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Sequential Estimator: Toward Efficient
InSAR Time Series Analysis
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Abstract— Wide-swath synthetic aperture radar (SAR)
missions with short revisit times, such as Sentinel-1 and the
planned NISAR and Tandem-L, provide an unprecedented
wealth of interferometric SAR (InSAR) time series. However,
the processing of the emerging Big Data is challenging for
state-of-the-art InSAR analysis techniques. This contribution
introduces a novel approach, named Sequential Estimator, for
efficient estimation of the interferometric phase from long InSAR
time series. The algorithm uses recursive estimation and analysis
of the data covariance matrix via division of the data into small
batches, followed by the compression of the data batches. From
each compressed data batch artificial interferograms are formed,
resulting in a strong data reduction. Such interferograms are
used to link the “older” data batches with the most recent
acquisitions and thus to reconstruct the phase time series. This
scheme avoids the necessity of reprocessing the entire data stack
at the face of each new acquisition. The proposed estimator intro-
duces negligible degradation compared to the Cramér–Rao lower
bound under realistic coherence scenarios. The estimator may
therefore be adapted for high-precision near-real-time processing
of InSAR and accommodate the conversion of InSAR from an
offline to a monitoring geodetic tool. The performance of the
Sequential Estimator is compared to state-of-the-art techniques
via simulations and application to Sentinel-1 data.

Index Terms— Big Data, coherence estimation error, data
compression, differential interferometric synthetic aperture
radar (DInSAR), distributed scatterers, efficiency, error analysis,
low-rank approximation, maximum-likelihood estimation (MLE).

ACRONYMS

CCG Complex circular Gaussian.
CRLB Cramér–Rao lower bound.
DS Distributed scatterer.
EVD Eigenvalue decomposition.
MLE Maximum-likelihood estimation.
NRT Near-real-time.
PCA Principal component analysis.
PS Persistent scatterer.
RMS Root mean square.
SBAS Small-baseline subset approach.
StBAS Short temporal-baseline subset.
SLC Single-look complex.

Manuscript received December 13, 2016; revised April 12, 2017; accepted
May 15, 2017. Date of publication September 1, 2017; date of current
version September 25, 2017. This work was supported by the ‘Helmholtz
Alliance Remote Sensing and Earth System Dynamics´ funded by the Initiative
and Networking Fund of the Helmholtz Association. (Corresponding author:
Homa Ansari.)

H. Ansari and F. De Zan are with the German Aerospace Center, Oberp-
faffenhofen, Germany (e-mail: homa.ansari@dlr.de; francesco.dezan@dlr.de).

R. Bamler is with the German Aerospace Center, Germany, and also with
the Chair of Remote Sensing Technology, Technical University of Munich,
80333 Munich, Germany (e-mail: richard.bamler@dlr.de).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2017.2711037

NOTATION

n ∈ N Number of the SLCs in the SAR data stack.
l ∈ N Number of samples in a statistically

homogeneous spatial neighborhood.
s ∈ N Number of the SLCs included in the

mini-stack.
m ∈ N Dimension of the low-rank signal subspace.
� ∈C1×l Group of l statistically similar pixels

surrounding a single pixel of interest, the
interferometric signal is assumed to be
stationary within this ensemble.

Z ∈Cn×l Matrix of acquired SLCs, the rows correspond
to the images in the stack, the columns
to the ensemble of pixels in �.

C∈Cn×n Complex coherence matrix of the stack;
� ∈ Rn×n Coherence matrix of the interferograms defined

as �i j = |Cij |.
I�∈Cn×n Complex matrix of the interferograms.
φ ∈ Cn×1 Sought phase series in phase-linking, estimated

phase of each SLC inclusive of the systematic/
deterministic phase components.

A Capital letter indicating a generic matrix.
Ai Subscripted capital letter indicating the i th row

of the generic matrix A.
b Small bold letter indicating a generic vector.
.̂ Hat accentuation distinguishing an estimated

from an observed variable.

I. INTRODUCTION

T IME-SERIES analysis of interferometric synthetic aper-
ture radar (InSAR) has proved to be a high-precision

geodetic approach for monitoring the crustal deformation of
the earth. The retrieval of the geophysical signal from InSAR
data stacks is limited by the atmospheric perturbation as
well as the temporal decorrelation of the SAR signal. In the
pursuit of overcoming these limitations, the exploitation of
InSAR stacks was initially limited to the Persistent Scatter-
ers (PSs) [1], [2]. The PSs are phase-stable scatterers and
do not undergo severe temporal decorrelation. Exploiting PSs,
the separation of the geophysical signal from the atmospheric
perturbations follows in a separate step [1], [2]. Although
precise in signal retrieval, the scarcity of PSs in nonurban
areas has led the InSAR community toward relaxing the strict
limit on the phase stability and including the areas affected by
decorrelation, referred to as the distributed scatterers (DSs).

The pioneering DS approach in minimizing the effect of
decorrelation was to limit the analysis to subsets of moderate
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to high-coherent interferograms, referred to as small-baseline
subsets (SBASs) [3], therefore excluding the decorrelated
interferometric pairs. Setting an a priori threshold on the
geometric and temporal baseline, or equivalently on the
coherence, the data stack is divided into coherent subsets of
interferograms, each subset is then spatially unwrapped. The
unwrapped phases of the different subsets are temporally inte-
grated to estimate a phase series inclusive of the geophysical
signal of interest.

Improving one step further, the imposed strict coherence
limit for the subset selection was relaxed, allowing all inter-
ferograms to be properly included in the retrieval of the
geophysical signal [4], [5]. The effect of decorrelation in this
case is minimized by exploitation of the statistical properties
of the interferometric stack in a maximum-likelihood esti-
mation (MLE) scheme. Approximating the mean scattering
of DS by a PS-resembling mechanism, the MLE estimates
a wrapped phase series which pertains to the superposed
systematic phase components. Each element of the series
corresponds to an image in the stack and is relative
to an arbitrarily fixed master image. Borrowed from
Guarnieri and Tebaldini [4], the retrieval of the wrapped
phase is hereafter referred to as phase-linking. The estimated
phase series bears the sought geophysical signature, although
superposed by an atmospheric-induced signal. The separation
of the atmospheric contribution from the geophysical signal
may be followed in a second estimation step as in the case
of PSs [1], [2], [4].

The MLE designs a temporal filter adaptive to the coher-
ence, as the second-order statistic of the data. It provides
an asymptotically optimum estimator with variance close to
the Cramér–Rao lower bound (CRLB) [4], [6]. If unknown,
the coherence is substituted by its estimation. The MLE
is therefore bound to the performance of the coherence
estimation. The well-known suboptimality of the coherence
estimation [7], [8] is the major limitation for MLE to reach
its asymptotic behavior. In the case of poor performance of
the coherence estimator, the MLE may be shown to deviate
largely from the CRLB; hence, its optimality is compromised
(see Section VI-C, [9], [10]).

Building on the MLE, the estimation of the geophysical
signal has been further investigated by substitution of the
ML optimization by robust M-estimators [11] or integer least
squares [10]. The former aims at increasing the accuracy
of phase-linking by addressing special cases where the data
characteristics deviate from the assumed stationary Complex
Circular Gaussian (CCG) statistics in MLE; the latter primarily
focuses on the addition of an a posteriori quality indicator of
the estimated phases.

A second category of phase-linking based on the exploita-
tion of all interferometric pairs was first proposed in [12]
and later in [13]. It primarily focuses on the extraction of
the scattering mechanisms of the DS through eigenvalue
decomposition (EVD) of the data covariance matrix.
Compared to the MLE, it relaxes the single-dyadic
(i.e., PS-resembling) approximation of the DS-scattering
mechanism and allows the retrieval of the decomposed phase
signature with multiple dyads of different power. However,

having a performance deviant from the CRLB [9], [10] in
generic cases, the EVD is a suboptimum phase estimator.

Despite their various implementation details, all DS tech-
niques rely on the analysis of the complex coherence matrix
of the data stack. Estimated from the time series, the com-
plex coherence is a Hermitian matrix containing all possible
interferograms as well as their respective coherence. It is
comprised of the total number of n(n − 1)/2 unique entities,
with n being the number of single-look complex (SLC) images
in the data stack. The formation and exploitation of the full
coherence matrix can, however, be computationally demand-
ing, especially in large data stacks. The computational burden
increases at least cubically with the dimension of the data at
hand.

The current and future spaceborne SAR missions with
systematic earth monitoring objective tend to follow the wide-
swath design with revisit cycle as low as possible to allow
for high temporal resolution monitoring of the earth. With
missions such as ESA’s Sentinel-1 or, in the near future,
NASA’s NISAR, the short revisit of 6–12 days gives birth
to unprecedented SAR data volumes. The interferometric
processing of such emerging Big Data stacks with the current
available DS algorithms would be infeasible, especially if
systematic high-precision near-real-time (NRT) monitoring of
even small earth surface motion is the objective. The NRT
processing will open a new chapter in InSAR applications,
converting the method form an offline analysis mode to a
high-precision nearly online monitoring tool with applications,
e.g., in early warning systems.

The InSAR community has recently commenced addressing
this new demand [14]–[17]. However, in the recent attempts,
the focus is mostly on the automation of the SAR data acquisi-
tion and optimization of the processing prior to the time series
analysis. As of present, the main attempt has been on the
reduction of the product latency through parallelized computa-
tion and improvement of the computational capacity, e.g., via
cloud computing. Being an inherently nonparallel problem,
the core time series analysis techniques have been left intact.
As briefly reported, Heu et al. [14] and Gonzalez et al. [15]
exploit SBAS-like techniques in retrieval of the geophysical
signal while Adam et al. [16] is tailored to the PSs. Although
sufficient for retrieval of large-scale deformation, the SBAS
approach fails in efficient processing of large data stacks.
In defining the efficiency, two distinct criteria are distinguished
here, namely, the algorithmic efficiency, i.e., the processing run
time; and the estimation efficiency, i.e., the optimality of the
estimator with respect to the CRLB. The algorithmic efficiency
of SBAS may be improved by restricting the temporal baseline
and exploiting a limited subset of interferograms. However,
such restrictions compromise the estimation efficiency and
consequently degrade the sensitivity to small surface motions.
Hereafter, efficiency implies both the algorithmic and estima-
tion optimality criteria.

The idea of an efficient stacking technique was raised for
the first time by De Zan and López-Dekker [18]. Propos-
ing a technique tailored to a special coherence scenario,
termed long-term coherence, the authors succeeded in retain-
ing performance close to the CRLB while avoiding the full
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exploitation of the entire data stack. The scheme, however,
fails in the absence of the long-term coherence.

Inspired by De Zan and López-Dekker [18], this con-
tribution proposes a novel generic efficient stacking tech-
nique, named the Sequential Estimator. The proposed approach
allows efficient phase-linking in sequences by using isolated
data batches of the time series. It thus avoids the necessity
to access the entire time series at each processing sequence
and refrains from reprocessing the entire data archive at
the face of each new SAR acquisition. Compressing the
isolated data batches and generating artificial interferograms
with the compressed data, the Sequential Estimator retains a
performance close to the CRLB. The method competes with
expensive full-stack phase-linking techniques and even outper-
forms them in case the exploited estimation of coherence is
suboptimum.

To the best of our knowledge, the Sequential Estimator is
the first proposal for a generic efficient InSAR stacking in
the realm of DS. The algorithm provides a recursive solution
to the temporally nonparallelizable problem of phase-linking.
The proposed estimator may be combined with the optimized
wide area processing techniques in [16] and [19], and therefore
contribute to the state-of-the-art automatic InSAR process-
ing in the pursuit of high-precision NRT earth deformation
monitoring.

In the following, a short introduction of the possible
optimized stacking schemes is provided in Section II. The
description of the Sequential Estimator starts from Section III,
where the compression technique used for the SAR data
stack is elaborated; further algorithmic steps are described
in Section IV. Section V highlights the computational gain
of the scheme. Finally, the performance of the estimator is
assessed through simulations and application to Sentinel-1 data
in Sections VI and VII, respectively.

II. CONVENTIONAL VERSUS AGILE PHASE-LINKING

This section starts from laying down the formulation of
the phase-linking which is used throughout this paper. The
MLE phase-linking as well as possible agile, i.e., computa-
tionally light, stacking techniques are introduced. As it will be
shown through simulations (see Section VI-C), the introduced
techniques are inefficient, in the sense that their optimality is
compromised by the introduced limit on data accessibility. The
review of these alternative schemes is, however, worthwhile to
highlight the encountered challenges for an efficient stacking
method.

Note that the spatial analysis is always considered pixel wise
throughout this paper, although the statistics of each single
pixel is inferred from an ensemble of pixels belonging to a
statistically homogeneous region, hereafter referred to as the
� neighborhood.

A. Conventional MLE Phase-Linking: Full Accessibility
to the Stack

The MLE scheme exploits the complex coherence matrix to
estimate the phase series inclusive of the geophysical signal.
The complex coherence matrix of the data stack is estimated

using an ensemble of l pixels in statistically homogeneous
neighborhoods. The statistical homogeneity of the chosen
ensemble is assured via statistical similarity tests between the
centering and neighboring pixels [5], [20]. Sorting the chosen
ensemble in a spatiotemporal data matrix Z , the MLE of
complex coherence matrix reads as

Ĉ = Z Z H√[[Z ]]2([[Z ]]2)
T (1)

where [[Z ]] gives the column-wise L2 norm of the matrix Z ,
the power-2 and deviation operations are element wise. Ĉ is
an n ×n matrix that encapsulates the available interferometric
information with its argument containing the interferometric
phases and its modulus �̂ providing an estimate of the coher-
ence of the corresponding interferograms. Under the assump-
tion of the CCG statistics, the MLE of phase is retrieved via [4]

φ̂ML = argminφ

{
ζ̂

H
ML(�̂−1°Ĉ)ζ̂ML

}
(2)

here ° is the Hadamard operation and ζ̂ML is a vector con-
taining the sought phase of each SLC with its elements set to
exp ( jφi). With this assumed model, the scattering behavior
of the DS neighborhood is approximated by a PS-resembling
mechanism. The MLE may be interpreted as a temporal filter
that compresses the information of n(n − 1)/2 interferograms
to a phase series of size n.

B. Alternative Agile Phase-Linking Schemes: Partial
Accessibility to the Stack

The first requirement for an efficient stacking scheme is to
avoid reprocessing and rereading the entire data history when
encountering a new acquisition. To fulfill this requirement,
the intuitive solution is to follow the footsteps of SBAS with
a slight modification: merely allowing the short temporal-
baseline interferogram in the phase retrieval. This approach
is hereafter referred to as the short temporal-BAseline sub-
set (StBAS). Inspired by Rocca [21] and assuming an expo-
nential decrease of coherence in SAR stack, StBAS exploits
successive SLCs with temporal separation up to an a priori
time lag. The StBAS interferograms are combined via MLE
phase-linking. Compared to the conventional MLE, here a
banded matrix replaces the full coherence matrix. The band-
width of the matrix is fixed by the a priori time lag. Although
straightforward, there are three fundamental problems to this
approach as follows.

1) At each processing step, up to a certain lag of the
previously acquired data shall be reread and reprocessed,
i.e., the proposed stacking method still undergoes redun-
dant computations.

2) The choice of the a priori temporal baseline imposes a
trade-off between the estimation efficiency and the com-
putational burden, i.e., to avert exclusion of the coherent
interferograms and the consequent performance degra-
dation of the estimator, a longer time lag is required.

3) StBAS assumes that the interferograms with temporal
baselines of larger than the time lag bear no coherent
signal. This assumption loses validity in explaining
seasonal decorrelation or long-term coherence observed
for C- and L-bands SAR [23], [24].
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To address some of the aforementioned problems, an alter-
native approach may be taken that emphasizes the long-term,
and possibly weak, coherent signals rather than the short-term,
high-coherence interferometric pairs. This has been introduced
in [18], where the authors suggest using two subsets of the
SLCs and retrieving the long-term coherent signal from filtered
version of the two subsets. Allowing each subset as Zs ∈ Cs×l

with s � n/2, its filtering follows from exploiting the

MLE-estimated phase series φ̂s via

v̂s(q) = 1

S

s∑
p=1

Zs(p, q) exp (− j φ̂s(p)). (3)

Here, q is the spatial index from 1 to l, indicating that the
proposed filter is temporal and not spatial. Termed virtual
image vs is a filtered SLC representing the subset. Exploiting
two virtual images at the beginning and end of the stack,
a coherent interferogram may be formed which bears the
sought long-term coherent signal and provides an estimation of
the phase between the first and last SLC. The performance of
this approach is, however, compromised if no coherent signal
is present among the chosen subsets. This method is hereafter
referred to as virtual image estimator.

In pursuit of an efficient stacking technique, the shortcom-
ings of both StBAS and the virtual image estimator shall
be conquered. An efficient estimator shall provide a generic
solution that properly exploits both the short- and the long-
term coherence. To do so, it must be able to adaptively include
both weak and strong coherent signals, precisely as does
the MLE.

The Sequential Estimator is able to meet a balance between
the aforementioned processing regimes. In fact, it may be
seen as a generalization of the virtual image estimator that
follows the same idea of filtering, or better compressing the
information, of the subsets, but without the emphasis on the
long-term coherence. Prior to the description of the algorithm,
the SAR data compression is explained in Section III.

III. MULTIPASS SAR DATA COMPRESSION

Data compression is a classic approach in dealing with high
data volumes. In the case of multipass SAR, the objective is
to compress a stack of coregistered SAR data in the temporal
direction, such that the size of the time series is reduced but
the spatial size of each image is intact. Performed locally,
the compression is adaptive to the time series at each reso-
lution cell. The temporal compression is valid since despite
the high dimensionality of the data, the prevailing scattering
mechanism spans a much lower dimension (see Section IV-A).
The introduction of this low-rank signal subspace is the aim
of this section.

As a common compression technique, the linear trans-
formations are chosen here. The transforms are mathemati-
cally straightforward and computationally efficient, hence well
suited to an efficient stacking technique. They provide a
mapping from the high-dimensional data space, defined by
the row space of Zn×l , to a lower-rank subspace spanning the
row space of Z̃m×l . The linear mapping under a transformation

basis T reads as

T : Zn×l → Z̃m×l (4)

where n is the dimension of data and m is the reduced dimen-
sion of its compressed version. Note that the compression is
temporal and l as the size of the spatial neighborhood � is
intact. The transformation T may be defined by any arbitrary
set of orthonormal vectors, e.g., Fourier and wavelet bases.
The efficiency of the compression is driven by the choice of
the basis. In the most efficient case, the basis is chosen to
capture the maximum variation of the data space, i.e., by a
subset of the most powerful eigenvectors, such that

T = {v1; . . . ; vm} (5)

with the basis vectors derived from the EVD

Ĉn =
n∑

p=1

λpvpvH
p . (6)

Here, Ĉn is the complex coherence matrix estimated by sub-
stitution of Zn×l in (1), λi are the eigenvalues in descending
order and vi are the corresponding eigenvectors. This setup
is the well-known principal component analysis (PCA) [25],
exploited in [12], [13], and [26]. PCA provides a spectral
decomposition of the data space, such that the eigenvector cor-
responding to the highest eigenvalue represents the underlying
most coherent signal and vice versa.

The estimation of most coherent signal component v1 via
generic PCA may be interpreted as [13]

v1 = argmaxv1

{
vH

1 Ĉv1
}

(7)

subject to vH
1 v1 = 1. In this way, PCA approximates the

complex coherence matrix with the single dyad v1vH
1 . Being

a geometrical rather than a probabilistic approach, PCA fails
to correctly incorporate the statistical properties of the data
stack; nevertheless, it provides a fair approximation of the
phase signature. The MLE, on the other hand, is a purely
probabilistic approach. Starting from the CCG assumption and
trusting the coherence as the true statistic of the data stack,
it formulates the correct metric for phase estimation as the
Hadamard product of �̂−1°|Ĉ| in (2) and allows the sought
dyad of ζ̂ ζ̂

H
, to merely explain the interferometric phases

rather than the amplitude variations. The power of PCA is in
the decomposition of the probable multiple coherent scattering
mechanisms rather than providing precise estimation to the
phase-linking. Thus, in the interest of retaining estimation
precision, the dyad provided by ML is preferred over the one
of the PCA.

Following this rationale, a new orthonormal basis is sought,
where its first component is defined as the normalized
ML-estimated signal of (2), that is

vML = exp ( j φ̂ML)

‖ exp ( j φ̂ML)‖ . (8)

vML replaces the first component in (5), now the complemen-
tary components of this basis are desired. In order to form an
orthonormal basis, these components shall span the orthogonal
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Fig. 1. Schematic depiction of the Sequential Estimator by the coherence matrix. a) Full coherence matrix of a stack of SLCs: the Sequential Estimator divides
the stack into isolated mini-stacks indicated by the transparent boxes along the diagonal. At each sequence, one mini-stack is processed and compressed; the
mini-stacks are replaced by their compressed components in further sequences. The coherent signals among the mini-stacks are retrieved by generation of
artificial interferograms. b) Coherence matrix at the initial sequence. c) Second sequence: the isolated dot on the diagonal indicates the compressed SLC of
the unavailable first mini-stack; the square depicts the acquired mini-stack; and the sparse rectangles represent the generated artificial interferograms between
the compressed and the acquired SLCs. d) Third sequence: here, the artificial interferograms are generated with respect to the compressed SLCs of the first
and the second mini-stacks. Estimated between the compressed SLCs and the mini-stack, the coherence of the artificial interferograms in (c) and (d) is an
implication of the relation between the isolated mini-stacks. Indicated by this coherence, the quality of the artificial interferogram is evaluated adaptive to the
data content of the mini-stack. Exploitation of the artificial interferograms while incorporating their coherence renders the data adaptability of the Sequential
Estimator.

complement of the subspace spanned by vML. The projection
matrix corresponding to vML reads as

CML = vMLvH
ML (9)

and its orthogonal complement C⊥
ML as

C⊥
ML ⊕ CML = I. (10)

Note that CML and consequently C⊥
ML are projection matri-

ces, and I is the identity matrix. The coherence matrix can
therefore be propagated via the orthogonal complement as

Cproj = C⊥
MLCnC⊥

ML. (11)

Cproj corresponds to the coherence matrix of the projected
data to the residual subspace, after elimination of the ML
component. The eigen decomposition of this coherence matrix
provides the complementary vectors of the sought orthonormal
basis

Cproj =
n−1∑
p=1

λpvpvH
p (12)

and the transformation matrix of (5) is redefined by the
resulted components, that is

T = {vML; v1; . . . ; vm−1} . (13)

The data is compressed by its transformation to the range space
of the defined T

Z̃ = T
H

Z . (14)

As desired, the transformation projects the n-dimensional data
in Z to the m-dimensional subspace represented by T , thus
compressing the data volume. Z̃ contains the m sorted com-
pressed SLCs in its rows, such that the first row corresponds
to the most coherent signal component. The first compressed
SLC is given by

z̃ML = T H
1 Z

= vH
ML Z . (15)

Expanding the above matrix product, it can easily be shown
that the above formulation is equivalent to the coherent filter-
ing of (3).

The introduced data reduction is the core method for infor-
mation preservation in the Sequential Estimator, as it will be
introduced in Section IV.

IV. SEQUENTIAL ESTIMATOR

The proposed Sequential Estimator pursues an efficient
stacking scheme (see Section I for the defined criteria). The
algorithmic efficiency criterion is imposed by processing the
stack in isolated small batches, as schematically depicted
in Fig. 1(a). To meet the requirement for the estimation
efficiency, the scheme retrieves the coherent signal among
the isolated batches. As it will be discussed in Section VI-C,
neglecting even low-coherent interferometric pairs in the stack
degrades the estimation performance.

Inspired by De Zan and López-Dekker [18], the Sequential
Estimator is established based on the idea of retrieving the
coherent signal without having full access to the data archive.
The backbone of the method is using data compression and
retrieving the coherence via formation of artificial inter-
ferograms between the compressed and the newly acquired
data. The inclusion of the artificial interferograms enables the
performance preservation.

The estimator is essentially a recursive algorithm with a link
to the products of the prior steps at each sequence. For the sake
of clarity, the recursion of the established method is shown
schematically in Fig. 1 and algorithmically in Table I. The
flowchart of the estimator at each sequence is given in Fig. 2.
A brief synopsis of the scheme is provided below. Each single
module of Fig. 2 is further elaborated in the sections.

With reference to Table I, the Sequential Estimator starts
with the acquisition of a small chunk of s SLCs of the data
stream, where s � n. The data is collected and processed
in sequences, hence the name sequential. The data chunk is
hereafter referred to as a mini-stack. The mini-stack undergoes
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TABLE I

HIGH-LEVEL PSEUDOCODE DESCRIBING THE RECURSIVE NATURE OF
THE SEQUENTIAL ESTIMATOR; EACH MENTIONED BLOCK IS

COMPRISED OF DIFFERENT MODULES EXPRESSED IN FIG. 2;
NOTE THAT ONLY SOME MODULES ARE

RELEVANT TO THE INITIAL SEQUENCE

Fig. 2. Algorithmic flow of the Sequential Estimator at its kth sequence:
each module is accompanied by its final product; superscripts correspond to
the index of the sequence with i referring to the entire history prior to the
current sequence. The specified letters in parenthesis correspond to the section
in which the module is elaborated.

a two-step process: signal estimation and data compression.
In the signal estimation step, the phase of each SLC in the
mini-stack is estimated via MLE. In the data compression step,
the SLCs are compressed by estimation of the underlying low-
rank signal subspace and a further projection of the data to

this subspace. Processing of the first mini-stack concludes by
archiving the compressed SLCs.

With reference to Fig. 2, at the subsequent mini-stacks,
the same two-step phase estimation and data compression
is pursued, although with minor changes. Prior to the phase
estimation, the compressed SLCs are prepended to the current
mini-stack. Exploiting the augmented data, artificial interfero-
grams are generated between the acquired and the compressed
SLCs. They in fact substitute the lost coherent signal among
the isolated mini-stacks. The phase-linking includes the artifi-
cial interferograms and their corresponding coherence. In order
to link the estimated phases of different sequences, a datum
connection step follows. After the phase estimation block,
the mini-stack is compressed and archived similar to the initial
sequence.

The different processing modules are elaborated in the
following. The sections follow a processing order starting from
data compression of the first mini-stack in the initial sequence
and ending at the phase estimation of its subsequent sequence.

A. Signal Subspace Identification

This module aims at finding the low-rank subspace for
temporal compression of the mini-stack. The proposed ortho-
normal basis T of (13) is an optimum representative of this
subspace, in case a linear transformation is desired. This
section addresses the question of the optimum dimension of
this subspace, i.e., the choice of m in (13).

As discussed in Section III, the complex coherence summa-
rizes the information content of the SAR stack. The modulus
of coherence matrix indicates the temporal decorrelation of
the SAR signal. The temporal decorrelation arises from the
position changes of the subresolution scatterers [27]. Random
position changes impose a variation in the coherent mean of
the scatterers. They are therefore reflected in both the modulus
and the argument of the complex coherence. Systematic posi-
tion changes of the subresolution scatterers, on the other hand,
only impose a systematic phase shift in the mean scattering
response. The latter effect is captured by a systematic phase
term on the complex coherence rather than imposing a tem-
poral decorrelation [27]. The systematic position changes are
attributed, among other effects, to the surface motion, i.e., the
geophysical signal. Therefore, although the coherence matrix
is full rank, it mostly represents the decorrelation phenomenon.
The geophysical signal is of much lower rank and spans a
much lower dimensional subspace. MLE, in fact, estimates a
rank-1 dyad as the first component of this low-rank subspace.

Assuming a single PS-resembling scattering, it suffices for
the sequential scheme to include only the ML components
of the subspace; by setting m to 1. Higher dimension of
signal subspace is required in cases where the DS region
exhibits multiple dominant systematic position changes along
the elevation profile of the SAR 3-D resolution cell. The
precise retrieval of such multiple geophysical signals falls in
the realm of differential SAR tomography [28], [29]. Hereafter,
a single dominant deformation signal is assumed and m is
set to 1. Section VIII discusses the consequence of this
simplification.
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B. Mini-Stack Compression

The acquired SLCs in the mini-stack are compressed by
projection of the data to the identified signal subspace fol-
lowing (14). For the sake of clarity, the compressed data is
hereafter specified by accentuation with ˜.
C. Data Archiving

Z̃ is archived to be further exploited at the subsequent
mini-stacks.

D. Data Augmentation

After the initial sequence, the data available to each further
kth sequence is comprised of the following:

1) Zk
s : the acquired s SLCs of the kth mini-stack;

2) Z̃ i : the compressed version of the i th mini-stack prior
to the current one (i = 1, . . . , k − 1).

The compressed components are prepended to the acquired
mini-stack, such that the augmented data Ẑ k reads as

Ẑ k =
{

Z̃1; . . . ; Z̃ k−1; Zk
s

}
(16)

with Ẑ k ∈ C(s+k−1×l). The augmentation is hereafter indicated
by accentuation with .̂

E. Interferogram Generation

At each sequence of processing, the coherent signal
between the mini-stack and the unavailable data history
is retrieved through generation of artificial interferograms,
formed between each acquired SLC in Zk

s and the compressed
SLCs, that is (

Î k
�

)
ij = Z̃ i(Zk

s

)H
j (17)

where the subscript indicates the j th row of the accompanied
matrix.

The artificial interferograms are exploited jointly with
the observed interferograms in the phase-linking. This joint
exploitation prevents an expected performance loss for the
batch-processing schemes.

F. Phase-Linking

At each sequence k, the phase-linking is carried out using
the ML estimator of (2), that is

φ̂
k = argminφ{ζ̂ H

(�̂k−1°Ĉk)ζ̂ }. (18)

Here, Ĉk and �̂k are estimated based on the augmented
data Ẑ k . Thus, they encapsulate both the observed and
the artificial interferograms accompanied by their coherence,
representing their statistics.

G. Datum Connection

The phase-linking formulated in (2) poses an under-
determined problem [4], [5]. In multipass InSAR, this problem
is tackled by constraining the phase of an arbitrary SLC,
i.e., by setting this SLC as a datum in the time series and
estimating the phase of the entire stack with respect to this
datum. This solution is as well adopted in the Sequential
Estimator, i.e., at each sequence the phases are estimated
relative to one SLC in the augmented data. The problem with

this approach is that the estimated phases at each sequence are
relative to their respective datum. The solution is to connect
the defined datum of different sequences in order to provide
a single fully connected phase series.

The datum connection can be achieved by performing
a phase-linking on the z̃i

ML components. Recall that these
components represent their isolated mini-stacks. The inter-
ferometric phase between them therefore implies the datum
separations. These phases are temporally integrated via a
separate ML phase-linking; i.e., by treating the compressed
SLCs as a new stack, generating the respective �̃ML and C̃ML,
and retrieving the phase of each sequence relative to a new
arbitrary but unique datum via MLE

φ̂cal = argminφ{ζ̂ H
(�̃−1

ML °C̃ML)ζ̂ }. (19)

φ̂cal is a vector containing the calibration phases that con-
nects the isolated mini-stacks. The datum connection for the
i th sequence is thus carried out

φ̂
i
Unified = φ̂

i + φ̂cal(i). (20)

Here, the superscripts identify the sequence, while φ̂cal(i)
indicates the i th element of the calibration vector. Following
this calibration step, a uni-datum phase time series results.

H. NRT Processing Capability of the Sequential Estimator

Up to this point, the proposed scheme awaits the acquisition
of s images for formation of a mini-stack and only then starts
the processing at each sequence. The scheme may be expanded
within the mini-stack to accommodate the NRT processing
of each acquired SLC. In other words, upon acquisition of
each SLC within the mini-stack, we may allow the accustomed

processing scheme via replacing the Zk
s in (16) by the interim

data chunk of less than s SLCs. The size of the interim
data chunk increases from 1 to s − 1 SLCs and enables
phase estimation of each SLC upon its acquisition. Note
that the compressed data prior to the interim data chunk is
still exploited in the phase-linking. In this fashion, the phase
estimation is repeated within the mini-stack until s SLCs are
acquired. The number of repetitions is, however, limited by the
size of the mini-stack, rendering the increased computational
burden bounded as opposed to the conventional full-stack
processing approaches.

With reference to Fig. 2, only Blocks 1, 2, and 3 are
relevant for NRT processing within the mini-stack. The data
compression and archiving blocks are carried out only after
the accumulation of the entire s SLCs of the mini-stack.

V. NOTE ON THE COMPUTATIONAL GAIN

In conventional MLE phase-linking, the computational time
complexity is driven by the number of SLCs involved. The
computational burden is primarily imposed by the iterative
ML optimization for phase estimation and secondarily by the
regularization and inversion of the complex coherence matrix.
Trivially, both are affected by the number of interferograms.

Assuming a stack of n SLCs, n(n −1)/2 interferograms are
generated and exploited in the phase-linking. Adopting the
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sequential approach, the size of the available SLCs in the
last mini-stack reduces to (s2 − s + n)/s, the number of
interferograms decreases accordingly.

Besides the reduced computational burden, the need for
updating and re-estimation of the entire phase history at the
face of each single acquisition is prevented by the sequential
scheme. The scheme in fact enables efficient processing of an
inherently nonparallel problem in the temporal domain. The
reduction of the data volume, from the entire stack to the
compressed SLCs is another gain of the algorithm regarding
the data storage capacity.

As an example of the efficiency of the algorithm, let us take
the expected seven-year life of Sentinel-1 mission. With the
six-day revisit of the mission, a rough number of 400 SLCs
may be expected for a region of interest. Conventional process-
ing of such stacks requires the generation and exploitation
of 79 800 interferograms. Adopting the Sequential Estimator
with mini-stack size of 20, the number of SLCs reduces to 39
and the number of interferograms to 741 at the last mini-
stack. However, it shall be mentioned that the cumulative
number of interferograms of all mini-stacks prior to the last
sequence sums up to 8740. However, in contrast to the full-
stack schemes, the processing of this number of interferograms
is spread over the acquisition time and is not imposed at once.
In terms of storage capacity, the 400 SLCs may be replaced
by 20 compressed SLCs.

Trivially, the processing gain of the Sequential Estimator
is affected by the mini-stack size. The choice of an optimum
mini-stack size requires further investigation. A separate yearly
compression of the data might as well be considered to
enhance the processing/archiving reduction factors; the cor-
responding estimation efficiency shall, however, be studied.

VI. PERFORMANCE ASSESSMENT WITH SIMULATIONS

For validation and performance evaluation purposes,
the Sequential Estimator is tested and compared to the con-
ventional phase-linking algorithms using simulated data.

Reflected in the coherence matrix, the maximum achievable
precision is bound by signal decorrelation [6]. The impact
of the decorrelation process on the performance of different
approaches including the proposed estimator is investigated
here.

A. Simulation Scenarios

The error source to be tackled by phase-linking is the
temporal decorrelation. In order to investigate its impact, two
models are considered here. The first is a purely exponential
decorrelation between acquisition pairs, that is

�p,q = γ0 exp

(−tp,q

τ0

)
(21)

while the second reveals a residual coherence even for large
temporal baselines, that is [23]

�p,q = (γ0 − γ∞) exp

(−tp,q

τ0

)
+ γ∞. (22)

In these formulations, �p,q is, as usual, the coherence between
the pth and qth SLC of the stack, γ0 and γ∞ indicate,

TABLE II

PERFORMANCE OF THE VARIOUS PHASE-LINKING SCHEMES
COMPARED TO THE CRLB, USING 300 LOOKS IN

COHERENCE ESTIMATION; REPORTED IS THE

RMSE OF THE ESTIMATED PHASE FOR THE

INTERFEROGRAM WITH LONGEST TEMPORAL
BASELINE (600 DAYS). THE PROPOSED

SEQUENTIAL ESTIMATOR PROVIDES A

TRADE-OFF BETWEEN THE
MLE AND StBAS

respectively, the initial and residual coherence, tp,q stands
for the temporal baseline, and τ0 is the time constant of the
decorrelation process. Note that for γ∞ = 0 the two models
are identical. The aforementioned scenarios manifest two
extreme cases for any phase-linking scheme. In the exponential
decay, the interferograms with large temporal baseline bear no
coherent signal while in the long-term coherence, a possibly
weak, coherent coherent signal is present regardless of the
temporal separation of the SLCs.

Based on the temporal models, two coherence matrices
are simulated corresponding to the exponential decay and
long-term coherence. Given the simulated coherence matri-
ces, two stacks of 100 SLCs, each containing an ensemble
of 300 statistically homogeneous samples, are synthesized as
follows.

1) The CCG statistic and spatial stationarity are assumed
in the generation of the data stack.

2) The topographic, atmospheric, and deformation phase is
set to zero.

3) The temporal sampling interval, similar to Sentinel-1,
is set to six days.

The decorrelation model parameters of the simulated stacks
are provided in Table II.

The simulated coherence matrix and its estimation using
the synthesized stack are depicted in Fig. 3. Comparing the
estimated and simulated coherence matrices, the well-known
error of coherence estimation is observable [7], [8]. The
performance of coherence estimation is governed by the size
of ensemble used in the estimation as well as the coherence
level [7], [8]. It is degraded for coherences close to zero
and may be improved by exploiting a larger � neighborhood.
However, the increase in the size of � shall be dealt carefully
as it can compromise the spatial stationarity of the ensemble.

In practice, the positive definiteness of the estimated coher-
ence is not guaranteed. In such cases, the coherence matrix
is regularized via diagonal loading, i.e., the addition of
small fraction to the diagonal elements of the coherence
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Fig. 3. Coherence matrix of the two considered simulation models; (a) and (b) fast exponential decay and (c) and (d) long-term coherence model;
(a) and (c) simulated (true) coherence; (b) and (d) estimation of the coherence using the simulated CCG ensemble with 300 looks; the color scale is identical
for all matrices; and the well-known coherence estimation error is observable and is more pronounced for lower coherence level. Increasing the number of
samples, the performance of coherence estimation improves and the estimated coherence asymptotically approaches its true values.

Fig. 4. RMSE of phase estimation as the performance indicator of the Sequential Estimator compared to the MLE, EVD, StBAS, virtual image estimator,
and the CRLB; considering (a) Fast exponential decaying coherence and (b) Long-term coherence scenario. The StBAS is the optimum solution in case of
fast coherence loss while MLE outperforms it when a weak but long-term coherent signal is present. Evidently, the optimality of the mentioned estimators
depends on the coherence scenario. In both cases, the Sequential Estimator retains a balanced performance close to the CRLB, proving to be a generic solution
and adaptable to the coherence scenario [note the different scale of (a) and (b)].

matrix (see [11]). This operation iteratively increases the
negative eigenvalues of the coherence matrix, thus ensures
the positive definiteness of the regularized coherence and
consequently its inverse.

B. Comparison Scenarios

The objective is to compare different phase-linking tech-
niques. The following estimators with their specified details
are considered.

1) MLE: Using the iterative solution proposed in [4].
2) EVD: Exploiting the dominant scattering mechanism

corresponding to the largest principal component.
3) StBAS: phase-linking exploiting the short temporal-

baseline interferograms with baseline of up to 60 days.
It is equivalent to accessing up to lag-10 SLCs at each
processing level.

4) Virtual Image Estimator: Using two subsets of 10 SLCs,
the first is fixed at the beginning of the stack, the second
coincides with the Sequential Estimator’s mini-stacks;

5) Proposed Sequential Estimator: Accessing isolated
mini-stacks of 10 SLCs and setting m = 1;

6) Cramér–Rao Lower Bound: The theoretical, i.e., sim-
ulated coherence is exploited for the calculation of
the CRLB.

C. Performance Assessment

The root–mean-square error (RMSE) of the estimated with
respect to the simulated phases is considered for the perfor-
mance assessment. This measure encapsulates both the bias
and precision of the corresponding estimator.

Using 1000 realizations, the RMSE of the two defined
simulation scenarios is calculated. Table II summarizes the
simulation cases as well as the RMSE of the estimated phase
of the last SLC in the simulated stacks.

Fig. 4(a) and (b) depicts the performance of different estima-
tors for the exponential decorrelation and long-term coherence
scenarios, respectively. Note that the CRLB is calculated
with the theoretical coherence given by (21) and (22), while
the different estimators use the estimation of the coherence
according to (1).

Comparing Fig. 4(a) with Fig. 4(b) reveals the influence
of the decorrelation mechanism on the performance of the
estimators. Even a weak signal, with coherence as low as 0.2,
improves the precision of ML phase estimation by a fac-
tor of ∼12. This observation emphasizes the importance of
the inclusion of even low-coherent interferograms in phase-
liking. As explained in Section III, it is further noticeable
that the EVD asymptotically approximates the MLE in both
cases. The behavior of the virtual image estimator in the
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two different cases is also worthy of notice. As expected,
the phase estimation is compromised in the absence of a coher-
ent signal between the two subsets; i.e., beyond the correlation
length of the exponential signal in Fig. 4(a) (∼210 days).

Inspecting Fig. 4(a), StBAS outperforms other approaches
by having the closest performance to the CRLB. Theoretically,
however, the MLE is expected to be the closest to the bound.
The odd behavior of MLE lies in the suboptimality of the
coherence estimation (see Fig. 3). It may in fact be shown
that substituting the simulated, i.e., true, coherence, the MLE
attains its asymptotic performance to CRLB. The coherence
estimator performs poorer for coherence levels close to zero,
as is the case for the majority of interferograms in the current
simulation. Exploiting such suboptimum coherence matrix,
the MLE is misled toward relying on the pure noise-bearing
interferograms in its estimation of the phase series. However,
the StBAS naively ignores interferograms with temporal base-
lines of larger than 60 days and merely exploits the high-
coherent interferograms for which the coherence estimation
is known to perform better. The latter is therefore immune
to the coherence error. Comparing the different estimators,
all schemes based on the full exploitation of the coherence
matrix are compromised by the coherence error. This impact
is also conveyed by an independent study in [10]. Coming
to the proposed Sequential Estimator, the performance loss
is not as dramatic as the full-stack-exploiting schemes. The
performance preservation may be explained by the exploited
data compression in the Sequential Estimator. Recall that the
noise components of the data space are suppressed in the data
compression. The artificial interferograms between the mini-
stacks are therefore less affected by the noisy interferograms
and in general of higher SNR compared to the respective initial
SLCs. This intermediary filtering of the mini-stacks enhances
the performance of the Sequential Estimator compared to the
MLE or EVD.

The impact of coherence estimation on the performance of
MLE highlights the importance of the considered stochastic
model in the phase-linking scheme. Although this issue is
beyond the scope of this contribution, we briefly discuss the
potential solutions and leave further investigations to future
works. The improvement of the coherence estimation [7], [30]
or modification of the stochastic model is two possible ways
to approach the problem. Regarding the latter, the robust
estimation schemes, e.g., the robust M-estimator of [11],
may be adopted to modify the stochastic model relative to
a posteriori residuals. While the MLE relies solely on the
inverse of the coherence matrix and is misled by its poor
estimation, the robust scheme adaptively down weights the
outlying noise-bearing interferograms, hence balances the role
of the coherence as the only weighting criterion in the MLE.

Examining the long-term coherence scenario in Fig. 4(b)
reveals a contrasting behavior of the estimators compared to
the exponential decay. Having exploited the long-term coher-
ence, the full-stack-exploiting schemes outperform StBAS in
this scenario. The performance of StBAS deviates from the
CRLB. This degradation is due to discarding the low-coherent
interferograms with γ∞ = 0.2. This observation corroborates
the importance of inclusion of even low-coherent (but nonzero)

interferometric pairs in phase-linking. Retrieving the long-term
coherent signal among the mini-stacks via artificial interfero-
gram, the Sequential Estimator maintains its performance close
to the CRLB.

Coming back to the comparison of these two coherence
scenarios, different stacking strategies are observed to be
suited to each case. The proposed Sequential Estimator is,
however, shown to provide a balance between the two alter-
native schemes as it retains performance close to the CRLB
in both scenarios. It may therefore be proposed as a generic
approach, adaptive to the coherence pattern.

VII. EXPERIMENTS WITH REAL DATA

A time series of Sentinel-1 data is chosen for the first
demonstration of the Sequential Estimator. A test site is picked
in the southern volcanic islands of Italy known as Salina.
Fig. 5 is an optical view of the Salina Island revealing the
variety of land cover in the scene, ranging from rocky areas
as probable PSs to sparse vegetation as possible DS regions.
Data sets in interferometric wide-swath mode are obtained
for this test site. The acquisitions were taken from Decem-
ber 2014 to April 2016 from a descending orbit, providing
38 SLCs. Fig. 6(a) and (b) shows the coherence of the
observed interferograms with the shortest and longest temporal
baselines, revealing the interferometric quality of the data set.
As apparent, the data stack undergoes severe decorrelation,
rendering the phase-linking a necessary but challenging task
for this data stack. Fig. 6(c) depicts the observed interferogram
pertaining to the longest temporal baseline of 564 days. This
interferogram is estimated via spatial adaptive filtering. In fact,
the phase-linking schemes further perform a temporal filtering
that improves the estimation of this interferogram, as it will
be shown later in this section.

The aim here is to estimate the wrapped phase series,
inclusive of the geophysical and atmospheric signals, via
phase-linking. The separation of the atmosphere from the
geophysical signal follows from a second processing step as
in the case of PSs [1], [2]. This step is common to all DS
schemes, thus of no interest for the current demonstration of
the Sequential Estimator.

Setting s = 10, the Sequential Estimator divides the data
set into four isolated mini-stacks; the last mini-stack contains
eight SLCs. The phase estimation is performed on full spatial
resolution. The pointwise complex coherence matrices are,
however, estimated based on an ensemble of pixels in the
homogenous � region surrounding each pixel. The � is found
using Anderson–Darling statistical similarity test on the ampli-
tude data [31]. The false alarm rate, a.k.a. the p-value, of the
test is set to 5%. Note that the detection of � is merely based
on the first mini-stack. Such a chosen homogeneous region is
further utilized for the future mini-stacks. To improve the spa-
tial stationarity in the homogeneous region, the topographic-
induced phase is simulated using the Shuttle Radar Topog-
raphy Mission digital elevation model and reduced from
the SLCs prior to the coherence estimation. At each mini-
stack, the data is compressed by fixing m to 1; using z̃ML
compressed SLCs only. The data volume is thus compressed
by 90 percent.
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Fig. 5. View of the Salina Island located in Southern Italy. (a) Optical image from Google Earth showing the various land covers of the chosen test site.
(b) Temporally averaged amplitude map of the test site estimated from 38 SLCs of the Sentinel-1 SAR data stack.

Fig. 6. Interferometric content of the Salina data stack; coherence of the observed interferograms with temporal baseline of: (a) 12 days and (b) 564 days,
and (c) adaptive-multilooked observed interferogram of the latter. The coherence map of the long temporal-baseline interferogram indicates the severity of
the temporal decorrelation. phase-linking provides an estimate of this interferogram by overcoming the temporal decorrelation (see Fig. 9).

In order to analyze the performance of the Sequential Esti-
mator, MLE phase-linking is independently performed on the
full stack. The result is used as a benchmark for comparison.
The implementation details of the MLE are kept similar to the
phase-linking of each mini-stack, the only difference being
the detection of the homogeneous pixels in � for coherence
estimation. The performance of the latter detection is driven by
the stack size [20] as well as the p-value set for the hypothesis
testing [31]. Fixing the p-value, the similarity test for the
MLE is performed on the full data stack of 38 SLCs, hence
with higher precision compared to the Sequential Estimator,
where a mini-stack of 10 SLCs is used [20]. Fig. 7 reveals the
sensitivity of the test result to the stack size by providing the
size of the detected ensemble surrounding each pixel. Note that
exploiting a single mini-stack, the number of similar pixels
is overestimated, possibly introducing outliers in coherence
estimation. One approach to tackle this problem is to adjust

the p-values of the hypothesis testing, i.e., decreasing it to
lower the probability of inclusion of less similar samples. Two
alternative approaches are proposed in [32] and [33]. As it
will be revealed in the comparison results, even with a poor
DS detection, the Sequential Estimator achieves a performance
close to the MLE. It should be noted that the homogeneity of
the � neighborhood may be disturbed by some or all pixels,
after its detection in the first mini-stack. This issue is subject
to future studies and algorithmic enhancement to sequentialize
the DS detection as well.

In the following, different strategies are considered to
compare the performance of Sequential Estimator versus the
full-stack MLE phase-linking.

A. Posteriori Coherence of the Phase Series

Proposed by Ferretti et al. [5], the quality of the phase-
linking may be assessed by the goodness of fit between the
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Fig. 7. Number of detected statistically homogeneous samples surrounding each single pixel, as a result of the Anderson–Darling similarity test, under the
fixed p-value of 5%, by (a) exploiting 10 SLCs of the first mini-stack as in the Sequential Estimator and (b) using all 38 SLCs of the stack as in the full-stack
MLE scheme. As expected, the detection rate is governed by the number of exploited SLCs.

Fig. 8. A posteriori coherence as the quality measure of the Sequential
Estimator and the full-stack MLE; the Sequential Estimator slightly enhances
the phase-linking; and note that the quality measure is highly biased at low
coherence pertaining to water and dense vegetation land cover especially in
the case of MLE.

estimated and the observed phases, that is

γ̂ =
Re

{∑n
q=1

∑n
p=q+1 e j (�φ pq−(φ̂ p−φ̂q ))

}

n(n − 1)/2
(23)

with �φpq as the observed interferometric phase between
p and q SLCs. Referred to hereafter as the a posteriori
coherence, this quality measure reflects the validity of the
assumed PS-resembling model for the approximation of the
DS scattering behavior.

Fig. 8 shows the probability distribution function (pdf)
of the a posteriori coherence of the entire scene for both
the Sequential Estimator and the MLE. Comparing the two
hint a slight improvement of Sequential Estimator over the
MLE. The pronounced mode of the MLE’s pdf at 0.2 <
γ̂ < 0.3 is a feature worthy of further examination: spatial
investigations reveal that the mode pertains to water and dense
vegetation land cover, where fast decorrelation is expected.
In such cases, the MLE yields an overestimation of the quality
measure, while the Sequential Estimator justifiably estimates
the measure closer to zero; prompting the local mode of the
latter’s pdf at zero. This observation implies that although
the a posteriori measure provides a good approximation at

high coherence values, it overestimates the quality at low
coherences (∼γ̂ < 0.5). This implication is positively verified
via simulations.

The a posteriori coherence is hereafter used for filtering
the result and performance assessment; however, its bias shall,
be noted in the interpretation of the performed comparisons.

B. Spatial Inspection of the Estimated Interferograms

Having the wrapped phase series, an estimation of the
interferograms is provided by the pairwise differential phases.
The spatial inspection of such interferograms highlights the
merit of the temporal filtering performed by the phase-linking.
As expected, the longer the temporal baseline, the more severe
is the temporal decorrelation. The examination of the estimated
long-baseline interferograms is therefore more conclusive for
the examination of the quality of the temporal filtering.
Bearing this in mind, among all possible interferometric pairs,
the one with the largest temporal baseline of 564 days is cho-
sen to be presented here (Fig. 9). The estimated interferogram
from the MLE and Sequential Estimator phase series are visu-
ally identical; therefore, the discrepancy between the two esti-
mators is presented in Fig. 9(c) instead. To prove the efficiency
of the sequential scheme, the estimated interferograms from
StBAS phase-linking is demonstrated as well [Fig. 9(a)]. Note
that only the consecutive, i.e., lag-1, SLC combinations are
exploited in StBAS. As a visual assessment of the performed
temporal filtering, the estimated interferograms of Fig. 9 may
be compared to the corresponding observed interferogram
in Fig. 6(c).

Comparing the estimated interferograms, the Sequential
Estimator is shown to efficiently estimate a spatially smooth
signal, and keep a close performance to the MLE, while the
StBAS is severely degraded. This result once again empha-
sizes the importance of strategic efficient phase estimation as
opposed to naive negligence of long-term interferograms.

C. Spatiotemporal Assessment of the Phase-Linking

Taking MLE as the reference, the focus here is on the
quantitative performance analysis of the Sequential Estimator
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Fig. 9. Spatial inspection of the estimated interferograms with the longest temporal baseline of 564 days: (a) using StBAS by exploitation of the consecutive
SLCs, (b) applying the Sequential Estimator, and (c) discrepancy between the Sequential Estimator and the full-stack MLE. The Sequential Estimator retains
a performance close to the MLE and thus asymptotically to CRLB. Using the lag-1 interferograms, StBAS ignores the redundant interferograms and therefore
fails in temporal filtering. The corresponding observed interferogram is provided in Fig. 6(c).

with respect to the MLE. The performance is evaluated by
the discrepancy between the estimated phase series of the
two mentioned schemes. Having performed phase-linking in a
pixel-wise fashion, the phase discrepancies consist of rrg × raz
values in the spatial and n−1 in the temporal direction. To have
a statistical analysis on the performance, the rrg ×raz × (n−1)
phase discrepancy values are accumulated. Exploiting the spa-
tiotemporally accumulated discrepancies, the histogram of the
inconsistency between the two methods is evaluated in Fig. 10;
for visualization purposes the histogram is normalized by its
maximum.

It shall be noted that the estimation results contain the noisy
phases of the surrounding water of the island. The a posteriori
coherence is used to mask such pixels. The coherence thresh-
old is set to γ̂ ≤ 0.4; same mask is used for the visualization
of the interferograms in Figs. 6 and 9.

As apparent from these figures, the surrounding water as
well as part of the caldera is concealed by the introduced
mask. Inspecting the optical view of the island, the latter
corresponds to denser vegetated area, where the approximation
of DS region by PS-resembling model fails, hence compromise
of the estimated a posteriori coherence value.

Fig. 10 depicts the histogram of the accumulated phase
discrepancies for both original and masked estimation results.
The Sequential Estimator is in agreement with the full-stack
MLE, as evident from the first and second moments. These
measures indicate the bias and the precision of the Sequen-
tial Estimator with respect to the MLE. Given Sentinel-1’s
5.405 GHz sensor frequency at C-band, the estimated bias and
precision of 0.1 and 0.52 rad translate to 0.44 and 2.2 mm in
slant range, respectively. The reported performance is prior to
the separation of the atmospheric signal.

D. Performance With Respect to the a Posteriori Coherence
Described in the previous section, the spatiotemporal

accumulation of the phase discrepancies is exploited here
as well. The normalized histogram of phase discrepancies
corresponding to different a posteriori coherence levels is
evaluated in Fig. 11; providing the estimation bias and

Fig. 10. Spatiotemporal analysis through normalized histogram of the
phase discrepancy between the MLE and Sequential Estimator; the overall
performance of the Sequential Estimator relative to the MLE is resulted from
the histograms (see Section VII-C for details on the utilized mask).

Fig. 11. Performance of the Sequential Estimator at different coherence levels
compared to the MLE; the bias (μi ) and precision (σi ) of the estimator is
reported relative to the a posteriori coherence, with i referring to the reported
coherence level. The agreement between the two methods increases with the
increase of the coherence.

precision of the Sequential Estimator relative to the qual-
ity of phase-linking. As revealed from the simulations of
Section VI-C, in the case of higher coherence, the performance
of the two estimators is closer than cases of fast decorrelation.
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Fig. 12. RMS of the phase discrepancies between the Sequential Estimator
and the MLE; the agreement of the two methods increases with the a posteriori
coherence. The high difference at low coherences may stem from the poor
performance of the MLE. An independent validation with PSI or GNSS,
therefore, provides a more conclusive approach at low coherences.

In the pursuit of retrieval of the geophysical parameters, it is
common practice to discard low quality estimated phases in
the processing steps to follow. Considering such masking and
choosing a coherence threshold of 0.85, the bias and precision
of the Sequential Estimator improves to 0.07 and 0.3 rad
equivalent to 0.3 and 1.3 mm in slant range, respectively.

E. RMS With Respect to the MLE

As the final assessment strategy, the accumulated phase
discrepancies are grouped according to their a posteriori
coherence in regular coherence intervals. The root mean
square (RMS) of the discrepancies at each ensemble is further
evaluated, providing the discrete phase difference as a function
of the a posteriori coherence in Fig. 12. As depicted, the differ-
ence measure is governed by the coherence. At high coherence,
the agreement of the two schemes is evident. At low coherence
levels, however, the comparison is not as straightforward.
As observed in Section VI-C, the MLE is severely erroneous
in fast decorrelation scenarios. The high RMS values at low
coherence levels may therefore stem from poor performance of
the MLE. A more conclusive comparison shall be considered
for the performance assessment specifically at low coherence.
We suggest validation with independent InSAR or geodetic
techniques, such as Persistent Scatterer Interferometry or
Global Navigation Satellite System, as decisive approaches.
For the sake of consistency, such validations are postponed to
separate investigations.

VIII. CONCLUSION

The Sequential Estimator is proposed as an efficient process-
ing scheme to exploit the unprecedented Big Data in InSAR.
The main objective of the estimator is to move toward an
NRT processing scheme while retaining the optimality of
phase estimation close to the CRLB. The latter objective
accommodates high-precision monitoring of small-scale earth
surface deformations.

Performing comparisons with conventional stacking
approaches, the role of coherence estimation is highlighted
as the major obstacle for achieving high-precision phase

estimation. Supported by the simulation studies in this paper,
the proposed Sequential Estimator is shown to reduce the
impact of coherence estimation error owing to its intermediate
filtering of the interferograms at each sequence. However,
this potential of the estimator for improving the phase-
linking shall be studied via independent validation, e.g., with
GNSS or PSI techniques, and is not proven as of present.

The proposed scheme suggests a generic guideline for effi-
cient processing of large data stacks via recursive estimation
of the complex covariance for the InSAR stacks. The core
elements are data compression and the generation of the artifi-
cial interferograms. The implementation steps for fulfilling the
core tasks, e.g., phase-linking and data compression techniques
may be replaced by a wide range of alternative solutions
and may therefore improve the algorithmic and/or estimation
efficiency of the Sequential Estimator. The following are
instances of such improvements which give direction for future
investigations:

The current proposal for implementation of the Sequential
Estimator simplifies data compression by setting the dimension
of the signal subspace to 1. According to the experiments with
real-data higher order components do not have a contribution
in the performance of the estimator. Theoretically, however,
this simplification might trouble the Sequential Estimator in
two scenarios: 1) in the presence of more than one dom-
inant systematic change in the resolution cell and 2) in
extreme exponential decaying coherence scenarios where the
DS undergoes total decorrelation at a pace much faster than
the sampling rate of the Sequential Estimator, governed by
the mini-stack size. Apart from increasing m, the latter may
be solved by adapting the size of the mini-stack or considering
overlap between the mini-stacks. Therefore, two directions for
future research are: 1) the generalization of the Sequential
Estimator for m > 1, such that its response to generic coher-
ence scenarios is not compromised (see [9] for an instance of
such generalization) and 2) further studies on the choice and
possible adaptability of mini-stack size.

Having the MLE as its phase-linking approach, the per-
formance of the Sequential Estimator at each sequence is
bound to the performance of the MLE and especially its
sensitivity to the coherence estimation. Any improvement of
the MLE and/or the coherence estimation therefore enhances
the Sequential Estimator.

The core MLE may be replaced by more agile, but sub-
optimum, phase-linking schemes. Examples are SBAS-like
approaches, EVD or the like, which potentially reduce
the computational burden of phase-linking within the mini-
stack. Such simplification compromises the sensitivity to the
small-scale geophysical signals and is thus only allowed
dependent on the permissible performance degradation.

The PCA approach for data compression is primarily cho-
sen due to its algorithmic efficiency. This simple approach
may be substituted by more rigorous low-rank approximation
schemes, with examples ranging from projection pursuit and
independent component analysis to robust PCA. The drawback
is, however, the increase in the computational burden.

A future research direction in the realm of sequential
processing is the introduction of sequential statistical similarity
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tests. The latter shall address possible changes to the homo-
geneity of the defined DS neighborhood which might occur
after its detection in the first mini-stack. Such improvements
may as well improve the detection of homogeneous ensembles
for coherence estimation.
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