Lecture 16: Gravity, Isostasy and Flexure

Read pages 42-51 in KK&V

Homework 6




Gravity: theory and measurements

. - 2
gravity - "weighing" the earth Newton: F=G (ml mz)/r

M and F=ma

R}
g = acceleration caused by attraction of one mass to E.ar.th's mass
g =980 cm/sec2 = 980 Gals = 980,000 mGals (milligal)
*This is for a stationary earth. For a rotating earth there are terms for
centrifugal acceleration and nonspherical shape of earth amounting to <1%.

¥ torsion fiber

G = gravitational constant (6.67x10™"" Nm?%kg?)
Me = mass of Earth (5.973x10* kg)

Re = radius of Earth
equatorial radius = 6.378139x10° m

polar radius = 6.35675x10° m

M
Cavendish experiment (1798)
average density = 5.448 Mg/m’
modern value = 5.517 Mg/m’
At high pressures density of silicate minerals increases significantly
e.g. olivine at.1.7 Mbar, density = 5.5 Mg/m®
pressure at center of earth: P = 3.6x10"" Pa = 3.6x10° bar = 3.6 Mbar

So denser material (primarily Fe) needed to account for average density of earth
composition of crust known from direct sampling
meteorites, composition of solar system
core: 95+% Fe, some Ni and possibly light elements (0,S,K)
supported by presence of magnetic field



In XVIIl and
XIX
centuries,
surveys set
out to
measure
the shape
of the Earth
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They used
plumb bobs
and
expected
them to be
attracted
toward
adjacent
mountains
such as
Andes and
Himalayas



. but the plumb bobs did not deflect as much as expected

8 = Angle of
Deflection

Plumb Bob

:\x 06 = Expected Deflection
\\i ¢ = Actual Deflection




... sSmaller than predicted deflection could result from either
overestimated mass (density) of the mountains, or some
deficit of mass below the mountains

a
8 = Angle of
Deflection
Plumb Bob

:\x 06 = Expected Deflection
\\i ¢ = Actual Deflection




Isostasy — the state of gravitational
equilibrium between the Earth’s crust
and mantle, as if the (lighter) crust were
floating on a (heavier) mantle



Pratt Isostasy
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Fig. 1.10. John Henry Pratt 1 year after
his appointment as Chaplain to the
Bishop of Calcutta. Portrait courtesy of
D. P. McKenzie of Cambridge University.




where G is the universal gravitational constant and d is the distance between the two
masses. In the case that M and P are points on the surface of a spherical Earth, then it
follows (Fig. 1.11) that the component of the attraction at a station P due to the
elementary mass at M in the direction of gravity is given by

G dm sin(§)

where

Sin ?
~.dg =G dm

0
4r2 sin® (7’)

(1.2)

Pratt used Eq. (1.2) to calculate the gravitational effect of the Himalayas at Kaliana
and Kalianpur, and published the results in a 75-page long paper (Pratt, 1855). He
found that the gravitational effect of the mountains is large enough to deflect the
plumb line by 15.885", more than three times the observed value (Fig. 1.12). Pratt was
satisfied, despite problems with not knowing the detailed topography of the
Himalayas, that he had correctly computed the effect of the mountains at Kaliana
and Kalianpur. He concluded his paper by saying that he did not understand the cause
of the discrepancy and that the problem should be investigated further.




Fig. 1.13. George Biddell Airy, Professor
of Astronomy at Cambridge University
and Astronomer Royal. Portrait courtesy
of D. P. McKenzie of Cambridge
University.




1.4 Isostasy According to Airy

Shortly after Pratt’s paper, G. B. Airy (1801-92; Fig. 1.13), the Astronomer Roval,
presented a paper to the Roval Society in which he offered an explanation for the

discrepancy. Unlike Pratt, Airy was not surprised by the discrepancy. Indeed, he
thought that it should have been anticipated.

Airy’s argument was based on his belief that the outer layers of the Earth consisted
of a thin crust that overlay a fluid layer of greater density than the crust. He referred
to the fluid layer as “lava™. Airy compared the state of the crust lying on the lava to
timber blocks floating on water. He wrote (Airy, 1855, p. 103):
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Himalaya Tibet
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= 5.240", 8,=15.885"



Continent

"Sea of lava"

Ocean
Sea level

\

Semi-fluid

Fig. 1.6. The adjustment of the crust to
a “vast deposit™ by flow in the under-
lving “sea of lava™. Reproduced from a
figure in Herschel (1836) with permis-
sion of the Royal Society.



"Fissures" "Fissures"
or "Breakages" or "Breakages"
| "table-land" I

"Lava"
p.< Py

Fig. 1.14. Airy’s hypothesis of a crust that “floats” upon “lava”. Reproduced from Fig. 2 of Airy
(1855) with permission of the Royal Society.
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sostasy

iso = equal
stasis = standing

French surveyors in Peru in Yhe 1T40’s noticed +hat
the Andes deflectred a plump bop much less than
anticipated.

Also surveys in India in the

1800s showed compensation
of the Himalayas.

Principle: Beneatrh a cer¥ain deprh, known as the
depth of compensation, the pressures generated by all
overlying materials are everywhere equals

Tb?n({ of an iceperg.
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How do we
measure
gravity?

Falling Body Measurements

The gravitational acceleration can be measured directly by dropping an object and measuring
its time rate of change of speed (acceleration) as it falls. By tradition, this is the method we have
commonly ascribed to Galileo Galilel. In this experiment, Galileo is supposed to have dropped
objects of varying mass from the leaning tower of Pisa and found that the gravitational
acceleration an object undergoes is independent of its mass. He is also said to have estimated
the value of the gravitational acceleration in this experiment. While itis true that Galileo did
make these observations, he didn't use a falling body experiment to do them. Rather, he used
measurements based on pendulums.

Itis easy to show that the distance a body falls is proportional to the time it has fallen squared. The proportionality
constant is the gravitational acceleration, g. Therefore, by measuring distances and times as a body falls, itis
possible to estimate the gravitational acceleration. To measure changes in the gravitational acceleration down to 1
partin 40 million using an instrument of reasonable size (say one that allows the object to drop 1 meter), we need
to be able to measure changes in distance down to 1 partin 10 million and changes in time down to 1 partin 100
million!! As you can imagine, itis difficult to make measurements with this level of accuracy.
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Pendulum Measurements

Another method by which we can measure the acceleration due to gravity is to observe the oscillation of a
pendulum, such as that found on a grandfather clock. Contrary to popular belief, Galileo Galilei made his famous
gravity observations using a pendulum, not by dropping objects from the Leaning Tower of Pisa.
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acceleration, g. The constant of proportionality, k, depends on the physical

If we were to construct a simple pendulum by
hanging a mass from a rod and then displace the
mass from vertical, the pendulum would begin to
oscillate about the vertical in a regular fashion. The
relevant parameter that describes this oscillation is
known as the period* of oscillation.

*The period of oscillation is the time required for the
pendulum to complete one cycle in its motion. This
can be determined by measuring the time required
for the pendulum to reoccupy a given paosition. In the
example shown to the left, the period of oscillation of
the pendulum is approximately two seconds.

The reason that the pendulum oscillates about the
vertical is that if the pendulum is displaced, the force
of gravity pulls down on the pendulum. The
pendulum begins to move downward. When the
pendulum reaches vertical it can't stop
instantaneously. The pendulum continues past the
vertical and upward in the opposite direction. The
force of gravity slows it down until it eventually stops
and begins to fall again. If there is no friction where
the pendulum is attached to the ceiling and there is
no wind resistance to the motion of the pendulum,
this would continue forever.

Because itis the force of gravity that produces the
oscillation, one might expect the period of oscillation
to differ for differing values of gravity. In particular, if
the force of gravity is small, there is less force pulling
the pendulum downward, the pendulum moves more
slowly toward vertical, and the observed period of
oscillation becomes longer. Thus, by measuring the
period of oscillation of a pendulum, we can estimate
the gravitational force or acceleration.

It can be shown that the
period of oscillation of L

the pendulum, T, is

proportional to one over T = 2]‘[ —_—
the square root of the
gravitational g

characteristics of the pendulum such as its length and the distribution of mass about the pendulum'’s pivot point.



Mass and Spring Measurements

The most common type of gravimeter* used in exploration
surveys is based on a simple mass-spring system. If we hang a
mass on a spring, the force of gravity will stretch the spring by an
amount that is proportional to the gravitational force. It can be
shown that the proportionality between the stretch of the spring
and the gravitational acceleration is the magnitude of the mass
hung on the spring divided by a constant, k, which describes the
stiffness of the spring. The larger k is, the stiffer the spring is, and
the less the spring will stretch for a given value of gravitational
acceleration.

Like pendulum measurements, we can
not determine k accurately enough to m g
estimate the absolute value of the X =—
gravitational acceleration to 1 partin -k
40 million. We can, however, estimate
variations in the gravitational
acceleration from place to place to
within this precision. To be able to do this, however, a
sophisticated mass-spring system is used that places the mass
on a beam and employs a special type of spring known as a
zero-length spring.

Instruments of this type are produced by several manufacturers;

LaCoste and Romberg, Texas Instruments (Worden Gravity Meter), and Scintrex. Modern gravimeters are capable
of measuring changes in the Earth's gravitational acceleration down to 1 partin 100 million. This translates to a
precision of about 0.01 mgal. Such a precision can be obtained only under optimal conditions when the
recommended field procedures are carefully followed.




The principle of altimetry
(Crodits CNES/D, Ducros)

Satellite-to-surface distance: Range

Radar altimeters on board the satellite transmit signals at high frequencies (over 1,700 pulses per second) to Earth, and receive the echo from the surface (the "waveform").
(the ‘waveform'). This is analysed to derive a precise measurement of the time taken to make the round trip between the satellite and the surface. This time measurement,
scaled to the speed of light (the speed at which electromagnetic waves travel), yields a range R measurement (see From radar pulse to altimetry measurements for Further
details).

However, as electromagnetic waves travel through the atmosphere, they can be decelerated by water vapour or ionisation. Once these phenomena have been corrected for,
the final range can be estimated with great accuracy (see data processing).

The ultimate aim is to measure surface height relative to a terrestrial reference frame. This requires independent measurements of the satellite's orbital trajectory, i.e. exact
latitude, longitude and altitude coordinates.



A straightforward calculation converts sea surface height to gravity

FREE-AIR GRAVITY, BASED ON GEOSAT AND ERS-1 SATELLITE RADAR ALTIMETRY (VERSION 7.2,
D. SANDWELL & W. SMITH).



“Predicted” topography based on satellite radar altimetry measurements
combined with shipboard bathymetry measurements

0 30°E 60°E 90'E 120°E 150°E 180° 150'W 120°'W 90'W 60'W
Walter H. F. Smith and David T. Sandwell, Seafloor Topography Version 4.0, SIO, September 26, 1996 Copyright 1996, Walter H. F. Smith and David T. Sandwell



Use gravity to map
hidden structures

The interpretation is
ambiguous unless you
have an independent
way of mapping the
shape of the source

Gravity anomaly
profile N

Three shapes, all
have same
anomaly
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Fig. 247 ;G_r‘avity anomalies for buried spheres with the same
radius R «nd density contrast Ap but with their centers at difTerent
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Correct for mass between observation point and
reference level

Approximate effect with a slab of thickness h:
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Garland (1971)

Bouguer Anomaly

Pierre Bouguer was
one of the French
surveyors in the
Andes in the 1740’s

The bouguer
anomaly is negative
over a mountain
range and reflects
the low-density
crustal root
associate with Airy
isostatic
compensation
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Fig. 2.28 Inverse correlation of Bouguer anomalies with
topography indicating its isostatic compensation.




]
2

(a) full Airy compensation (b) no compensation

Figure 9.11 Anomalies with and without isostatic compensation.

From Mussett and Khan, 2000



Another way of thinking of it: O_Em//\\soo _
With the Bouguer anomaly you T 0km
only see the effect of the root
(think of example shown earlier) [+ 1]
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Bouguer anomaly over
the oceans

Replace water with
rock with same density
as adjacent continent

Reveals “anti-root”
(thin crust) beneath
oceans
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What does the Bouguer
anomaly look like over a
mid-ocean spreading
center like the Mid-Atlantic
ridge?

And what does that tell us?

Note: topography gets
shallower but free-air
anomaly stays near zero
(on average)
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Bouguer anomaly drops by 200
mgals over the mid-ocean ridge:

The mid-ocean ridges are
generally isostatically
compensated:

Free-air anomaly is roughly zero

Since the ridge axis is shallower
than flanks, the Bouguer
correction is smaller, so get a
drop in the Bouguer anomaly
centered on ridge axis

Reveals body of warm (less
dense) asthenospheric material

Note ambiguity in size of body



’I : gjh (v A 6L

A%‘I = A‘gg N Avoot

= 1000+

500

L

- BWUJL ot &[‘\) RV

Free air

D

Anomaly (g.u
o

Airy isostatic

Bouguer

— 5001

— 1000+

— 1500+

#ZOOOW k
10_\, d=e g NSNS \, ’

BT
\\\\\

100% compensation
S A R A N MO aee

Depth (km)

28

|sostatic anomaly (1A)

You calculate the
shape of root by
assuming Airy isostasy
and typical crustal
densities

Isostatic anomaly
should be zero if your
model is correct

Of course, you don't
really know the shape
of the root ...



If the compensation is not 100%

then the isostatic anomaly will not be zero
(which is essentially the reason for
calculating isostatic anomalies)
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The root on the
right is not as large
as the one on the
left but the
“correction” was
made for an “ideal”
root so the isostatic
anomaly is positive

Why might the
compensation not
be 100% ?
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LOCAL ISOSTASY
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Flexure

Earrhs’s crust acts as a rigid plate of finite +hickness
~and deforms “elastically” in response +o a load.

Before plate tectonics, these conceptrs were used +o
analyze the effects of loading and unloading of
glaciers, mountains, lakes, deltas.

The “plate” of plate tectonics

Flexure generates
large gravity anomalies
pecause the load is no+
compensated locallys

Start of
glaciation
LOAD

ELASTIC LITHOSPHERE

/wscous M@&

Load causes
subsidence

T
\,/—

Ice melts at end
of glaciation

T~ |
\_/‘

Subsequent siow rebound
of lithosphere

Figure 5.16. The deformation and uplift
which occur as a result of loading and

unloading of an elastic lithospheric plate
overlying a viscous mantle,

Fowler (1990)



Regional Isostatic Compensation

*The effect of the load can therefore be distributed over a wide area, depending
on the flexural rigidity of the supporting material.

A common model of regional isostatic compensation is that of an elastic plate
that is bent by topographic and subsurface loads.

*The flexural rigidity of the plate (D) determines the degree to which the plate
supports the load.

*A thin, weak diving board bends greatly, especially near the diver.

A thicker board of the same material behaves more rigidly — the diver
causes a smaller deflection.

*The flexural rigidity (resistance to bending) thus depends on the elastic
thickness of each board

@

a) Weak (Thin) Board b) Strong (Thick) Board 5
Elastic E
Th/dc\noss o




Regional Isostatic Compensation

The deflection of a 2-D
plate due to a linear
load depressing the
plates surface
(assuming a fluid
material below) is given

by:

D(d4w/d4.\’) +(p, —p,)gw=q(x)

Where:
D=Flexural ngidity

w = vertical deflection of plate at x

x = horizontal distance from load to a point
on the plates surface

p, = density of material above plate
p, = density of matenal below plate
g = gravitational acceleration

q(x) = load applied to the plate at x
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FIGURE 8.2)  a) Paramesers (or two-Emensional model of a plate Bexcd by a

moa load. Both the plase aad Josd exiosd
wnfinately i and out of the page See tean

for delmon of variables. b) Positicas of deprossions and bulzes formed oz e
sarface of a Bexed platc. A stioag plase has Sallow but wide depoentons. The depressions and penpberal bulges have
arper smpltndes 00 2 weak plase, byl 37¢ closer 10 the load A very weak plsic caolapscs iot0 bocal scatatx equilibvian

Strong plate: Long wavelength small amplitude (w)
deflection.

Weak plate: Short wavelength large amplitude
deflection.

From lille 1999



A special case of flexure and 1sostasy...

11,000 years ago, large parts of
N. Europe and N. America were
covered by ice sheets up to 3 km
thick.
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(Lowrie, 1997)

Glacial rebound: the
best constraint on the
viscosity of the upper
mantle:

This figure shows the
rate of vertical crustal
movement relative to
mean sea-level in
mm/yr



Local versus regional compensation

(b) regional compensation

aSH8E
\ 381
SEEHE

~ load

MR
R RRE
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lithosphere

R TR s P et

asthenosphere

The Lithosphere (crust) is strong
enough to support the load (weight)
of the mountain. But, the lithospheric
strength is finite and the surface of
the lithosphere is bowed down
‘regionally’ to support the load.

(a) local compensation
(~ Airy isostasy)

................
sisaegesenanels

lithosphere
L |

asthenosphere

The Lithosphere (crust) is NOT strong enough to
support the load (weight) of the mountain. In
fact, in the limit, the lithosphere is broken on
either side of the load and has a near zero
strength. The load is supported by the hydrostatic
pressure of the asthenosphere pushing on the
bottom of the loaded block.

(Dueker, U. Wyoming)



Regional compensation of Hawaiian Island Chain
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b) bathymetry
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Fiaure 9.12 Bathvmetry and qgravity anomaly across Hawaiian Islands.

Note the strong correlation between the bathymetry
and the free air gravity profile. This is because this
topography is NOT isostatically compensated but is
‘regional’ compensated by the strength of the
lithosphere. Also, note the downwarps to either
side of the big island caused by the load that down-
flexes the lithosphere

(Ken Dueker, U. Wyoming)
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Free-air Gravity Anomaly

ﬂ[\/ T, can be estimated by comparing the

=805 Gl amplitude and wavelength of the observed
gravity anomaly to the predicted anomaly

Tes{/’\/ based on an elastic plate model.

== Free-air corrected
for basin on ridge

- Uncorrected Free-air

Observed

NE Oahu

13.6

T,=20
15.6
-8
T,=10 10
39.0

Bathymetry -12
=2730 kg m™ e
=2730
=13330

| Note that 7, is much smaller than the total
SW Al thickness of the lithosphere

pload
pinﬁll

R mantle




