) Three Men in a Boat (to say nothing

of the Dog)

3.1 Introduction

We begin with the most general part of continuum mechanics: kinematics,
or how to describe the motion of a continuum. The reason it is general is just
because it has no physics in it; indeed, it should probably be regarded as a
branch of geometry.! This generality makes the subject both powerful and
limited: powerful because we can apply it to situations in which we know
nothing of the physics involved (not an uncommon situation in the Earth),
and limited because we cannot use it to distinguish between different types
of physics that might be relevant. This limitation is very much a current
concern in geophysics: between plate tectonics and satellite geodesy we
know the current and past motions of the Earth’s surface (the kinematics)
far better than before, but how to translate this improved kinematics into
better understanding of the physics remains challenging.

! Mathematically, indeed, it is a specialization of differential geometry.
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3.2 Descriptions of Motion: Particles and
Locations

In describing the kinematics of a continuous medium, we can choose among
several mathematical descriptions even for our system of specifying locations
in that medium; which one we choose depends on which is most convenient
for the problem we are trying to solve. All these descriptions have in com-
mon an unchanging reference frame, usually fixed in inertial space, to which
any description can be referenced.? Within this frame, we use Cartesian co-
ordinates to describe positions, vector components, and so on—but as much
as possible we will write vectors and tensors in coordinate-free form as s
reminder that they are independent of the particular system of components
we might choose for the coordinates.

To specify a particular location in a continuum — and more especially,
how locations change with time — we can choose between two descriptions,
each of which goes by several names, none particularly memorable:

e In the material, or Lagrangian, description we specify a location by
specifying the associated “particle” of the continuum-a particle being
an (infinitesimal) part of it.  For example, to specify location r in
our overall reference frame we write r = r¥(x,¢) which makes the
position in space, r, a function both of time ¢ and of of the particle
labeled by the vector x. The function r* has time dependence because,
without it, the continuum would not move, leaving us with nothing
to analyze. The point to focus on is that x, though a vector, is not a
spatial location but a particle label. This raises the obvious question
of whether or not it is legitimate to use a vector for this purpose. To
make it valid, we define x to be the spatial location of the particle at
t = 0; this is certainly a vector. Put slightly differently, if we take
t = 0 to be the time at which r(x,t) = x, then the label x is the
same kind of thing as the function r¥: a vector. We do need one more
assumption to make this work, namely what is called the axiom of
continuity,® which is that no finite volume of a continuum can become
either zero or infinite. This means that, whatever the subsequent
motion, no particle-label vectors can cease to exist.

2 The reference frame does not have to be inertial; in the subject known as geophysical
fluid dynamics it is usually taken to be rotating at a constant angular velocity.

3 This is not the same as the equation of continuity, which we will derive in the next
chapter.
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Initial (t=0) Deformed (t#0)

b

Figure 3.1: Deformation of a material, as shown by a grid
(solid lines) in it, which at ¢ = 0 is orthogonal, but at some
other time has become deformed. The gray grid is the ref-
erence. In the notation used in the text, the black lines are
lines of constant x, and the gray lines are lines of constant r.

e In the spatial, or Eulerian, description we write x = x®(r,); that
is, the function x¥ gives the label x of the particle that happens to
be at the spatial position r at time t.

If this all seems abstract, it may help to think about what these functions
mean if the argument is held constant. If x is constant, r’(x,¢) would give
the location, as a function of time, for the particle x: we ride along with
the particle, and follow its trajectory through space. If r is constant, we
have a fixed spatial position, and a succession of particles moves through
this fixed location, with the one at time ¢ having the label x¥(r, ).

Figure 3.1 shows the initial state of a body (at ¢ = 0) and a deformed
one, which can be thought of as being at another time ¢. For both states,
the coordinate framework for r is shown in the background, in gray. In the
initial state, lines of constant x form an orthogonal system that is aligned
with r, though for clarity I have spaced the lines at different distances. In
the deformed state, constant values of x no longer form straight lines, or
even an orthogonal system. The particle at A on the left deforms to A’ on
the right; the value of x for this particle remains what it was on the left,
namely (3, 3)-but the value of r associated with it is now quite different,
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namely (2.07, 2.98). And if we look at r = (3, 3) on the right, we see that
the particle labeled B’ is at this spatial location; in the undeformed state
it was at r = (3.58, 3.63), which is thus the value of x associated with this
particle: that is, the label for B and B'.

An informal, but useful, analogy for these two descriptions is that the
material description is the one you take of the other cars while you are
driving on the freeway; the spatial description is that used by the Highway
Patrol parked by the roadside and looking for speeders. This analogy brings
out an important reason for having both descriptions. In describing the
physics of a continuum, the material description is the one to use, because
it describes things relative to the material, where any interactions take
place. (Your major concern when driving is not to collide with the cars
around you-where you, and they, all are is of less concern). It is also often
true that our observations are made in a material framework: for example,
a seismometer attached to the moving Earth or a drifter moving with the
ocean.

But mathematically, the material system is more complicated and diffi-
cult than one fixed in space. If, as in Figure 3.1, we define a set of orthogonal
coordinates attached to particles at ¢ = 0, at other times the these coordi-
nate axes will become distorted: not orthogonal, probably not even straight.
We will no longer have any of the simplicity that Cartesian coordinates pro-
vided us with. If we want to take derivatives relative to the coordinate axes
(as we often do), the derivative with respect to (say) the l-axis cannot be
defined without allowing for the motion of the material.

Our way out of this dilemma will be to focus on situations in which the
change of axes does not complicate the mathematics, either because the
motions are “small” or because they are specialized to forms for which the
change of axes is easy to allow for.

3.3 Rigid-Body Motion

We are primarily interested in the deformation of the material: that is,
its change in shape. A material that does not deform is said to behave as a
rigid body; the mathematical definition of this is that for any two particles
x; and X, the distance |[rf(x;,t) — rl(xy,t)| does not change. While rigid-
body motion is not generally taken to be part of continuum mechanics, it
has enough geophysical uses that we should discuss it briefly.
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It is obvious that we can add a constant vector a to the position vectors
rf(x;) and rf(xy) without affecting the difference r(x;) — r¥(xz), not to
mention its length. Such addition of a constant is equivalent to rigid-body
translation of the material. It should also be obvious that rotating the
reference frame (or equivalently the vector in the frame) does not change
any vector lengths. The most general form of rigid-body motion is thus
translation plus rotation; if one point in the body does not translate then
the most general motion is rotation. It can be shown that any rotation, or
combination of rotations, can be represented as a single rotation about some
axis; so we can specify the rotation with three parameters, two to give the
orientation of this axis, and one to give the amount of rotation.* This result
is the Euler’s theorem used in plate tectonics. For infinitesimal rotations
the three rotation parameters can be just the rotations about each axis,
which, in this case only, form a vector. For any larger rotations (usually
called finite rotations) the axis and angle (called in plate tectonics the
Euler pole and angle) are the visually most appealing description, but not
the most convenient for analysis. A number of other choices are available,
of which the best are the quaternions, now seeing increasing use after long
neglect. As noted in Section 2.3, large rotations, unlike small ones, do not
commute; quaternions do not either.’

3.4 Deformation

We now turn to more general types of deformation. Since what matters is
the relative motion of nearby particles, we therefore consider motions of the
continuum relative to some particular (though arbitrary) particle, called the
reference particle, which we label xg. The change in relative position
between this particle and some other particle (labeled x) is given by:

u(x,t) = [r¥(x,t) — r(xg, t)] — [r¥(x,0) — r¥(xg, 0)]

If u(x,t) = 0 for all x and all ¢, we are back to a pure translation, since

any line between two particles has an unchanging length and direction.
We therefore want to develop descriptions for more general forms of u.

We focus on three cases which have very similar mathematical structure,

4 Geodesists describe the mapping from one reference frame to another using rigid-
body motions, which they call Helmert transformations: 3-parameter transformations
for pure translation, and 6-parameter ones for translation and rotation.

5 In two dimensions even finite rotations commute.
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and are also not unreasonable approximations to many actual behaviors:
these are homogeneous strain, small deformation, and rates of deformation.

3.5 Small Deformation

Define £ = x — xp: this is the vector from the reference particle to another,
arbitrary, one. Our first assumption is to consider deformation in a small
region only, so that ¢ is infinitesimal, which we indicate by writing it as d¢.
Also, we look at u and related quantities for a fixed (but nonzero) value of
t-that is, we consider the material in two configurations: one at ¢ = 0 and
one at some other time. We do not consider how the material gets from one
configuration to another; in the terms usually employed, we are concerned
with deformation but not motion. In this case, x describes the locations in
the initial state, and r in the final (second) state-the material and spatial
descriptions thus become the undeformed and deformed states respectively,
though it is actually arbitrary which state we call “undeformed”. By def-
inition, when d§¢ = 0 (that is x = xp), the vector u is always zero: the
reference particle is always itself.

Our second assumption is that the deformation is smooth enough that
we can write u as a Taylor series in d€. Remembering that d is a vector
between particles (that is, it depends on particle labels x), this Taylor series
is written, pretending for the moment that the x axes define Cartesian
coordinates:

w;(d€) = %dﬁj + higher-order terms (3.1)
J
where we are using, once again, the summation convention for repeated
indices.

Our third assumption is that all we need from the Taylor series is the first
term; this assumption amounts to requiring that the gradients in equation
3.1 be much less than one. And our fourth assumption is that the motions
are small enough that the axes for r and x will locally coincide: this is a
separate requirement from the one for small gradients. Remember that for
t = 0, the reference state, these axes do coincide. This last assumption
means that we may take u to be a function of r rather than of x. The last
two assumptions, combined, allow us to write the displacement u as

_ Ou

87"j

Us

d§; (3.2)
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= Bi;d&; + €;dE;

The first expression gives the displacement in terms of the displace-
ment gradient, which in coordinate-free terms is the dyad Vu; on the
next line, we add, subtract, and regroup terms to get particular combina-
tions of these gradients. In coordinate-free form equation 3.2 becomes

u = (Vu)dé = (1h(Vu+ uV)dé + 1h(Vu — uV)dé & Ede + Qde¢
where we have defined new quantities E = 15(Vu+uV) and Q = 14(Vu—
uV). From equation 3.2 it is clear that E is symmetric and € antisymmetric.

3.6 Small Deformation in Two Dimensions

To clarify the meaning of different terms of E and €2, we consider these
expressions in two dimensions. The Cartesian components of E and 2 are
then:

E— ( Ey By ) _ < Ouq 1o(Oyug + Oauy) )
By Ey Uo(Oguy + Oyuz) Oty

Yo(ua1 + uy2) Usg.2

_ ( U1,1 Vo(uy 2 + ug 1) )

where we have again used the convenient contractions (equation 2.13)

def 5 def Ou;
Uij = Gjthi = 5=
J

(Remember, again, that in general a spatial derivative might be 9/0x or
0/0r; only for small deformations does this difference not matter). Now
suppose the only nonzero term is Fj;; then

Uy = E11df1

describes the displacement field: there is only displacement in the u; direc-
tion. If Fy; > 0, this displacement increases as we move away from d&; = 0.
This deformation is called a uniaxial extension. If E;; < 0, we have
displacement, also increasing away from d§; = 0, but towards the 2-axis:
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Figure 3.2: A variety of displacement fields, producing differ-
ent kinds of strain. All these strains are finite, but homoge-
neous, so they are adequate representations of infinitesimal

strains.

this is uniaxial contraction. Together these are termed uniaxial strain.
Of course, Fy gives the same kind of deformation field in the orthogonal

direction.
Next consider E15 nonzero; then

Uy = Elzdfz Uy = E12d51

This is called a pure shear, and will cause the axes to move so that the
angle between them changes from 7/2 to /2 — 2Ey,. This suggests that
shear may be specified as an angle change v = 2E5; 7y is called engineering
shear (to be distinguished from the tensor shear component Fis).
Figure 3.2 shows some of these simple two-dimensional deformations; of
course for clarity we have to make them finite rather than infinitesimal, but
since we have made them homogeneous they remain accurate. The tails
of the arrows form a regular grid in the undeformed material; their heads
show the positions of these particles after the deformation, so the arrows
themselves show the displacement field u. In addition to the two strain
types already described, we also show a pure rotation, in which E is zero
and € is not; this is a rigid-body motion. If we add this rotation to the
pure shear, we get the type of deformation known as simple shear (shear
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parallel to one axis), which thus includes both strain and rotation. Simple
shear has a special place in geodynamics, as being the kind of deformation
that takes place across diffuse plate boundaries when the motion is parallel
to the boundary: crustal deformation in Southern California is one place
where this is a good first approximation. Finally, Figure 3.2 shows the case
in which F; = FEs,: this is often called areal strain; in the Earth, this
kind of deformation is most typically found in volcanic areas. Note, in all
these drawings, that there is nothing special about the point in the center;
if we took displacements relative to some location on the edge, we would
get the same sort of picture.
In two dimensions, the antisymmetric part €2 is

Q o O 1/2(82U1 — (91U2) dif O —Q
—\ Y2(0rug — Ohuy) 0 L Q o

so there is only one component, 2. To see what motion this gives, take
a vector of length d¢ which initially is at an angle # to the 1-axis and is
rotated by another (small) angle w, as in the left panel of Figure 3.3. The
end of the vector is displaced by

uy = d€[cos(f + w) — cos 0]

ug = d€[sin(0 + w) — sin 0]

which can be written in matrix form as

up \ [ cosw—1 —sinw d€ cosd
Uy ) sinw 1—cosw dé sin 6

For w < 1 this becomes

()= ) (%)

which shows that €2 describes just a rigid-body rotation—though this rota-
tion has to be small for this description to work. As we saw in Section 3.3,
larger rotations cannot be described by this simple means.

It is instructive to work though how the Cartesian components of E and
2 change in two dimensions as we change the direction of the coordinate
axes—although the algebra is slightly tedious, we end up with the result
which justifies calling E a tensor. Take, as before, a vector d at an angle
0 to the l-axis; as a result of the deformation it becomes a new vector d¢’.
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1 1

Figure 3.3: The left-hand diagram shows the motion of a
vector under rotation; the right-hand one shows a vector that
undergoes both rotation and change in length. See text for
details.

(In figure 3.3 we show these, and label them, as finite vectors). We define
the stretch to be the ratio of lengths of these vectors, and the extension
to be this minus one: .

dof [dE']

©7 Jag]

Since d¢' = d€ + u, we can write a quantity related to e

(d&1 +wi)® + (d& + u2)® — (€} + dE3)
dgt + dg3
((1 +e)[dg])* — |d€]? 2
@€P ey — i
where the last approximation is valid for e small. We next write the dis-
placements u; in terms of the displacement gradients; for example, for u,,

(3.3)

8’&1 6u1
= —~d —d
Uy o, &+ Oy &9
which means that
ou ou
d&)? — de? = 2—Lde? + 222d¢,d 3.4
(Ul + 51) 51 87’1 El + arz 61 52 ( )

plus higher-order terms involving products of displacement gradients. Sub-
stituting expressions like equation 3.4 into 3.3 we find that

8’LL1 dgl 2 6U2 dfg 2 8u1 Guz d€1d£2
2e=2-"1 (L) 4222 (22) 422422
‘= %o (|d§\) o (yd§| o\ on T o) Taep
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which implies
e(f) = En c0s? 0 + Foyysin? 6 + 2F,5 sin 6 cos 0 (3.5)

since, for example, d&; = |d€| cosf. Since e is just a uniaxial strain, equation
3.5 is also an expression for £y;(#), the 11 component of strain in a coordi-
nate system rotated counterclockwise by 6 from the original. For example,
equation 3.5 implies that for § = 90° we will get E1;1(90°) = Esy—which
is obviously the case. For pure shear, with £y = Fy = 0 and Ej5 # 0,
E41(0) has a four-lobed pattern, with two of the lobes being negative. This
behavior is apparent if we look at the pure shear shown in Figure 3.2; at
45° to the axes there is just uniaxial extension and contraction.

This shows how the extension, and the extensional components, trans-
form for a rotation of the axes. To derive how the shear strain will change
for a rotation, we look first at the change in orientation of a single vector,
which is described by the angle given, for small displacements, by (Figure
3.3):
uy(—sin ) 4 uy cos

€]
that is, the projection of u onto a direction perpendicular to d¢, divided
by |d¢|. Again using the expression for u; and us in terms of displacement
gradients, and that d&; = |d¢| cos@, we get that, for small displacements,

5=

0= g—:fll(— sin @ cos ) + g—if;(— sin 20) + Z—Z(Singms 0) + g—:ffCOSQH

= (B9 — E11)(sinf cos0) + (E1a + Q)(—sin® ) + (Eg — Q)(cos 0)
= (Eq — E1q)sinf cos 6 + E12(COS2 0 — sin® 0) —Q
so the change in direction depends on E and €2; reasonably, there is no
dependence on @ for the part involving €2, as expected for a rigid-body ro-

tation. If we add 90° to 6, we get the change in orientation for an orthogonal
line, which is:

—(Ey — Ey1)sinf cos — Eyp(cos® 6 — sin® ) —

Subtracting these two expressions to get the change in angle between the
(originally orthogonal) lines and dividing by two to get the tensor shear
gives

E15(0) = (Eay — E11)sinf cos + Ejp(cos® 6 — sin” 6) (3.6)
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which shows, among other things, that F1; — Fa is just as much a shear as
E12.

The full transformation matrix for the Cartesian components of strain
in two dimensions is therefore:

Ey, cos? 0 —sin 6 cos 0 sin® @
E, | = sin’ @ sin 6 cos 6 cos? 6 ( E11E13Ey )
Eb, 2sinfcos® cos?f —sin?f —2sinfcosf

Because the Cartesian components of E transform in this way, we know that
E is indeed a tensor, since obedience to such a transformation rule defines
the tensor character of an entity.

This transformation in turn can be used to find additional ways of pa-
rameterizing the strain into other components; we describe these for the
two-dimensional case, but the results carry over to three dimensions as well.
If we consider Ay = Fq1 + Foo, we can see from equation 3.6 that this will
not vary with # at all-that is, this quantity is invariant, or more properly
an invariant of E. (There are other invariants, but they involve powers
of the components). Ay is called the areal strain and amounts (for small
strains) to the ratio of areas in the deformed and undeformed states, minus
one.

In three dimensions, the equivalent (Ay = Ej; + Eay + Es3) is called
the dilatation, and is equivalently related to the change in volume. If
we subtract the dilatation from the strain tensor to form EP = E — Ay,
we have the deviatoric strain E”, which can also be written as EP =
E — Tr(E)I, where I is the identity tensor, and Tr(E) is the trace of the
strain tensor: for Cartesian components the sum of the diagonal terms.

From equation 3.6, we can see that at 45° to our original (and arbitrary)
choice of axes the shear strain would be 15(Eq — E11): as noted above, this
is thus just as much a shear as Fj5. We thus can express the strain as:

(Yo, Yo(Eoy — Eiq), Era) o (oA, Yory1, Yoya)

where 71 and v; are the engineering shear strains. This is often a useful
representation because the material may respond differently to shear than
to change in area: for example, in rocks shear leads to failure, but dilatation
does not, at least in compression.

Alternatively, we can see from equation 3.6 that there is an orientation of
coordinate axes that will make Ej5 = 0. Let the angle of the axes (relative
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to the original set) be § = 6,; then equation 3.6 shows that to make the
shear zero we have to have

1/2(E22 — EH) sin 29;0 + Eq5 cos 291, =0

which means that the angle is given by

(3.7)

2F
0, = jparctan { 2 ]

FE1 — Ea

For axes that make this angle to the original axes, only E;; and Fyy are
nonzero, so yet another way to express strain is as

[epa Ey (Qp), EQQ(HP)]

These are termed the principal axis strains: the principal axes are those
for which Fj5 = 0, which is to say, the axes for which E is diagonal (in
Cartesian coordinates). While this set of numbers does not directly trans-
form to other coordinates, it is very often useful to look at strains in this
way.

A final way of looking at two-dimensional strains is the Mohr’s circle
construction, a geometrical way of expressing the transformation 3.6 and of
showing a particular state of strain. From equation 3.7 we can see that

sin 20}7 . E12
cos20, (B — Ea)

This expression in turn suggests reparameterizing these two shear strain
components as

E12 = Rsin 29;0 1/2(E11 — Egg) = Rcos 20})

where R? = E%, + (B3 — Ex»)?/4. Substituting these expressions into
equation 3.6 we get

E15(0) = —Rcos 20, sin 20 + Rsin 20, cos 20 = Rsin 2(6, — 0) (3.8)
Similarly, we can write equation 3.5 as
EH(H) = 1/2E11(1 -+ cos 29) + 1/2E22(1 — COS 20) + Elg sin 26

— 1/2(E11 + EQQ) + 1/2(E11 — E22) COS 29 + E12 sin 20
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Figure 3.4: Mohr’s circle representation of three states of
strain.

= 15(E11 + Eg) + Rcos2(6, — 0) (3.9)

If we plot E1; and Ej5 along two axes as a function of 6, using equations
3.8 and 3.9, the curve defined by these equations is a circle of radius R,
centered at (E1; + Ea). This is called the Mohr’s circle for two di-
mensions (there is a more elaborate version for three dimensions), and it
is a useful way to display strain because it makes clear the possible range of
both extension and shear. For example, it at once shows that for § = —6,
the shear is zero, with the two extensional strains being E11(6,) and E9(6,),
given by where the circle cuts the Ey; axis. (These points are 180° apart in
terms of angle measured around the Mohr circle, and so 90° apart in terms
of orientations of the coordinate axes, because of the factor of two in equa-
tions 10 and 11). Figure 3.4 shows three of the strain states from Figure 3.2
drawn in this way; in each diagram, the cross corresponds to the strain state
for unrotated axes, and the dots to rotations of axes by the amount they
are labeled by. Thus, at 45° to a uniaxial extension the shear is maximal;
at +45° to the coordinates for pure shear, we have uniaxial extension and
contraction. And since there is no shear for dilatation, there is no Mohr’s
circle: just a point away from the origin. Note that the Mohr’s circle con-
struction, and indeed all the parameterizations we have considered, hold,
not just for E in two dimensions, but for any two-dimensional symmetric
tensor. We will see later how it can be applied to stress—which is, indeed,
where it is more usually met with.
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3.7 Small Deformation: Three-Dimensional
Results

We now return to our general result 3.2 and 3.3, and look first at the tensor
2. The Cartesian components can be written as a matrix

0 Vs —Usy
Q= —U3 0 - %1
—lVy 1 0

where the indexing of the “vector” v (which we have not yet demonstrated
to be a vector) is done so that we can write

Qik = €ikmVm
where € is the permutation symbol. But since we have (equation 2.6)
€ikp€ikm = €pik€mik = 26pm

we can write

ez’kaik = €ikpCikmVm = 25;0me = 21/]0

giving, finally, v, = La€;;,,$%; for v given Q. But, substituting into this the
definition of €2;; gives

Vi = Vo€mijOsu;

which is, in coordinate-free form, v = 14V X u; v is the (polar) vector that is
the curl of displacement. This corresponds to a small rigid-body rotation
about the v axis, by an amount |v|. € is thus a (small) rotation tensor,
while E describes the deformation. Note that if E is zero everywhere the
material deforms as a rigid body, in which case the only possible solution
for € is that it is everywhere constant: different rotations in different places
are not possible without some nonzero strain.

The other result is for E, and is that the expression in terms of principal
strains, which we demonstrated for two dimensions, extends to three. The
result comes from equation 2.11, that a symmetric matrix, can be decom-
posed into the product of an orthogonal matrix U and a diagonal matrix
D:

E=UDU"
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which means that there is some set of axes in which the components of E
are

E; 0 0
0 Eing O
0 0 Em

The axes in this coordinate system are the principal axes of the strain ten-
sor; in this particular coordinate system there are no shears, only extensions
(or contractions), something we have already seen for the two-dimensional
case.

3.8 Motion

We get results very similar to those for small strains if we consider the
instantaneous motion of a continuum — which, for geophysics, is often the
more relevant description. For example, if we are trying to relate current
seismicity to deformation, we want the instantaneous rate of deformation,
since the few decades (or at most few centuries) of geophysical measurement
are instantaneous compared to geologic time.

Formally, though nonrigorously, we can see that over an infinitesimal
time dt the displacement must be small. Then locally we may, as we did
before, take only the first term of a Taylor series expansion of the relative
velocity (instead of displacement). We can also ignore differences between
axes, since over an infinitesimal time they will not change. Then we have
(%i . 8vi

dI‘k = dfk

d i —
v 0rk al'k

where dv is the relative velocity between a reference point (or particle)
and one d§ away. These partial derivatives define the velocity gradient
tensor L = 0pv; = Vv; unlike the case for the small-strain tensor (Section
2.1), these gradients need not themselves be infinitesimal. We can make
exactly the same decomposition as we did for small strain, though we give
the tensors different symbols:

L=D+W

where W = 14(Vv — vV) is the spin tensor and D = 15(Vv +vV) is

the rate-of-deformation tensor-names we shall now proceed to justify.
By exactly the same procedure as we applied to €2, we can see that the

components of W can be written as a vector, given by w = 14V x v; this is
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half the vorticity vector V x v as defined in fluid mechanics (confusingly,
W is sometimes called the vorticity tensor). This quantity, again, need not
be infinitesimal, unlike the small-rotation tensor €2.

To show the meaning of W, consider a small circular area (disk) of di-
ameter ¢, and area S, centered on the reference particle. The mean velocity
around the edge of this disk, which is a line we denote by T, is

1
U= /V-dl: L /VXVdA
2mep, Jr 2mep Jg

by Stokes’ theorem. For V X v constant across the surface S, the mean
velocity around the edge is

1
2mey,

v = TV X v =6, - 1o(V x V)
which is just what we would expect if the disk rotated as a rigid body with
angular velocity w = 5(V x v). W thus describes the local angular
velocity, or spin, of the material, including both rigid-body rotation and
any spin caused by local deformation.

To better see the meaning of D, consider an infinitesimal line d¢, which
in spatial coordinates is dr(t). The length of this is the dot product dr - dr,
and the rate of change of length is thus

d d
—(dr - —9.dr  — )
o (dr - dr) dr dt(dr) (3.10)
But we can write, at any time, dr as
dr = (tV)-d¢  ie. dr;= g; de;
which implies that
d d a d

because d¢ is constant (it always includes the same particles). But, we can

write this as p p
r
—(dr) = —V-d{ =vV -d
gldr) =V - de 3
where vV is, in Cartesian components, dv;/0x;. This is a gradient with re-
spect to material coordinates (particles), not spatial coordinates. However,

it is the case that
. 81)7;

d’l)i = = %
al'j

d§; and dv; ar,

dT‘j
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which means that we can write

i(dr) = Ldr

Finally, substituting this into equation 3.10, we get

%(dr-dr):2-dr-L-dr:2dr-D-dr

where the antisymmetric part of L has canceled in the dot product. Thus
D is associated with rate of change of length; if D = 0 then there is no
change of length in any direction, so that where this is true the motion is
that of a rigid body. D, being symmetric, has exactly the same properties
as E does: we can define rates of extension, rates of shear, and principal
axes just as we did above.

It is important to realize that, as in the small-strain case, D and W are
not completely independent. Consider two different motions that have the
same D. If we subtract these, the motion that is the difference between
them has to have D = 0 everywhere—but this means that this difference is a
rigid-body motion, for which W is constant. Knowing D everywhere thus
means that we know W to within a constant amount: knowledge of the rate
of deformation also determines (nearly) the local spin.

3.9 Homogeneous Strain

The last category of deformation we turn to is finite homogeneous strain,
which is of interest for two reasons. First, it can usually be used as a
local approximation for the much more complicated case of large strains
that are spatially variable. We have will see an example of this in the
next section. Another application of homogeneous finite strain is in the
analysis of deformed structures (such as fossils) in deformed rocks; even
though the deformation of these can be very complicated, on a small scale
it can be spatially uniform enough for homogeneous strain to be a valid
approximation. The second reason for studying this type of deformation
is that it shows, yet again, the kind of mathematical structure we have
already encountered for small strains and rates of deformations, though
with a few differences. We have in fact already relied on this common
structure, since the strains in Figure 3.2, though used to illustrate small
strains, are themselves not small.
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Homogeneous strain can be defined in geometrical terms as any deforma-
tion in which all straight lines in the undeformed material remain straight in
the deformed one. The equation for a straight line is ¢;x; = d where the ¢;’s
and d are arbitrary constants and we have used the summation convention;
we can write this in vector form as cex = d, though we need to remember
that c is not a geometrical vector, but just a triplet of numbers. Then we
can write the geometrical constraint as

cex =d and cer=d

where x is, as usual, the coordinates in the undeformed configuration, and
r the spatial coordinates (in either one). Algebraically this means that the
relation between these two sets of coordinates must be

r, = Ai]‘l‘j

where A is an arbitrary 3 x 3 real-valued matrix.

It is a standard result from linear algebra (the polar decomposition
theorem) that any real matrix can be decomposed into a product of two
others:

A=RB; = B3R

where the matrix R is orthogonal and By and B; are symmetric (though
not the same). In three dimensions R corresponds to a rotation; B; and Bs,
being symmetric, can be decomposed into another rotation matrix U and a
diagonal matrix D:

A= RU,D\U! = UyD,US R

What this means is that any finite homogeneous strain can be produced
in two ways:

A The RB; decomposition corresponds to first deforming the material in
a way given by By, which can be expressed as different extensions along
the directions of the principal axes, followed by a rotation given by R.

B The B;R decomposition corresponds to first rotating the material in a
way given by R and then deforming it a way given by Bs—again, this is
expressible in terms of (different) extensions along (different) principal
axes.
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Map Projections, with Tissot Indicatrices

Mercator August Conformal

Figure 3.5: Map projections with Tissot indicatrices. The in-
dicatrices were computed by projecting 5-km circles around
particular latitude-longitude points onto the map plane, and
then magnifying their scale by 100 to make them visible. The
“August” projection maps the sphere into a two-cusped epicy-
cloid. The land-sea distribution is shown in the normal
aspect, except for the azimuthal equidistant projection, for
which the map is centered on SIO.

A Cartographic Example of Finite Strain: Tissot’s
Indicatrix

An interesting application of the results of the previous section is the use
of strain ellipses to show the deformations inherent in different map pro-
jections. This use appears to have been an independent invention, by Tis-
sot, developed some time after the strain results had been worked out by
Cauchy, and it is rare for the cartographic literature to reference continuum
mechanics rather than Tissot’s work.

For our purposes a map projection can be considered a function that
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maps’® the surface of a sphere onto a plane. We could put this into vec-
tor form by saying that a projection considering a three-dimensional unit
vector e, which must end on the surface of the sphere, and saying that a
projection maps this to a two-dimensional vector p: p = P(e). However,
it is probably more useful to view a projection as a mapping from one pair
of coordinates (the latitude and longitude ¢ and \) to another pair, the
Cartesian coordinates of p: p = P(¢,\). Note that while p is a vector in
two dimensions, the spherical coordinates are not a vector in the sense we
have been using.

A spherical surface cannot be mapped to a plane without some distor-
tion. We can treat this distortion exactly as we do that of a material: to
make this concrete, imagine that we have a globe made from a sheet of rub-
ber, and flatten this sheet into a plane. This will distort the sheet (indeed
tear it), and these distortions will be both large and nonuniform, making
this a case of finite inhomogeneous strain. However, locally we can regard
the distortion as nearly constant, and treat it using the results of the pre-
vious section for finite homogeneous strain: each local distortion can be
described as a combination of rotation and stretching along two orthogonal
axes. This means that a circle traced around some point on the sphere will
be mapped into an ellipse (perhaps rotated) in the plane that the sphere
is mapped into. The cartographic term for this strain ellipse is Tissot’s
indicatrix.

Figure 3.5 shows four examples of map projections, with the indicatri-
ces shown on a grid of latitude-longitude points. The top two projections
are conformal, meaning that they produce, locally, no change of shape (or
equivalently, no changes in angles). The indicatrices therefore retain their
original circular shape, but their size changes because of the scale varia-
tions that must occur in any conformal projection from the sphere to the
plane. The upper left map is the familiar Mercator projection, showing
the equally familiar exaggeration of scale close to the poles. Note that for
this map there is no rotation, which is what makes the Mercator projection
so useful for many purposes. The upper right shows a (deservedly) less fa-
miliar conformal projection, to illustrate that conformality can coexist with
relative rotations. The lower left map is an equal-area projection, so the
indicatrices all have the same area, but are increasingly distorted away from
the center. Finally, the lower right map is an azimuthal equidistant projec-

6 Unfortunately there is no easy way to avoid the dual use of “map” in both its
specifically cartographic and more general mathematical sense.
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tion, which has the specialized property that lines from the center show true
great-circle distance and direction from that point; as the varying shapes
and sizes of the indicatrices show, this projection is neither conformal nor
equal-area.



