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Basic thermodynamics

These notes are an abbreviated form of the first part of the book by Callen (Thermodynamics, Wiley,
1960) which is more lucid than most thermodynamic texts.

1. Description of a thermodynamic system

Thermodynamics is a macroscopic description of the state of a body, we shall focus on thermal properties
in the following. We initially consider "simple" systems which are macroscopically homogeneous, isotropic,
uncharged, and chemically inert, that are sufficiently large that surface effects can be neglected and that are
not acted on by electric or magnetic fields.

For such a system, the volume, V, is the relevant mechanical parameter . The system also has a distinct
chemical composition specified by "mole numbers" (the numbers of molecules of each chemical component.
divided by Avogadros number). The mole number, N}, of the k’th chemical component can be computed as
the ratio of its mass to its "molar mass" (the mass of Avogadros number of molecules). Note that volume
and mole numbers are "extensive" quantities and scale with size of the system. You will also often hear
about "mole fractions". If we have r chemical components then the mole fraction of the k’th component is
just

_ N

Macroscopic systems have definite and precise energies, subject to a definite conservation principle. Only
differences of energy, rather than absolute values have physical significance. Internal energy is an extensive
quantity and is given the symbol U in Callen.

2. Thermodynamic Equilibrium

It is generally observed that isolated systems evolve spontaneously to simple terminal (equilibrium)
states. The thermodynamics that we develop here applies to these "equilibrium states" though branches of
thermodynamics have been developed to handle non-equilibrium states. We introduce the first postulate of
thermodynamics:

Postuate I. There exist particular states — equilibrium states — of simple systems that are
characterized completely by the internal energy U, the volume V, and the mole numbers Ny
of the chemical components

(Note that as more complicated systems are allowed, the number of parameters describing the system will
increase.)

For an equilibrium state, the properties of the system must be independent of the history of the system.
In reality, few systems are in true equilibrium — in such a system, for example, all radioactive elements
would have completely decayed — but many systems are in metastable equilibrium which is sufficient for
our purposes.



3. Walls and constraints

A wall that constrains an extensive parameter of a system to a definite value is said to be "restrictive" wrt
that parameter, whereas a wall that allows the parameter to vary freely is "non-restrictive" wrt that parameter.
Thus a wall that is impermeable to a chemical species is restrictive for the mole number of that species.

Consider a wall that does not allow the transfer of energy in the form of heat. Such walls are called
"adiabatic" while walls which do allow the flow of heat are called "diathermal". If a wall allows the flux of
neither work or heat, it is restrictive wrt energy. If a system is enclosed by a wall that is restrictive to energy,
volume, and mole numbers, the system is said to be "closed".

There exist walls (adiabatic) with the property that the work done in taking an adiabatically enclosed
system between two given states is determined entirely by the initial and final states, independent of all
external conditions. The work done is the difference in the internal energy of the two states.

The heat flux to a system in any process (at constant mole number) is simply the difference in internal
energy between the final and inital states diminished by the work done in that process. In an infinitesimal
quasi-static process (i.e. one that effectively remains in equilibrium at all times), the quasi static heat is
therfore given by

dQ = dU + PdV (2)

where the bar indicates an imperfect differential (i.e., it is not the differential of some hypothetical function
Q). Remember that the mechanical work done is given by diW = —PdV.

We shall generally consider closed systems but ones that are composite of two or more simple systems.
Constraints that prevent the flow of energy, volume, or matter between the sub-systems are called "internal”
constraints. If a closed composite system is in equilibrium wrt certain internal constraints, and if some of
these constraints are removed, the system eventually comes into a new equilibrium state.

4. The Entropy Maximum Postulate

From our experience with many physical theories, we might expect that the attainment of equilibrium
involves extremising some property of the system. Thus, we expect that the values of the extensive
parameters in the equilibrium state are simply those that maximise some function.

Postulate II: There exists a function called the entropy, S, of the extensive parameters of
any composite system, defined for all equilibrium states and having the following property.
The values assumed by the extensive parameters in the absence of any internal constraint are
those that maximise the entropy over the manifold of constrained equilibrium states

The relation which gives the entropy as a function of the extensive parameters is known as a "fundamental
relation”. Once the fundamental relation of a particular system is known,all conceivable thermodynamic
information about the system can be derived.

Postulate III: The entropy of a composite system is additive over the constituent subsystems.
The entropy is continuous and differentiable and is a monotonically increasing function of the
energy
Thus, the total entropy of a composite system is

S=> 5" (3)
where S¢ = S*(U*,V*, Nj¥). The monotonic property described above is written as:

95 >0 (4)
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We shall see that the above derivative is related to the reciprocal of the temperature. The above postulates
suggest that the entropy function can be inverted wrt energy so the function

S =S(U,V,Ny) (5)
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can be solved unquely for U:

U=U(S,V,Ny) (6)

These two equations are altenative forms of the fundamental relation.

The final postulate is

Postulate IV. The entropy of any system vanishes in the state where (0U/9S)y,ny =0 — that
is, at the zero of temperature
though this isn’t used in the majority of thermodynamics.

5. Intensive Parameters
Consider the equation U = U(S, V, Ny) and compute the first differential
oUu ou oUu
dU = <) as + () av + () dN; (7)
o8 V,Ny,.. ov S,N1,.. zj: aNj V,Ng,.. !

The partial derivatives are called intensive parameters and the following notation is conventional

ou
il =T
(55) .. )
(the temperature)
ou
_ [ = —pP
(57) .. ©)
(the pressure)
oU )
N = Wy (10)
<3Nj SVNew.
(the chemical potential of the j’th component)
Thus
dU = TdS — PdV + Y ji;dN; (11)

J

In the case of constant mole numbers, we find that

dQ = TdS (12)

Thus a quasi-static heat flux into a system results in an increase in entropy. The temperature, pressure, and
chemical potentials are implicitly functions of the extensive parameters (since they are the derivatives of a
function of the extensive parameters). Thus

T=T(S,V,Ny),  P=P(SV,Ni) (13)

etc. Such expressions relating intensive parameters to independent extensive parameters are called "equations
of state".

All of the above analysis could have been conducted on S = S(U,V, N;) and we would end up with a
different set of intensive parameters (called the entropic intensive parameters). Which approach is more
useful depends on the problem at hand.



6. Thermal equilibrium — temperature

Consider a closed composite system consisting of two simple systems separated by a wall that is rigid and
impermeable to matter but which allows the flow of heat. The volumes and mole numbers of the systems
are fixed but the energies U! and U? are free to vary subject to the constraint

U' 4+ U? = constant (14)
At equilibrium, dS = 0 and
1 2
ds = <351) aut + (852> au? (15)
out )y n oU? )y
or
1 1 1 2
But dU! = —dU? so
11 L

so T = T? — the temperatures are the same. Reconsider equation (17) when we are moving along a path
close to equilibrium and assume that T is greater than T2. As we go the last step towards equilibrium we
know that dS will be positive so equation (17) tells us that dU* will be negative. This means that heat is lost
from subsystem 1 at the higher temperature T and heat is added to subsystem 2 at the lower temperature
T2

We adopt the convention that entropy is dimensionless so temperature has the dimensions of energy —
though they have different units. Temperature is measured using the absolute Kelvin scale so that ratios of
temperatures behave correctly (unlike, say, the Celsius scale)

7. Mechanical equilibrium.

A slightly different analysis can be used for mechanical equilibrium where we consider a closed composite
system consisting of two simple systems separated by a moving impermeable diathermal wall. The values
of energy and volume of the subsystems may change subject to the closure conditions: U! + U? =constant
andV'! + V2 =constant. Differentiating S and setting dS = 0 as we did above we find that

11 . (PY P2 L

which has to be true for any value of dU! and dV* so T! = T? as before and therefore P! = P2. In the
presence of a movable wall, the pressures are the same when in equilibrium.

8. Chemical equilibrium

Consider the equilibrium state of two simple systems connected by a rigid diathermal wall which is
permeable to only one chemical component and impermeable to all others. With the usual closure conditions
we find that

1 1 1 e 1

which has to be true for any value of dU! and dN*! so T* = T? as before and therefore u} = 2. Consider a
system with 7' = T2 = T then
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dS ( T > d

Suppose that ;3 is greater than p} so that, as we go the last step towards equilibrium, we know that dS is
positive so that dN! is positive. That is, material moves from the region with the higher chemical potential
to the region with the lower chemical potential.

9. The Euler equation

Since the fundamental relation is homogeneous and first order, it is true that, for any A

U(AS, AV, ANy,) = AU(S, V, Ny (20)

Differentiating with respect to A and setting A = 1 (since the equation must be valid for any value of X) gives

U=TS—PV+> uN; (21)
J

Differentiating the above equation gives

dU = TdS + SdT — PdV — VAP + > p;dN; + Y dp;N; (22)
J J

but we also have (equation 11)

dU = TdS — PdV + ) p;dN;, (23)
J

so subtraction gives

SdT —VdP +» " dp;N; =0 (24)
J
which is the "Gibbs-Duhem" relation. Note that at fixed P and T' we get }_; du;N; = 0. For a single
component system
S Vv
SdT — VAP + Ndu=0 or du=——dTl + —dP (25)
Clearly the variation in chemical potential is not independent of the variations of temperature and pressure.
Generally. if a fundamental relation is in ¢ + 1 extensive variables, there are only ¢ independent intensive
variables. The number of intensive parameters capable of independent variation is called the " thermody-
namic degrees of freedom" of a given system. A simple system of » components has r 4+ 1 thermodynamic
degrees of freedom.

It is always possible to express the internal energy as a function of parameters other than SV, and N —
however such a relation is not fundamental and not all thermodynamic properties can be derived from it.

10. Specific heats and other derivatives

Many of the first derivatives of the extensive parameters have important physical significance — in the
following, we assume constant mole numbers. For example, the thermal expansion:

b (),

The isothermal compressibility:



fr=—o (‘;Z)T (27)
o),

o= % (g;)v (29

Later — we shall see there are relationships between these — the so-called Maxwell relations.

The specific heat at constant pressure:

The specific heat at constant volume:

11. Reversible and irreversible processes.

Though all real processes are irreversible, there are cases where the increase in entropy may be arbitrarily
small. Such processes are called "reversible”" . They consist of a succession of equilibrium states with no
states of larger entropy. A process is said to be irreversible if it is associated with an increase in entropy.
Entropy cannot decrease in a closed system.

12. Reformulations of the basic theory — Legendre transforms

The fundamental equation of a thermodynamic system can be written with either the entropy or the energy
as the dependent quantity. It is possible to show that the principle of maximum entropy can be replaced by
a principle of minimum energy. The entropy maximum principle characterizes the equilibrium state as one
having maximum entropy for a given total energy. The energy minimum principle characterizes the state as
having minimum energy for a given total entropy. Formally:

Entropy Maximum Principle: The equilibrium value of any unconstrained internal parameter is such as
to maximise the entropy for the given value of the total internal energy.

Energy Minimum Principle: The equilibrium value of any unconstrained internal parameter is such as to
minimise the energy for the given value of the total entropy.

Reconsider the problem of thermal equilibrium — we considered a closed composite system with an
internal rigid impermeable membrane. The fundamental equation in the energy representation is

U=U"(S"V',Ny)+U*(S*V* N;) (30)
Taking the differential of this gives (since all V and N are fixed):

dU = T'dS* + T%dS? (31)

The energy minimum condition is that dU = 0 subject to fixed total entropy (S! + S? =constant) so

dU = (T* = T%)dS' =0 (32)

giving us the same condition that 7' = T2,

In the energy and entropy representations, the extensive parameters play the roles of independent variables
whereas the intensive variables are derived quantities. In practice, it is often easiest to measure the
intensive variables (e.g., P and T'). This is particularly true for temperature and entropy since no practical
instruments exist for the control of entropy whereas control of temperature is commonplace. It therefore
becomes advantageous to recast the formalism with intensive parameters replacing extensive parameters
as mathematically independent variables. The way this is done is with the use of Legendre transforms.
Formally, we are given the fundamental relation of the form
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Y =Y (Xo, X1, ... X1). (33)

can be considered as independent variables. A geometrical solution to this problem is given in Callen. The
Legendre transform of the fundamental relation is

b=Y -3 PX, (35)
k
Taking the differential of this gives
dp ==Y XypdP; (36)
k
whence
_ 9
X = P, (37)

In thermodynamics, the Legendre transformed functions are called "thermodynamic potentials". We consider
first the Helmholtz potential, F', (or "free energy") which is a partial Legendre transform of U to replace the
entropy with temperature. Thus we go from U = U(S,V, N;) to

F=U-TS (38)
where we have used equation (35) and T' = 0U/9S . The differential is given by

dF = —SdT — PdV + Y _ uxdNy, (39)
k

so now we can see that F' = F (T, V, N;,) as desired. The Helmholtz free energy is useful as the fundamental
relation for modelling mineral physics data which are taken as a function of volume and temperature.

Another useful potential is the "entahlpy", H, which is a partial Legendre transform of U that replaces
the volume by pressure. Remembering that P = —9U/90V, the transform becomes

H=U-+PV (40)
with the differential

dH = TdS +VdP + ) ppdNy (41)
k

whence H = H(S, P, Ny).
A final potential is the "Gibbs Free Energy", G, which is the Legendre transform of U which simultaneously
replaces the entropy with temperature and the volume with pressure:

G=U-TS+PV (42)

with the differential

dG = —SdT + VdP + ) prdNy, (43)
k

whence G = G(T, P, Ni,). The Gibbs free energy commonly crops up in phase diagram calculations
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The question now arises as to what is the extremum principle for each of these potentials. Callen shows
that they are:

Helmbholtz free energy minimum principle: The equilibrium value of any unconstrained internal parameter
in a system in diathermal contact with a heat reservoir minimizes the Helmholtz free energy at constant
temperature (the temperature of the reservoir)

Enthalpy minimum principle: The equilibrium value of any unconstrained internal parameter in a system
in contact with a pressure reservoir minimizes the enthalpy at constant pressure (the pressure of the reservoir)

Gibbs free energy minimum principle: The equilibrium value of any unconstrained internal parameter in
a system in contact with a temperature and pressure reservoir minimizes the Gibbs free energy at constant
temperature and pressure (equal to those of the respective reservoirs)

The general result is now clear:

The equilibrium value of any unconstrained internal parameter in a system in contact with a set of
reservoirs (with intensive parameters P;) minimizes the thermodynamic potential U(P;) at constant P
(with Py, equal to P})).

The Helmbholtz free energy is very convenient in problems where the temperature is held fixed — clearly
this reduces the number of variables in the problem. Note: the work delivered in a reversible process by a
system in contact with a heat reservoir is equal to the decrease in the Helmholtz potential. For this reason,
F is sometimes referred to as the available work at constant temperature — or the Helmholtz free energy.

The enthalpy is convenient when the pressure is held constant. This is often the experimental case so the
enthalpy representation can be useful in practice. The enthalpy also acts as a potential for work for systems
held at constant pressure. At constant pressure and composition then

dH =TdS = dQ (44)

so heat added to a system at constant pressure and composition appears as an increase in enthalpy.
The Gibbs free energy is most convenient when both temperature and pressure are held constant. G
measures the work available in a reversible process from a system at constant 7' and P which is why it is

call the "Gibbs free energy". The Gibbs free energy is closely related to the chemical potential. From the
equations for U (21) and G (42) above we find that

G = Z ﬂkN]g (45)
k
For a single component system, y = G/N which is the molar Gibbs free energy.

13. Maxwell’s relations

These relations come from looking at mixed second derivatives. Consider the case for fixed composition

then:
(885 (gv> ) - <8av <ZS> ) (46)
s/ v v/s

Thus using equations (8) and (9), we have

(3s). = (), <47>

(o (),), = (v (7). ), .

but from (39) at constant composition (0F/0V)r = —P and (OF /T )y = —S so

Using the Helmbholtz free energy
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(or ), = (@), @

(a5 (ar).), = (ar (55),), o

but from (41) at constant composition (0H/0P)s =V and (0H/9S)p =T so

(5 ), = (@) 2

a (0G d (0G
(57 (57),),~ (o7 (57),), .
but from (43) at constant composition (0G/0P)r =V and (9G/IT)p = —S so
ov 08
(5), - (5), )

47), (49), (51), and (53) are the usual Maxwell relations for a constant composition. Though, of course,
compositional relations can also be derived (see Callen).

Using the enthalpy gives

Using the Gibbs free energy

14. Change in notation

In the notes following, we divide all extensive quantities (U, S, V') by mass and typically use the symbol
E for energy per unit mass. Note that now 1/V = p, the density.

15. Relations between macrostates and microstates

This section derives some results from statistical physics which we shall need later on in the course. We
use the symbol F for energy in this section.

The essential concept is that, for any given macrostate, at the microscopic scale, the system can be in
a large number of different configurations and is constantly flipping from one to another. Each of these
configurations is called a microstate.

The statistical weight of a macrostate, denoted by Q(E, V, N), is the number of microstates comprising
that macrostate with specified V, N and having energy in the small energy interval E to E + §E. We shall
subsequently choose J F sufficiently small that there is only one discreet energy level in the energy interval.
Note that all such microstates that satisfy the constraints on E, V, N are considered equally likely to occur.

The equilibrium state is the one of maximum probability and thus corresponds to the state of maximum
statistical weight. Entropy is related to the statistical weight through the definition

S(E,V,N) = kInQ(E, V, N) (54)

so entropy is also maximized in the equilibrium state.

Consider a system in a heat bath. The system possesses a discreet set of microstates with energy E,.. We
choose ¢ F to be smaller than the energy spacing between microstates so the energy interval contains only
one energy level — but many different microstates. Suppose the total energy of the system is E; then the
energy of the heat bath is Ey — F,.. The number of microstates that the system can have with a particular
energy F, will be controlled by the number of microstates the heat bath can accomodate having an energy
in the interval Ey — E,. to Ey — E,. + 6 E. We write this as Q(Ey — E,.). The probability, p, of the system
having energy E.. is proportional to this:



pr = const x Q(Ey — E,) (55)

where the constant will be chosen so that ) p, = 1. Given equation (54) we can write

pr = const x exp[S(Ey — E,)/k] (56)

The energy of the heat bath will be much larger than E, so E; >> E,. and we can expand S(Ey — E,) in a
Taylor series:

S(Ey— E,) = S(Eo) - (g‘g) E, = S(Eo)

_ B

7 (57)

where T is the temperature of the heat bath. Substituting into equation (56) and including all constant terms
into the pre-exponential gives

1 .
pr= e B with 7 = Z e Br/RT (58)

which we shall use later in the course. Z is called the canonical partition function. It is also possible to
show that

S =—k Z p,lnp, (59)

from which equation (54) can be recovered. If we now substitute equation (58) into equation (59) we find
that

7"E7"
S = kInZ + Z% (60)

where )" p,E, is the mean energy of the system, £. Comparing with the definition of the Helmholz free
energy: F = E — TS, we find that

F = —kTInZ (61)

which is a very important relationship between the macroscopic Helmholtz free energy and the microscopic
partition function.
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