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Convergent Margins
(destructive margins,
subduction zones)

Oceanic trenches (deepest depressions at the
Earth surface)

Megathrust earthquakes (largest on Earth)
Benioff zones (Wadati-Benioff zones, dipping
seismicity down to 600 km, deepest
earthquakes)

Large negative gravity anomalies

Volcanic arcs on the overriding plate
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ocean-continent

Backarc
compression 3

Shallow trench

Young, thin, hot
buoyant lithosphere

Chilean type
5“,:;\:::\ oom\"“ess (Arc under compression)
-
sackare 3 ocean-ocean
XN Deep trench
— S—

—

Old, thick, cold and dense
lithosphere

No great
compressional
earthquakes

Steep dip of
Wadati — Benioff zone

Mariana type

(Arc under extension)

KK&V Fig 9.18
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Focal Depths: green < 50 km, yellow = 50 to 250 km, red > 250 km




Pacific Ocean

Kuril Trench
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: Hokkaido Rise
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Note: these are cross g
: )
sections of beach balls \%

Pacific Ocean

Depth (km)

400

Principal stress
axes

b

In the deeper earthquakes, the
stress axes are oriented parallel or
perpendicular to dip
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Ear¥hquake “Environments”

lithosphere

asthénosphere

normal faulting caused by bending of slab (shallower than 25 kms)

thrust faulting caused by slip along interface (shallower +han 100 kws)

thrust faulting caused by unbenda’fng of slab

caused by internal deformation of stab
earthquakes occur 30 - 40 kms pelow top of slap
principal stress axes are || or | +o dip of descending slap

atribured o: dehydration of serpentinites (70 +o 300 kws)
or @ phase change from olivne o spinel (> 300 (ms)




Double Benioff Zone

Depth (km)

KK&V Fig 9.12

Upper plane: metamorphic reactions in subducted crust
Lower plane: metamorphic reactions in subducted mantle
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Length of the Benioff Zone
o Earthquakes can only be generated as long as +he slap is cold
enough o srore elastic energy.

o After a certain amount of ¥iwme slabs warm up and become
“assimilated.”

* Young and slowly converging slabs warm up at shallower
depths than cold, fast converging slabs.

* Roughly:

Length of Benioff Zone = Convergence Rate(Mm/yr) x Age(Ma)/10

O Aleutians A Tonga - Kermadec
e Kurile A Japan
0 New Zealand x Central America
® South America + Lesser Antiles
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Back-arc basin Magmatic arc Forearc Trench

Spreading axis Magmatic Forearc Accretionary Outer
front basin prism trench
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Differences in recyonic style: age of +he slab and “roll-pack”

700 ) 1
§0™
) Cordilleran
E]Bel!s
59" b, Ws0ey 7
A Bsomy<100mp - oo
40 R 00 my
Farce on r 3 Force on :
overthrusting <: underihrusling
plate L —~ plate
Gravitatiangl dody
force on siab 8
Fig. 2. Crosssection of island arcs. A. Expected trajectory of
slab relative to an inert asthenosphere. Note that position of

slab migrates seaward (following Elsasser [33]. B. Forces
acting on the two plates and the downgoing slab.

70" \r—d\f\ T

— 55—t 77—
120" 150" Al 150" - Re" L% 60

Fig. 1. Map of the Pacific showing ages of the ocean floor and Cordillecan-type belts Note active Cordilleran-type belts in the
eastern Pacific and younger ocean floor in the interarc basins of the western Pacific.

o« Descending slab acts as an anchor, unaple ¥o
move its position laterally, except cuue

» Slap moves seaward as it sinks due Yo gravity (roll-pack)

o Older, colder slabs sink faster and move seaward fastrer,
hence..us

o Extensional *ectonics are found where there is old supducting
crust

Moinar and Arwater (1978)




Consider.
mantle

fmportance of relative morion of overriding plate

Vo = seaward motion of overriding plate relative %o

V, = (ouback velocity

if Ve 2 V. compressive rectonics

if Ve? Ve extensional rectonics

ol df(, L'/Wu’j

Yoy ol

<

Dewey (1980)




Classification of +ectonic characteristics a+ Supduction 2ones

Compressive
(Peru/Chile)

cryshaline
bosement

Neutral
(Cascadia)

Extensional
(Marianas)

Neutral with
Lo¥s of sedivents
(Alaska)

Figure 2. True scale sections across the Pacific margin (scale in kilometres). A. Central Peru. B.
. Western Canada. C. Marianas. D. Alaska (age of subduction-accretion prism: J - Jurassic, K -
Cretaceous, P — Paleogene, N — Neogene). .

Compressive

Shallow, flat Beniff zones

Back-arc thrusting

Lies on continental margins

Many large earthquakes in overriding plates

Extensional

Steep Benioff zones

Back-arc pasins with plate accretion
Intra-oceanic

Few earthquakes in overriding plate

Dewey (1980)




Well, the initial
hypothesis (right) did not
stand the comparison
with the data

Chase (1978)

S I}
: (I T I O N I |IJ||111||1|,4-5/(

Newer data (left) show that
this is not true; Northeast
Asia and Japan move
slowly away from trench;
the trenches which are
retreating have young crust
overriding plate w.r.t. mantle (COm pare to Dewey, 1980)

Heavy black arrows =




Gulf 14%
ﬁof Alaska

“ v Hawaiian Ridge
..’ Hawaiian islands
LT 2 » ~ |

*03, : Hawaii (active al present)
¥ & Marshall-Ellice
‘..1 Island Chain
L]

PACIFIC
OCEAN

‘e,

Austral Seamount Cham . Macdonald
AUSTRALIA &~ Seamount

Motion with respect to the mantle
a.k.a. Absolute plate motions

Volcanic chains like Hawaii form by
motion of the Pacific plate over
magma plumes embedded in the
mantle

Islands and seamounts get
progressively older off to NW

Several chains of volcanic features
show similar progression; constrain
motion of plate w.r.t. deep mantle



So Molnar and Atwater
were wrong.

Correlation of slab rollback
(trench retreat) with age of
subducting slab is opposite:

150 In general, young slabs are
40 60 B0 100 120 140 160 180 retreating, old slabs are
advancing.

T?‘
E
E
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JE
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—
o
o
(=
=)
-
=
e
e
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Also, slab retreat does not
correlate with back-arc
extension

Heavy black arrows =
absolute motion of upper plate
if no back-arc basin, then =
absolute motion of slab




Upper plate retreat Upper plate advance

Vup«0 Vup»D

Instead, a global correlation exists
between upper plate absolute
motion and back-arc deformation
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l.e., get back-arc extension when
upper plate retreats and vice-versa

uoisse1dwiod a1e-yoeg

Amount of “deformation” reflects how
well slab is anchored in mantle

DECREASING SEA-ANCHOR FORCE

Perfectly anchored slab
versus perfectly free
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Nagel et al. (2008)



New model: slab is either
anchored or pushed by
mantle flow (sinking due to
gravity is minor)

Net outflux of asthenospheric
material from Pacific, causes
basin to shrink

So why is eastern Pacific
retreating faster than western
Pacific?

Nagel et al. (2008)

Asthenospheric flow is dominantly
horizontal; material is gradually
removed from asthenosphere as it
accretes to lithosphere and slab is
subducted into lower mantle.

This outflux from the asthenosphere
leads to a continuous pressure drop
in the oceanic domain and
associated flow from the outside
world toward the ocean.

This flow causes slabs to retreat and
the oceans to shrink.



Asymmetric Basin Model to
explain fast retreating
trench in Eastern Pacific

Nagel et al. (2008)

When the ocean basin is
asymmetrical, the slab of
the shorter plate retreats
faster as a result of
asymmetric accretion

Hence Eastern Pacific is
retreating (shrinking)
faster than western
Pacific
So, changed question from “why are so
many BABs in Western Pacific?” to

“‘why aren’t there BABs in eastern
Pacific?”




Slap Segmentation BB’ and DD’ are segments with “flat stabs”

Slap supducts horizontally for several hundred kwms

e No volcanoes
« Due Yo subduction of puoyant feat

Nazca-South America

ures such as Yhe Naz¢
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There | is a shbllower dip b
Peru and - ;\ \
(it's hard




contour interval = 25 Km

Boiivia

@ Hevation >3 Km

< Coast

____Benlofl Zone Contours
contour interval = 25 Km

J -
& Young volcanic
centers “

Argentina

Shape of slab 5°S to 18°S
Note placement of subducted
Nazca ridge and hypothesized
“Incan Plateau”

Gutscher et al. (1999)

subducted continuation
of Nazca Ridge

Plateau
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(a) Accretionary forearc

. V = fluid vents
Accretionary

prism

(e.g. amount of sediment in
trench reflects rainfall/erosion in
adjacent mountains)
Accretionary versus non-
accretionary environments

<,
Midde \ l
Amenca_\

Magmatic front

Trench slope
basin

VAR

Thick forearc basin

Trench slope
break

Trench axis

Primary partal moks >k ‘

Non-accretionary forearc

Exposed basement Serpentinite
Seamount \ mud volcanoes Thin forearc basin

Magmatic
front

»

¢ North ¥ ' :
Empty trench ’ Chile % Atacma

O Desgrt
A

Cenual 0]

‘7., Chile

'Souﬂ1{
Chile

Partially serpentinized mantle Basaltic forearc crust Undeformed sediments

South
Lithospheric mantle Gabbroic forearc crust Deformed sediments . Sandwich

Filled barbs = accretionary Other non-accretionary
Open barbs = non-accretionary = ocean-ocean trenches

ALMA= Atacama Large Millimeter Array



Classic accretionary structures .
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Analogs
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Imbricate thrusting
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ynies in the University of Hlawaii cafeteria. Conveyor belt carries trays toward restrictive
. do not always pass tranquilly through to the dishwasher. Once o tray jams against the
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‘e injected at the
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tion and overflow ont¢

Coulbourn, 1981
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ACCRETIONARY AND
SEDIMENT SUBDUCTION

220U7S

FLUID FLCW ALCNG :
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—— T mud veicana -
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faults form
passageways for fluid
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Figure 1, Schemadc cross section of 2n accretionary prism showing major tectonic elements and
feawures controlling fluid emplacement and expulsion.
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Accreting prisms are tapered wedges

Upper surface slope (a) is related to
(1)the resistance to sliding on the
decollement and
(2) the strength of the rock
Taper angle =a + 3
These are related to:
pore fluid pressure (A)
dip of the basal decollement ([3)
weight of the overlying rock

) i\\ Tectonic shortening steepens the

0)6‘

Guatemala surface, but if it becomes oversteepened

then have mechanical adjustments
\ /Sunda

Japan
Al r Peru Result: develop a steady state shape
eutian
e -
Makran h_l'_\\ Oregon Lower figure: theoretical tapers for

NS . .
00 - ‘\\ various pore fluid pressures
_ \ \ Barbados overall

Barbados toe ]

Surface slope, «

27 4° 6° 8°
Basal dip, B

KK&V fig 9.21
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KK&V fig 9.22

Numerical model of fluid flow
within an accretionary prism
(contours are pore fluid pres.)

Relationship between
pore fluid pressure and
taper angle

Low pore fluid pressure
Is related to steep
wedges

High pore fluid pressure
to shallow wedges
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Accretionary prisms grow over time

Volcanicarc

AN

QOceaniccrust —

Lithosphere

Asthenosphere

Outer arc

Oceanic crust

Fig. 8.26 (a-c) Idealized sequence of the evolution of an lines, inactive thrusts. (d) Schematic, vertically
accretionary prism (redrawn from Dickinson, 1977, with exaggerated section of an accretionary wedge (redrawn
permission from the American Geophysical Union): (a) from Cowan & Silling, 1978, with permission from the »
incipient stage; (b) forearc basin; (c) full forearc basin. American Geophysical Union). : -
Solid lincs in subduction complex, active thrusts; broken
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Subduction erosion by
interaction with horst and
graben topography

Chile Trench

50
|

GRAVITY TECTONICS
EXTENSIONAL BREAK-UP
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STEEPENING SLOPE
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Figure 3b. Shaded relief perpspective diagram. Horst and graben morphology continues beneath the lower slope afier
subduction of the ocean crust One of several large landward facing scarps is annotated.
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Subduction-erosion model. Dashed
pattern along plate interface
indicates most severe fracturing.
Mass transfer from upper to lower
plate occurs as dislodged
fragments are dragged into
subduction channel. Active plate
interface migrates upward and
dotted lines in subduction channel
represent previously active thrusts.

SUBSIDING* QUASI-STABLE

Oceanic

sediment [ ronal  Backstop

prism

Mass transfer

Propagating
fractures

. . 2 Lower plate
Active interface g B | basement

thrust

Migrating fluids
Plate interface
thrust migrating
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Von Huene and Ranero, Geology, 2004
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Earthquake cycle on a megathrust
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2004 M9 Sumatra Earthquake




2011 M9 Tohoku Japan Earthquake
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2011 M9 Tohoku Japan Earthquake
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Figure 5. Trenches (barbed lines) and convergent margins of the Pacific, Caribbean, and eastem
+Indian Ocean regions. Not shown, but indicated, are the short trench systems of the Makran region
of the Guif of Oman, northwestern Indian Ocean, the South Sandwich Trench connecting South
America and Antarctica, and the Aegean region of the Mediterranean. Filled barbs are type 1 or
accreting trenches, open barbs are type 2 wrenches at which effectively no accretionary prism forms
(see Table 2). )

Von Huene and Scholl (1991)



