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Chapter 1

Introduction

Every day there are about fifty earthquakes worldwide that are strong enough to be
felt locally, and every few days an earthquake occurs that is capable of damaging
structures. Each event radiates seismic waves that travel throughout Earth, and
several earthquakes per day produce distant ground motions that, although too
weak to be felt, are readily detected with modern instruments anywhere on the globe.
Seismology is the science that studies these waves and what they tell us about the
structure of Earth and the physics of earthquakes. It is the primary means by which
scientists learn about Earth’s deep interior, where direct observations are impossible,
and has provided many of the most important discoveries regarding the nature of
our planet. It is also directly concerned with understanding the physical processes
that cause earthquakes and seeking ways to reduce their destructive impacts on
humanity.

Seismology occupies an interesting position within the more general fields of geo-
physics and Earth sciences. It presents fascinating theoretical problems involving
analysis of elastic wave propagation in complex media, but it can also be applied
simply as a tool to examine different areas of interest. Applications range from stud-
ies of Earth’s core, thousands of kilometers below the surface, to detailed mapping of
shallow crustal structure to help locate petroleum deposits. Much of the underlying
physics is no more advanced than Newton’s second law (F = ma), but the compli-
cations introduced by realistic sources and structures have motivated sophisticated
mathematical treatments and extensive use of powerful computers. Seismology is
driven by observations, and improvements in instrumentation and data availability
have often led to breakthroughs both in seismology theory and our understanding
of Earth structure.

The information that seismology provides has widely varying degrees of un-
certainty. Some parameters, such as the average compressional wave travel time
through the mantle, are known to a fraction of a percent, while others, such as the
degree of damping of seismic energy within the inner core, are known only very ap-
proximately. The average radial seismic velocity structure of Earth has been known
fairly well for over fifty years, and the locations and seismic radiation patterns of
earthquakes are now routinely mapped, but many important aspects of the physics
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2 CHAPTER 1. INTRODUCTION

of earthquakes themselves remain a mystery.

1.1 A Brief History of Seismology

Seismology is a comparatively young science that has only been studied quantita-
tively for about 100 years. Reviews of the history of seismology include Dewey and
Byerly (1969) and Agnew (2002). Early thinking about earthquakes was, as one
might expect, superstitious and not very scientific. It was noted that earthquakes
and volcanoes tended to go together, and explanations for earthquakes involving
underground explosions were common. In the early 1800s the theory of elastic wave
propagation began to be developed by Cauchy, Poisson, Stokes, Rayleigh, and others
who described the main wave types to be expected in solid materials. These include
compressional and shear waves, termed body waves since they travel through solid
volumes, and surface waves, which travel along free surfaces. Since compressional
waves travel faster than shear waves and arrive first, they are often called primary
or P -waves, whereas the later arriving shear waves are called secondary or S-waves.
At this time theory was ahead of seismic observations, since these waves were not
identified in Earth until much later.

In 1857 a large earthquake struck near Naples. Robert Mallet, an Irish engineer
interested in quakes, traveled to Italy to study the destruction caused by the event.
His work represented the first significant attempt at observational seismology and
described the idea that earthquakes radiate seismic waves away from a focus point
(now called the hypocenter) and that they can be located by projecting these waves
backward to the source. Mallet’s analysis was flawed since he assumed that earth-
quakes are explosive in origin and only generate compressional waves. Nevertheless,
his general concept was sound, as were his suggestions that observatories be estab-
lished to monitor earthquakes and his experiments on measuring seismic velocities
using artificial sources.

Early seismic instrumentation was based on undamped pendulums, which did
not continuously record time, although sometimes an onset time was measured. The
first time-recording seismograph was built in Italy by Filippo Cecchi in 1875. Soon
after this, higher quality instruments were developed by the British in Japan, begin-
ning with a horizontal pendulum design by James Ewing that recorded on a rotating
disk of smoked glass. The first observation of a distant earthquake, or teleseism, was
made in Potsdam in 1889 for a Japanese event. In 1897 the first North American
seismograph was installed at Lick Observatory near San Jose in California; this de-
vice was later to record the 1906 San Francisco earthquake. These early instruments
were undamped, and they could provide accurate estimates of ground motion only
for a short time at the beginning of shaking. In 1898 E. Wiechert introduced the
first seismometer with viscous damping, capable of producing useful records for the
entire duration of an earthquake. The first electromagnetic seismographs, in which
a moving pendulum is used to generate an electric current in a coil, were developed
in the early 1900s, by B. B. Galitzen, who established a chain of stations across
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Russia. All modern seismographs are electromagnetic, since these instruments have
numerous advantages over the purely mechanical designs of the earliest instruments.

The availability of seismograms recorded at a variety of ranges from earthquakes
led to rapid progress in determining Earth’s seismic velocity structure. By 1900
Richard Oldham reported the identification of P -, S-, and surface waves on seismo-
grams, and later (1906) he detected the presence of Earth’s core from the absence
of direct P and S arrivals at source–receiver distances beyond about 100◦. In 1909
Andrija Mohorovičić reported observations showing the existence of a velocity dis-
continuity separating the crust and mantle (this interface is now generally referred
to, somewhat irreverently, as the “Moho”). Tabulations of arrival times led to the
construction of travel time tables (arrival time as a function of distance from the
earthquake); the first widely used tables were produced by Zöppritz in 1907. Beno
Gutenberg published tables in 1914 with core phases (waves that penetrate or reflect
off the core) and reported the first accurate estimate for the depth of Earth’s fluid
core (2,900 km, very close to the modern value of 2,889 km). In 1936, Inge Lehmann
discovered the solid inner core, and in 1940 Harold Jeffreys and K. E. Bullen pub-
lished the final version of their travel time tables for a large number of seismic
phases. The JB tables are still in use today and contain times that differ by only a
few seconds from current models.

The travel times of seismic arrivals can be used to determine Earth’s average
velocity versus depth structure, and this was largely accomplished over fifty years
ago. The crust varies from about 6 km in thickness under the oceans to 30–50 km
beneath continents. The deep interior is divided into three main layers: the mantle,
the outer core, and the inner core (Fig. 1.1). The mantle is the solid rocky outer shell
that makes up 84% of our planet’s volume and 68% of the mass. It is characterized
by a fairly rapid velocity increase in the upper mantle between about 300 and
700 km depth, a region termed the transition zone, where several mineralogical
phase changes are believed to occur (including those at the 410- and 660-km seismic
discontinuities, shown as the dashed arcs in Fig. 1.1). Between about 700 km to near
the core–mantle-boundary (CMB), velocities increase fairly gradually with depth;
this increase is in general agreement with that expected from the changes in pressure
and temperature on rocks of uniform composition and crystal structure.

At the CMB, the P velocity drops dramatically from almost 14 km/s to about 8
km/s and the S velocity goes from about 7 km/s to zero. This change (larger than
the velocity contrast at Earth’s surface!) occurs at a sharp interface that separates
the solid mantle from the fluid outer core. Within the outer core, the P velocity
again increases gradually, at a rate consistent with that expected for a well-mixed
fluid. However, at a radius of about 1,221 km the core becomes solid, the P velocities
increase slightly, and non zero shear velocities are present. Earth’s core is believed
to be composed mainly of iron and the inner-core boundary (ICB) is thought to
represent a phase change in iron to a different crystal structure.

Earth’s internal density distribution is much more difficult to determine than
the velocity structure, since P and S travel times provide no direct constraints on
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Figure 1.1: Earth’s P velocity, S velocity, and density as a function of depth. Values are
plotted from the Preliminary Reference Earth Model (PREM) of Dziewonski and Anderson
(1981); except for some differences in the upper mantle, all modern Earth models are close
to these values. PREM is listed as a table in Appendix 1.

density. However, by using probable velocity versus density scaling relationships
and Earth’s known mass and moment of inertia, K. E. Bullen showed that it is
possible to infer a density profile similar to that shown in Figure 1.1. Modern
results from normal mode seismology, which provides more direct constraints on
density (although with limited vertical resolution), have generally proven consistent
with the older density profiles.

Seismic surveying using explosions and other artificial sources was developed
during the 1920s and 1930s for prospecting purposes in the oil producing regions of
Mexico and the United States. Early work involved measuring the travel time versus
distance of P -waves to determine seismic velocity at depth. Later studies focused
on reflections from subsurface layering (reflection seismology), which can achieve
high resolution when instruments are closely spaced. The common-midpoint (CMP)
stacking method for reflection seismic data was patented in 1956, leading to reduced
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Figure 1.2: Selected global earthquake locations from 1977 to 1994 (taken from the PDE
and ISC catalogs). Earthquakes occur along well-defined belts of seismicity; these are par-
ticularly prominent around the Pacific rim and along mid-oceanic ridges. We now know
that these belts define the edges of the tectonic plates within Earth’s rigid outermost layer
(see Fig. 1.3).

noise levels and higher-quality profiles. The Vibroseis method, also developed in the
1950s, applies signal-processing techniques to data recorded using a long-duration,
vibrating source.

The increasing number of seismic stations established in the early 1900s enabled
large earthquakes to be routinely located, leading to the discovery that earthquakes
are not randomly distributed but tend to occur along well-defined belts (Fig. 1.2).
However, the significance of these belts was not fully appreciated until the 1960s,
as part of the plate tectonics revolution in the Earth sciences. At that time, it
was recognized that Earth’s surface features are largely determined by the motions
of a small number of relatively rigid plates that drift slowly over geological time
(Fig. 1.3). The relative motions between adjacent plates give rise to earthquakes
along the plate boundaries. The plates are spreading apart along the mid-oceanic
ridges, where new oceanic lithosphere is being formed. This has caused the splitting
apart and separation of Europe and Africa from the Americas (the “continental
drift” hypothesized by Alfred Wegener in 1915). The plates are recycled back into
the mantle in the trenches and subduction zones around the Pacific margin. Large
shear faults, such as the San Andreas Fault in California, are a result of transverse
motion between plates. Plate boundaries across continents are often more diffuse and
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Figure 1.3: Earth’s major tectonic plates. The arrows indicate relative plate motions at
some of the plate boundaries. The plates are pulling apart along spreading centers, such as
the Mid-Atlantic Ridge, where new crust is being formed. Along the subduction zones in
the western Pacific, the Pacific Plate is sliding back down into the mantle. The San Andreas
Fault in California is a result of shear between the Pacific and North American Plates.

marked by distributed seismicity, such as occurs in the Himalayan region between
the northward moving Indian Plate and the Eurasian Plate.

In the 1960s, seismologists were able to show that the focal mechanisms (the type
of faulting as inferred from the radiated seismic energy) of most global earthquakes
are consistent with that expected from plate tectonic theory, thus helping to validate
the still emerging paradigm. However, considering the striking similarity between
Figures 1.2 and 1.3, why didn’t seismologists begin to develop the theory of plate
tectonics much earlier? In part, this can be attributed to the lower resolution of
the older earthquake locations compared to more modern results. However, a more
important reason was that seismologists, like most geophysicists at the time, did not
feel that ideas of continental drift had a sound physical basis. Thus they were unable
to fully appreciate the significance and implications of the earthquake locations, and
tended to interpret their results in terms of local and regional tectonics, rather than
a unifying global theory.

In 1923, H. Nakano introduced the theory for the seismic radiation from a double-
couple source (for about the next forty years, a controversy would rage over the ques-
tion of whether a single- or double-couple source is most appropriate for earthquakes,
despite the fact that theory shows that single-couple sources are physically impos-
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sible). In 1928, Kiyoo Wadati reported the first convincing evidence for deep focus
earthquakes (below 100 km depth). A few years earlier, H. H. Turner had located
some earthquakes at significant depth, but his analyses were not generally accepted
(particularly since he also located some events in the air above the surface!). Deep
focus events are typically observed along dipping planes of seismicity (often termed
Wadati–Benioff zones) that can extend to almost 700 km depth; these mark the lo-
cations of subducting slabs of oceanic lithosphere that are found surrounding much
of the Pacific Ocean. Figure 1.4 shows a cross section of the earthquake locations
in the Tonga subduction zone in the southwest Pacific, the world’s most active area
of deep seismicity. The existence of deep events was a surprising discovery because
the high pressures and temperatures that exist at these depths should make most
materials deform ductilely, without the sudden brittle failure that causes shallow
earthquakes in the crust. Even today the physical mechanism for deep events is not
well understood and is a continuing source of controversy.
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Figure 1.4: A vertical west–east cross section of the deep seismicity in the Tonga subduction
zone, showing selected earthquakes from the PDE and ISC catalogs between 1977 and 1994.
The seismicity marks where the lithosphere of the Pacific Plate is sinking down into the
mantle.

In 1946, an underwater nuclear explosion near Bikini Atoll led to the first detailed
seismic recordings of a nuclear bomb. Perhaps a more significant development, at
least for western government funding for seismology, was the 1949 testing of a Soviet
nuclear bomb. This led to an intense interest by the U.S. military in the ability of
seismology to detect nuclear explosions, estimate yields, and discriminate between
explosions and earthquakes. A surge in funding for seismology resulted, helping to
improve seismic instrumentation and expand government and university seismology
programs. In 1961 the Worldwide Standardized Seismograph Network (WWSSN)
was established, consisting of well-calibrated instruments with both short- and long-
period seismometers. The ready availability of records from these seismographs led
to rapid improvements in many areas of seismology, including the production of
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much more complete and accurate catalogs of earthquake locations and the long
overdue recognition that earthquake radiation patterns are consistent with double-
couple sources.

Records obtained from the great Chilean earthquake of 1960 were the first to
provide definitive observations of Earth’s free oscillations. Any finite solid will
resonate only at certain vibration frequencies, and these normal modes provide an
alternative to the traveling wave representation for characterizing the deformations
in the solid. Earth “rings” for several days following large earthquakes, and its
normal modes are seen as peaks in the power spectrum of seismograms. The 1960s
and 1970s saw the development of the field of normal mode seismology, which gives
some of the best constraints on the large-scale structure, particularly in density, of
Earth’s interior. Analyses of normal mode data also led to the development of many
important ideas in geophysical inverse theory, providing techniques for evaluating
the uniqueness and resolution of Earth models obtained from indirect observations.
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Figure 1.5: An approximate seismic velocity model derived for the Moon from observations
of quakes and surface impacts (from Goins et al., 1981). Velocities at greater depths (the
lunar radius is 1,737 km) are largely unconstrained owing to a lack of deep seismic waves in
the Apollo data set.

Between 1969 and 1972, seismometers were placed on the Moon by the Apollo
astronauts and the first lunar quakes were recorded. These include surface impacts,
shallow quakes within the top 100 km, and deeper quakes at roughly 800 to 1,000 km
depth. Lunar seismograms appear very different from those on Earth, with lengthy
wavetrains of high-frequency scattered energy. This has complicated their interpre-
tation, but a lunar crust and mantle have been identified, with a crustal thickness of
about 60 km (see Fig. 1.5). A seismometer placed on Mars by the Viking 2 probe in
1976 was hampered by wind noise and only one possible Mars quake was identified.

Although it is not practical to place seismometers on the Sun, it is possible to
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Figure 1.6: The velocity of sound within the Sun (adapted from Harvey, 1995).

detect oscillations of the solar surface by measuring the Doppler shift of spectral
lines. Such oscillations were first observed in 1960 by Robert Leighton, who discov-
ered that the Sun’s surface vibrates continually at a period of about five minutes
and is incoherent over small spatial wavelengths. These oscillations were initially
interpreted as resulting from localized gas movements near the solar surface, but
in the late 1960s several researchers proposed that the oscillations resulted from
acoustic waves trapped within the Sun. This idea was confirmed in 1975 when it
was shown that the pattern of observed vibrations is consistent with that predicted
for the free oscillations of the Sun, and the field of helioseismology was born. Anal-
ysis is complicated by the fact that, unlike Earth, impulsive sources analogous to
earthquakes are rarely observed; the excitation of acoustic energy is a continuous
process. However, many of the analysis techniques developed for normal mode seis-
mology can be applied, and the radial velocity structure of the Sun is now well
constrained (Fig. 1.6). Continuing improvements in instrumentation and dedicated
experiments promise further breakthroughs, including resolution of spatial and tem-
poral variations in solar velocity structure. In only a few decades, helioseismology
has become one of the most important tools for examining the structure of the Sun.

The advent of computers in the 1960s changed the nature of terrestrial seismol-
ogy, by enabling analyses of large data sets and more complicated problems, and
led to the routine calculation of earthquake locations. The first complete theoretical
seismograms for complicated velocity structures began to be computed at this time.
The computer era also has seen the rapid expansion of seismic imaging techniques
using artificial sources that have been applied extensively by the oil industry to map
shallow crustal structure. Beginning in 1976, data started to become available from
global seismographs in digital form, greatly facilitating quantitative waveform com-
parisons. In recent years, many of the global seismic stations have been upgraded to
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Figure 1.7: Lateral variations in S velocity at depths of 150, 550, 1000, 1600, 2200, and
2800 km in the mantle from Manners and Masters (2008). Velocity perturbations are con-
toured as shown, with black indicating regions that are more than 1.4% faster than average,
and white indicating velocities over 1.8% slower than average.

broadband, high dynamic range seismometers, and new instruments have been de-
ployed to fill in gaps in the global coverage. Large numbers of portable instruments
have also become available for specialized experiments in particular regions. Seismic
records are now far easier to obtain, with centralized archives providing online data
access in standard formats.

Earth’s average radial velocity and density structures were well established by
1970, including the existence of minor velocity discontinuities near 410- and 660-km
depth in the upper mantle. Attention then shifted to resolving lateral differences
in velocity structure, first by producing different velocity versus depth profiles for
different regions, and more recently by inverting seismic data directly for three-
dimensional velocity structures. The latter methods have been given the name
“tomography” by analogy to medical imaging techniques. During recent years, to-
mographic methods of increasing resolution have begun to provide spectacular im-
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ages of the structure of Earth’s crust and mantle at a variety of scale lengths. Local
earthquake tomography at scales from tens of hundreds of kilometers has imaged
details of crustal structure in many different regions, including the slow seismic ve-
locities found in sedimentary basins and the sharp velocity changes that can occur
near active fault zones.

Figure 1.7 shows seismic velocity perturbations in the mantle, as recently im-
aged using whole-Earth tomographic methods. Note that the velocity anomalies are
strongest at the top and bottom of the mantle, with high velocities beneath the
continents in the uppermost mantle and in a ring surrounding the Pacific in the
lowermost mantle. Many, but not all, geophysicists ascribe these fast velocities near
the core-mantle boundary to the pooling of cold descending slabs from current and
past subduction zones around the Pacific. The slow lowermost mantle S velocities
seen beneath the south-central Pacific have often been interpreted as a warm region
that may feed plumes and oceanic island volcanism, but differences between P and
S wave tomography models now indicate that the anomaly is largely compositional
in origin (e.g., Masters et al., 2000). Other features include ponding of slabs in the
transition zone between the 410 and 660-km discontinuties (see 550 km slice) as well
as some evidence for slabs in the midmantle beneath Tonga and South America (see
1000 km slice).

At shallower depths, reflection seismic experiments using controlled sources have
led to detailed images of crustal structure, both on land and beneath the oceans
(Fig. 1.8). The ability to image three-dimensional structures has greatly expanded
the power of seismology to help resolve many outstanding problems in the Earth
sciences. These include the structure of fault zones at depth, the deep roots of
continents, the properties of mineralogical phase changes in the mantle, the fate of
subducting slabs, the structure of oceanic spreading centers, the nature of convection
within the mantle, the complicated details of the core–mantle boundary region, and
the structure of the inner core.

Most of the preceding discussion is concerned with structural seismology, or us-
ing records of seismic waves to learn about Earth’s internal structure. Progress
has also been made in learning about the physics of earthquakes themselves. The
turning point came with the investigations following the 1906 San Francisco earth-
quake. H. F. Reid, an American engineer, studied survey lines across the fault taken
before and after the earthquake. His analysis led to the elastic rebound theory for
the origin of earthquakes in which a slow accumulation of shear stress and strain is
suddenly released by movement along a fault. Subsequent work has confirmed that
this mechanism is the primary cause of tectonic earthquakes in the crust and is ca-
pable of quickly releasing vast amounts of energy. Today, observations of large-scale
deformations following large earthquakes, using land- and satellite-based surveying
methods, are widely used to constrain the distribution of slip on subsurface faults.

The first widely used measure of earthquake size was the magnitude scale devel-
oped for earthquakes in southern California by Charles Richter and Beno Gutenberg
in 1935. Because the Richter scale is logarithmic, a small range of Richter magni-
tudes can describe large variations in earthquake size. The smallest earthquakes that
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Figure 1.8: An image of the axial magma chamber (AMC) beneath the East Pacific Rise
near 14◦15′S obtained through migration processing of reflection seismic data (from Kent
et al., 1994). The profile is about 7 km across, with the vertical axis representing the two-
way travel time of compressional waves between the surface of the ocean and the reflection
point. The sea floor is the reflector at about 3.5 s in the middle of the plot, while the
magma chamber appears at about 4.0 s and is roughly 750 m wide. Shallow axial magma
chambers are commonly seen beneath fast-spreading oceanic ridges, such as those in the
eastern Pacific, but not beneath slow-spreading ridges, such as the Mid-Atlantic Ridge.

are readily felt at the surface have magnitudes of about 3, while great earthquakes
such as the 1906 San Francisco earthquake have magnitudes of 8 or greater. A
number of different magnitude scales, applicable to different types of seismic obser-
vations, have now been developed that are based on Richter’s idea. However, most
of these scales are empirical and not directly related to properties of the source. A
more physically based measure of earthquake size, the seismic moment, was formu-
lated by Keiiti Aki in 1966. This led to the definition of the moment magnitude,
which remains on scale even for the earthquakes of magnitude 8 and greater.

Because catastrophic earthquakes occur rarely in any particular region, human-
ity often forgets how devastating these events can be. However, history should
remind us of their power to suddenly kill tens to thousands of people (see Table 1.1)
and of the importance of building earthquake resistant structures. Earth’s rapidly
increasing population, particularly in cities in seismically active regions, means that
future earthquakes may be even more deadly. The great earthquake and tsunami
of December 2004 killed over 250,000 people in Sumatra and around the northeast
Indian ocean. This earthquake was the first magnitude 9+ earthquake recorded by
modern broadband seismographs (instruments were much more primitive for the
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Table 1.1: Earthquakes with 70,000 or more deaths.
Year Location Magnitude Deaths
856 Damghan, Iran 200,000
893 Ardabil, Iran 150,000

1138 Aleppo, Syria 230,000
1290 Chihli, China 100,000
1556 Shansi, China ∼8 830,000
1667 Shemakha, Caucasia 80,000
1727 Tabriz, Iran 77,000
1755 Lisbon, Portugal 8.7 70,000
1908 Messina, Italy 7.2 ∼85,000
1920 Gansu, China 7.8 200,000
1923 Kanto, Japan 7.9 143,000
1927 Tsinghai, China 7.9 200,000
1932 Gansu, China 7.6 70,000
1948 Ashgabat, Turkmenistan 7.3 110,000
1976 Tangshan, China 7.5 255,000
2004 Sumatra 9.1 283,106
2005 Pakistan 7.6 86,000
2008 Eastern Sichuan, China 7.9 87,652

Source: http://earthquake.usgs.gov/regional/world/most destructive.php

1960 Chile and 1964 Alaskan earthquakes). The Sumatra earthquake lasted over 8
minutes and ruptured about 1300 km of fault (see Fig. 1.9). Seismic wave displace-
ments caused by this event were over a centimeter when its surface waves crossed
the United States, over 12,000 kilometers away. The radiated seismic energy from
this earthquake has been estimated as 1.4 to 3 ×1017 Joules (Kanamori, 2006; Choy
and Boatwright, 2007). Normal modes excited by this earthquake could be observed
for several months as the Earth continued to vibrate at very long periods.

During the past few decades, large networks of seismometers have been deployed
in seismically active regions to map out patterns of earthquake activity, and strong
motion instruments have been used to obtain on-scale recordings near large earth-
quakes. It has become possible to map the time–space history of the slip distribu-
tion on faults during major earthquakes. Despite these advances, many fundamental
questions regarding the nature of earthquakes remain largely unanswered, including
the origin of deep events and the processes by which the rupture of a crustal fault
initiates, propagates, and eventually comes to a halt. It is perhaps in these areas
of earthquake physics that some of seismology’s most important future discoveries
remain to be made.

1.2 EXERCISES

1. The radii of the Earth, Moon, and Sun are 6,371 km, 1,738 km, and 6.951 ×
105 km, respectively. From Figures 1.1, 1.5, and 1.6, make a rough estimate
of how long it takes a P -wave to traverse the diameter of each body.
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Figure 1.9: The 2004 Sumatra-Andaman earthquake as imaged by Ishii et al. (2005) using
high-frequency data from the Japanese Hi-Net array. Note the good agreement between the
1300-km-long rupture zone and the locations of the first 35 days of aftershocks (small dots).

2. Assuming that the P velocity in the ocean is 1.5 km/s, estimate the minimum
and maximum water depths shown in Figure 1.8. If the crustal P velocity is 5
km/s, what is the depth to the top of the magma chamber from the sea floor?

3. Assume that the S velocity perturbations plotted at 200 km depth in Figure
1.7 extend throughout the uppermost 300 km of the mantle. Estimate how
many seconds earlier a vertically upgoing S-wave will arrive at a seismic station
in the middle of Canada, compared to a station in the eastern Pacific. Ignore
any topographic or crustal thickness differences between the sites; consider
only the integrated travel time difference through the upper mantle.

4. Earthquake moment is defined as M0 = µDA, where µ is the shear modulus,
D is the average displacement on the fault, and A is the fault area that slipped.
The moment of the 2004 Sumatra-Andaman earthquake has been estimated
to be about 1.0 × 1023 N m. Assuming that the fault is horizontal, crudely
estimate the slip area from the image shown in Figure 1.9. Assuming that the
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shear modulus µ = 3.0× 1010 N/m2, then compute the average displacement
on the fault.

5. Do some research on the web and find the energy release of the following: (a)
a 1 megaton nuclear explosion, (b) the yearly electricity consumption in the
United States, (c) yearly dissipation of tidal energy in Earth’s oceans, and
(d) the daily energy release of a typical hurricane. Express all your answers
in Joules (J) and compare these numbers to the seismic energy release of
the 2004 Sumatra earthquake (see text). Note that the total energy release
(including heat generated on the fault, etc.) of the Sumatra earthquake may
be significantly greater than the seismically radiated energy. This is discussed
in Chapter 9.
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Chapter 2

Stress and Strain

Any quantitative description of seismic wave propagation or of earthquake physics
requires the ability to characterize the internal forces and deformations in solid
materials. We now begin a brief review of those parts of stress and strain theory
that will be needed in subsequent chapters. Although this section is intended to be
self-contained, we will not derive many equations and the reader is referred to any
continuum mechanics text (Malvern, 1969, is a classic but there are many others)
for further details.

Deformations in three-dimensional materials are termed strain; internal forces
between different parts of the medium are called stress. Stress and strain do not exist
independently in materials; they are linked through the constitutive relationships
that describe the nature of elastic solids.

2.1 The Stress Tensor

Consider an infinitesimal plane of arbitrary orientation
within a homogenous elastic medium in static equilibrium.
The orientation of the plane may be specified by its unit
normal vector, n̂. The force per unit area exerted by the
side in the direction of n̂ across this plane is termed the
traction and is represented by the vector t(n̂) = (tx, ty, tz).
If t acts in the direction shown here, then the traction force

t

n

is pulling the opposite side toward the interface. This definition is the usual conven-
tion in seismology and results in extensional forces being positive and compressional
forces being negative. In some other fields, such as rock mechanics, the definition is
reversed and compressional forces are positive. There is an equal and opposite force
exerted by the side opposing n̂, such that t(−n̂) = −t(n̂). The part of t which is
normal to the plane is termed the normal stress, that which is parallel is called the
shear stress. In the case of a fluid, there are no shear stresses and t = −P n̂, where
P is the pressure.

In general, the magnitude and direction of the traction vector will vary as a
function of the orientation of the infinitesimal plane. Thus, to fully describe the
internal forces in the medium, we need a general method for determining t as a

17
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Figure 2.1: The traction vectors t(x̂), t(ŷ), and t(ẑ) describe the forces on the faces of an
infinitesimal cube in a Cartesian coordinate system.

function of n̂. This is accomplished with the stress tensor, which provides a linear
mapping between n̂ and t. The stress tensor, τττ , in a Cartesian coordinate system
(Fig. 2.1) may be defined1 by the tractions across the yz, xz, and xy planes:

τττ =

 tx(x̂) tx(ŷ) tx(ẑ)
ty(x̂) ty(ŷ) ty(ẑ)
tz(x̂) tz(ŷ) tz(ẑ)

 =

 τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 . (2.1)

Because the solid is in static equilibrium, there can be no net rotation from the
shear stresses. For example, consider the shear stresses in
the xz plane. To balance the torques, τxz = τzx. Simi-
larly, τxy = τyx and τyz = τzy, and the stress tensor τττ is
symmetric, that is,

τττ = τττT =

 τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

 (2.2)

xz

zx

xz

zx

x

z

The stress tensor τττ contains only 6 independent elements, and these are sufficient
to completely describe the state of stress at a given point in the medium.

The traction across any arbitrary plane of orientation defined by n̂ may be
obtained by multiplying the stress tensor by n̂, that is,

t(n̂) = τττ n̂ =

 tx(n̂)
ty(n̂)
tz(n̂)

 =

 τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

 n̂x

n̂y

n̂z

 . (2.3)

This can be shown by summing the forces on the surfaces of a tetrahedron (the
Cauchy tetrahedron) bounded by the plane normal to n̂ and the xy, xz, and yz
planes.

The stress tensor is simply the linear operator that produces the traction vector
t from the normal vector n̂, and, in this sense, the stress tensor exists independent
of any particular coordinate system. In seismology we almost always write the
stress tensor as a 3 × 3 matrix in a Cartesian geometry. Note that the symmetry

1Often the stress tensor is defined as the transpose of (2.1) so that the first subscript of τττ

represents the surface normal direction. In practice, it makes no difference as τττ is symmetric.
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requirement reduces the number of independent parameters in the stress tensor to
six from the nine that are present in the most general form of a second-order tensor
(scalars are considered zeroth-order tensors, vectors are first order, etc.).

The stress tensor will normally vary with position in a material; it is a measure
of the forces acting on infinitesimal planes at each point in the solid. Stress provides
a measure only of the forces exerted across these planes and has units of force per
unit area. However, other forces may be present (e.g., gravity); these are termed
body forces and have units of force per unit volume or mass.

2.1.1 Example: Computing the traction vector

Suppose we are given that the horizontal components of the stress tensor are

τττ =
[
τxx τxy

τxy τyy

]
=
[
−40 −10
−10 −60

]
MPa.

Assuming this is a two-dimensional problem, let us compute the forces acting
across a fault oriented at 45◦ (clockwise) from the x-axis. We typically assume
that the x-axis points east and the y-axis points north, so in this case the fault
is trending from the northwest to the southeast. To compute the traction vector
from equation (2.3), we need the normal vector n̂. This vector is perpendicular
to the fault and thus points to the northeast, or parallel to the vector (1,1) in
our (x, y) coordinate system. However, remember that n̂ is a unit vector and
thus we must normalize its length to obtain

n̂ =
[

1/
√

2
1/
√

2

]
=
[

0.7071
0.7071

]
.

Substituting into (2.3), we have

t(n̂) = τττ n̂ =
[
−40 −10
−10 −60

] [
1/
√

2
1/
√

2

]
=
[
−50/

√
2

−70/
√

2

]
≈
[
−35.4
−49.4

]
MPa.

Note that the traction vector points approximately southwest (see Fig. 2.2).
This is the force exerted by the northeast side of the fault (i.e., in the direction
of our normal vector) on the southwest side of the fault. Thus we see that there
is fault normal compression on the fault. To resolve the normal and shear stress
on the fault, we compute the dot products with unit vectors perpendicular (n̂)
and parallel (f̂) to the fault

tN = t · n̂ = (−50/
√

2,−70/
√

2) · (1/
√

2, 1/
√

2) = −60 MPa

tS = t · f̂ = (−50/
√

2,−70/
√

2) · (1/
√

2,−1/
√

2) = 10 MPa

The fault normal compression is 60 MPa. The shear stress is 10 MPa.

2.1.2 Principal axes of stress

For any stress tensor, it is always possible to find a direction n̂ such that there are
no shear stresses across the plane normal to n̂, that is, t(n̂) points in the n̂ direction.
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Figure 2.2: The fault tractions and principal stresses for Examples 2.1.1 and 2.1.3.

In this case

t(n̂) = λn̂ = τττ n̂,

τττ n̂− λn̂ = 0, (2.4)
(τττ − λI)n̂ = 0,

where I is the identity matrix and λ is a scalar. This is an eigenvalue problem that
has a nontrivial solution only when the determinant vanishes

det[τττ − λI] = 0. (2.5)

This is a cubic equation with three solutions, the eigenvalues λ1, λ2, and λ3 (do
not confuse these with the Lamé parameter λ that we will discuss later). Since τττ
is symmetric and real, the eigenvalues are real. Corresponding to the eigenvalues
are the eigenvectors n̂(1), n̂(2), and n̂(3). The eigenvectors are orthogonal and define
the principal axes of stress. The planes perpendicular to these axes are termed the
principal planes. We can rotate τττ into the n̂(1), n̂(2), n̂(3) coordinate system by
applying a similarity transformation (see Appendix B for details about coordinate
rotations and transformation tensors):

τττR = NTτττN =

 τ1 0 0
0 τ2 0
0 0 τ3

 , (2.6)

where τττR is the rotated stress tensor and τ1, τ2, and τ3 are the principal stresses
(identical to the eigenvalues λ1, λ2, and λ3). Here N is the matrix of eigenvectors

N =


n

(1)
x n

(2)
x n

(3)
x

n
(1)
y n

(2)
y n

(3)
y

n
(1)
z n

(2)
z n

(3)
z

 , (2.7)

with NT = N−1 for orthogonal eigenvectors normalized to unit length.
By convention, the three principal stresses are sorted by size, such that |τ1| >

|τ2| > |τ3|. The maximum shear stress occurs on planes at 45◦ to the maximum
and minimum principle stress axes. In the principal axes coordinate system, one of
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these planes has normal vector n̂ = (1/
√

2, 0, 1/
√

2). The traction vector for the
stress across this plane is

t(45◦) =

 τ1 0 0
0 τ2 0
0 0 τ3

 1/
√

2
0

1/
√

2

 =

 τ1/
√

2
0

τ3/
√

2

 . (2.8)

This can be decomposed into normal and shear stresses on the plane:

tN (45◦) = t(45◦) · (1/
√

2, 0, 1/
√

2) = (τ1 + τ3)/2 (2.9)
tS(45◦) = t(45◦) · (1/

√
2, 0,−1/

√
2) = (τ1 − τ3)/2 (2.10)

and we see that the maximum shear stress is (τ1 − τ3)/2.
If τ1 = τ2 = τ3, then the stress field is called hydrostatic and there are no planes

of any orientation in which shear stress exists. In a fluid the stress tensor can be
written

τττ =

 −P 0 0
0 −P 0
0 0 −P

 , (2.11)

where P is the pressure.

2.1.3 Example: Computing the principal axes

Let us compute the principal axes for our previous example, for which the 2-D
stress tensor is given by

τττ =
[
−40 −10
−10 −60

]
MPa

From equation (2.5), we have

det
[
−40− λ −10
−10 −60− λ

]
= 0

or

(−40− λ)(−60− λ)− (−10)2 = 0
λ2 + 100λ+ 2300 = 0

This quadratic equation has roots λ1 = -64.14 and λ2 = -35.86. Substituting
into equation (2.4), we have two eigenvector equations[

24.14 −10
−10 4.14

] [
n

(1)
x

n
(1)
y

]
= 0 and

[
−4.14 −10
−10 −24.14

] [
n

(2)
x

n
(2)
y

]
= 0

with solutions for the two eigenvectors (normalized to unit length) of

n̂(1) =
[

0.3827
0.9239

]
and n̂(2) =

[
−0.9239

0.3827

]
.
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Note that these vectors are orthogonal (n̂(1) · n̂(2) = 0) and define the principal
stress axes. The maximum compressive stress is in the direction n̂(1), or at an
angle to 67.5◦ with the x-axis (see Fig. 2.2). The eigenvector matrix is

N =
[
n

(1)
x n

(2)
x

n
(1)
y n

(2)
y

]
=
[

0.383 −0.924
0.924 0.383

]
which we can use to rotate τττ into the principal stress coordinate system:

τττR = NT τττN =
[

0.383 0.924
−0.924 0.383

] [
−40 −10
−10 −60

] [
0.383 −0.924
0.924 0.383

]
=

[
−64.14 0

0 −35.86

]
MPa

As expected, the principal stresses are simply the eigenvalues, λ1 and λ2. In
practice, matrix eigenvector problems are most easily solved using software such
as Matlab or Mathematica, or an appropriate computer subroutine. A Matlab
script to solve this example is given in the supplemental web material.

2.1.4 Deviatoric stress

Stresses in the deep Earth are dominated by the large compressive stress from the
hydrostatic pressure. Often it is convenient to consider only the much smaller devia-
toric stresses, which are computed by subtracting the mean normal stress (given by
the average of the principle stresses, that is τm = (τ1 + τ2 + τ3)/3) from the diagonal
components of the stress tensor, thus defining the deviatoric stress tensor

τττD =

 τxx − τm τxy τxz

τxy τyy − τm τyz

τxz τyz τzz − τm

 (2.12)

It should be noted that the trace of the stress tensor is invariant with respect to
rotation, so the mean stress τm can be computed by averaging the diagonal elements
of τττ without computing the eigenvalues (i.e., τm = (τ11 + τ22 + τ33)/3). In addition,
the deviatoric stress tensor has the same principal stress axes as the original stress
tensor.

The stress tensor can then be written as the sum of two parts, the hydrostatic
stress tensor τmI and the deviatoric stress tensor τττD

τττ = τmI + τττD =

 −p 0 0
0 −p 0
0 0 −p

+

 τxx + p τxy τxz

τxy τyy + p τyz

τxz τyz τzz + p

 (2.13)

where p = −τm is the mean normal pressure. For isotropic materials (see section
2.3), hydrostatic stress produces volume change without any change in the shape;
it is the deviatoric stress that causes shape changes.
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Table 2.1: Pressure versus depth inside Earth.
Depth (km) Region Pressure (GPa)

0–24 Crust 0–0.6
24–400 Upper Mantle 0.6–13.4
400–670 Transition Zone 13.4–23.8
670–2891 Lower Mantle 23.8–135.8
2891–5150 Outer Core 135.8–328.9
5150–6371 Inner Core 328.9–363.9

2.1.5 Values for stress

Stress has units of force per unit area. In SI units

1 pascal (Pa) = 1 N m−2.

Recall that 1 newton (N) = 1 kg m s−2 = 105 dyne. Another commonly used unit
for stress is the bar:

1 bar = 105 Pa,
1 kbar = 108 Pa = 100 MPa,

1 Mbar = 1011 Pa = 100 GPa.

Pressure increases rapidly with depth in Earth, as shown in Table 2.1 using
values taken from the reference model PREM (Dziewonski and Anderson, 1981).
Pressures reach 13.4 GPa at 400 km depth, 136 GPa at the core–mantle boundary,
and 329 GPa at the inner-core boundary. In contrast, the pressure at the center of
the Moon is only about 4.8 GPa, a value reached in Earth at 150 km depth (Latham
et al., 1969). This is a result of the much smaller mass of the Moon.

These are the hydrostatic pressures inside Earth; shear stresses at depth are
much smaller in magnitude and include stresses associated with mantle convection
and the dynamic stresses caused by seismic wave propagation. Static shear stresses
can be maintained in the upper, brittle part of the crust. Measuring shear stress in
the crust is a topic of current research and the magnitude of the stress is a subject
of some controversy. Crustal shear stress is probably between about 100 and 1,000
bars (10 to 100 MPa), with a tendency for lower stresses to occur close to active
faults (which act to relieve the stress).

2.2 The Strain Tensor

Now let us consider how to describe changes in the positions of points within a
continuum. The location of a particular particle at time t relative to its position at
a reference time t0 can be expressed as a vector field, that is, the displacement field
u is given by

u(r0, t) = r− r0, (2.14)
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where r is the position of the point at time t and x0 is the reference location of
the point. This approach of following the displacements of particles specified by
their original positions at some reference time is called the Lagrangian description
of motion in a continuum and is almost always the most convenient formulation in
seismology.2 As we will discuss in chapter 11, seismometers respond to the motion
of the particles in the Earth connected to the instrument and thus provide a record
of Lagrangian motion. The particle displacement is u(t), the particle velocity is
∂u/∂t, and the particle acceleration is ∂2u/∂t2.

The displacement field, u, is an important concept and we will refer to it often
in this book. It is an absolute measure of position changes. In contrast, strain is
a local measure of relative changes in the displacement field, that is, the spatial
gradients in the displacement field. Strain is related to the deformation, or change
in shape, of a material rather than any absolute change in position. For example,
extensional strain is defined as the change in length with respect to length. If a
100 m long string is fixed at one end and uniformly stretched to a length of 101 m,
then the displacement field varies from 0 to 1 m along the string, whereas the strain
field is constant at 0.01 (1%) everywhere in the string.

Consider the displacement u = (ux, uy, uz) at position x, a small distance away
from a reference position x0:

u(x0)
u(x)

x0 x
d

u(x0)

We can expand u in a Taylor series to obtain

u(x) =

ux

uy

uz

 = u(x0) +


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy

∂x
∂uy

∂y
∂uy

∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z


 dx

dy

dz

 = u(x0) + Jd, (2.15)

where d = x−x0. We have ignored higher order terms in the expansion by assuming
that the partials, ∂ux/∂x, ∂uy/∂x, etc., are small enough that their products can
be ignored (the basis for infinitesimal strain theory). Seismology is fortunate that
actual Earth strains are almost always small enough that this approximation is valid.
We can separate out rigid rotations by dividing J into symmetric and antisymmetric
parts:

J =


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy

∂x
∂uy

∂y
∂uy

∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z

 = e + ΩΩΩ, (2.16)

2The alternative approach of examining whatever particle happens to occupy a specified location
is termed the Eulerian description and is often used in fluid mechanics.
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Figure 2.3: The different effects of the strain tensor e and the rotation tensor ΩΩΩ are
illustrated by the deformation of a square in the x−z plane. The off-diagonal components of
e cause shear deformation (left square), whereas ΩΩΩ causes rigid rotation (right square). The
deformations shown here are highly exaggerated compared to those for which infinitesimal
strain theory is valid.

where the strain tensor, e, is symmetric (eij = eji) and is given by

e =


∂ux
∂x

1
2

(
∂ux
∂y + ∂uy

∂x

)
1
2

(
∂ux
∂z + ∂uz

∂x

)
1
2

(
∂uy

∂x + ∂ux
∂y

)
∂uy

∂y
1
2

(
∂uy

∂z + ∂uz
∂y

)
1
2

(
∂uz
∂x + ∂ux

∂z

)
1
2

(
∂uz
∂y + ∂uy

∂z

)
∂uz
∂z

 , (2.17)

and the rotation tensor, ΩΩΩ, is antisymmetric (Ωij = −Ωji) and is given by

ΩΩΩ =


0 1

2

(
∂ux
∂y − ∂uy

∂x

)
1
2

(
∂ux
∂z − ∂uz

∂x

)
−1

2

(
∂ux
∂y − ∂uy

∂x

)
0 1

2

(
∂uy

∂z − ∂uz
∂y

)
−1

2

(
∂ux
∂z − ∂uz

∂x

)
−1

2

(
∂uy

∂z − ∂uz
∂y

)
0

 . (2.18)

The reader should verify that e + ΩΩΩ = J.
The effect of e and ΩΩΩ may be illustrated by considering what happens to an

infinitesimal cube (Fig. 2.3). The off-diagonal elements of e cause shear strain; for
example, in two-dimensions, if ΩΩΩ = 0 and we assume ∂ux/∂x = ∂uz/∂z = 0, then
∂ux/∂z = ∂uz/∂x, and

J = e =
[
0 θ
θ 0

]
=
[

0 ∂ux
∂z

∂uz
∂x 0

]
, (2.19)

where θ is the angle (in radians, not degrees!) through which each side rotates. Note
that the total change in angle between the sides is 2θ.

In contrast, the ΩΩΩ matrix causes rigid rotation, for example, if e = 0, then
∂ux/∂z = −∂uz/∂x and

J = ΩΩΩ =
[

0 θ
−θ 0

]
=
[

0 ∂ux
∂z

∂uz
∂x 0

]
. (2.20)
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In both of these cases there is no volume change in the material. The relative volume
increase, or dilatation, ∆ = (V − V0)/V0, is given by the sum of the extensions in
the x, y, and z directions:

∆ =
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z
= tr[e] = ∇ · u, (2.21)

where tr[e] = e11 + e22 + e33, the trace of e. Note that the dilatation is given by the
divergence of the displacement field.

What about the curl of the displacement field? Recall the definition of the curl
of a vector field:

∇× u =
(
∂uz

∂y
− ∂uy

∂z

)
x̂ +

(
∂ux

∂z
− ∂uz

∂x

)
ŷ +

(
∂uy

∂x
− ∂ux

∂y

)
ẑ. (2.22)

A comparison of this equation with (2.18) shows that ∇× u is nonzero only if ΩΩΩ is
nonzero and the displacement field contains some rigid rotation.

The strain tensor, like the stress tensor, is symmetric and contains six inde-
pendent parameters. The principal axes of strain may be found by computing the
directions n̂ for which the displacements are in the same direction, that is,

u = λn̂ = en̂. (2.23)

This is analogous to the case of the stress tensor discussed in the previous section.
The three eigenvalues are the principal strains, e1, e2, and e3, while the eigenvectors
define the principal axes. Note that, except in the case e1 = e2 = e3 (hydrostatic
strain), there is always some shear strain present.

For example, consider a two-dimensional square with extension only in the x
direction (Fig. 2.4), so that e is given by

e =
[
e1 0
0 0

]
=
[ ∂ux

∂x 0
0 0

]
. (2.24)

Angles between lines parallel to the coordinate axes do not change, but lines at
intermediate angles are seen to rotate. The angle changes associated with shearing
become obvious if we consider the diagonal lines at 45◦ with respect to the square.
If we rotate the coordinate system (see Appendix B) by 45 degrees as defined by
the unit vectors (1/

√
2, 1/

√
2) and (−1/

√
2, 1/

√
2) we obtain

e′ =
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

] [
e1 0
0 0

] [
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
=
[

e1/2 −e1/2
−e1/2 e1/2

]
(2.25)

and we see that the strain tensor now has off-diagonal terms. As we will see in the
next chapter, the type of deformation shown in Figure 2.4 would be produced by a
seismic P wave traveling in the x direction; our discussion here shows how P waves
involve both compression and shearing.

In subsequent sections, we will find it helpful to express the strain tensor using
index notation. Equation (2.17) can be rewritten as

eij = 1
2(∂iuj + ∂jui), (2.26)

where i and j are assumed to range from 1 to 3 (for the x, y, and z directions) and
we are using the notation ∂xuy = ∂uy/∂x.
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z

x

Figure 2.4: Simple extensional strain in the x direction results in shear strain; internal
angles are not preserved.

2.2.1 Values for strain

Strain is dimensionless since it represents a change in length divided by length.
Dynamic strains associated with the passage of seismic waves in the far field are
typically less than 10−6.

2.2.2 Example: Computing strain for a seismic wave

A seismic plane shear wave is traveling through a solid with displacement that
can locally be approximated as

uz = A sin [2πf(t− x/c)]

where A is the amplitude, f is the frequency and c is the velocity of the wave.
What is the maximum strain for this wave?

The non-zero partial derivative from equation (2.17) is

∂uz

∂x
=
−2πfA

c
cos [2πf(t− x/c)]

The maximum occurs when cos = −1 and is thus(
∂uz

∂x

)
max

=
2πfA
c

For example, if f = 2 Hz, c = 3.14 km/s (3140 m/s) and A = 1 mm (10−3 m),
then ∂uz/∂x(max) = 4× 10−6 and the strain tensor is given by

εmax =

 0 0 2× 10−6

0 0 0
2× 10−6 0 0



2.3 The Linear Stress–Strain Relationship

Stress and strain are linked in elastic media by a stress–strain or constitutive rela-
tionship. The most general linear relationship between the stress and strain tensors
can be written

τij = cijklekl ≡
3∑

k=1

3∑
l=1

cijklekl, (2.27)
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where cijkl is termed the elastic tensor. Here we begin using the summation con-
vention in our index notation. Any repeated index in a product indicates that the
sum is to be taken as the index varies from 1 to 3. Equation (2.27) is sometimes
called the generalized Hooke’s law and assumes perfect elasticity; there is no energy
loss or attenuation as the material deforms in response to the applied stress (some-
times these effects are modeled by permitting cijkl to be complex). A solid obeying
(2.27) is called linearly elastic. Non-linear behavior is sometimes observed in seis-
mology (examples include the response of some soils to strong ground motions and
the fracturing of rock near earthquakes and explosions) but the non-linearity greatly
complicates the mathematics. In this chapter we only consider linearly elastic solids,
deferring a discussion of anelastic behavior and attenuation until Chapter 6. Note
that stress is not sensitive to the rotation tensor Ω; stress changes are caused by
changes in the volume or shape of solids, as defined by the strain tensor, rather than
by rigid rotations.

Equation (2.27) should not be applied to compute the strain for the large values
of hydrostatic stress that are present within Earth’s interior (see Table 2.1). These
strains, representing the compression of rocks under high pressure, are too large for
linear stress-strain theory to be valid. Instead, this equation applies to perturbations
in stress, termed incremental stresses, with respect to an initial state of stress at
which the strain is assumed to be zero. This is standard practice in seismology and
we will assume throughout this section that stress is actually defined in terms of
incremental stress.

The elastic tensor, cijkl, is a fourth-order tensor with 81 (34) components. How-
ever, because of the symmetry of the stress and strain tensors and thermodynamic
considerations, only 21 of these components are independent. These 21 components
are necessary to specify the stress–strain relationship for the most general form of
elastic solid. The properties of such a solid may vary with direction; if they do,
the material is termed anisotropic. In contrast, the properties of an isotropic solid
are the same in all directions. Isotropy has proven to be a reasonable first-order
approximation for much of the Earth’s interior, but in some regions anisotropy has
been observed and this is an important area of current research (see Section 11.3
for more about anisotropy).

If we assume isotropy (cijkl is invariant with respect to rotation), it can be shown
that the number of independent parameters is reduced to two:

cijkl = λδijδkl + µ(δilδjk + δikδjl), (2.28)

where λ and µ are called the Lamé parameters of the material and δij is the Kro-
necker delta (δij = 1 for i = j, δij = 0 for i 6= j). Thus, for example, C1111 = λ+2µ,
C1112 = 0, C1122 = λ, C1212 = µ, etc. As we shall see, the Lamé parameters,
together with the density, will eventually determine the seismic velocities of the
material. The stress–strain equation (2.27) for an isotropic solid is

τij = [λδijδkl + µ(δilδjk + δikδjl)]ekl

= λδijekk + 2µeij , (2.29)
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where we have used eij = eji to combine the µ terms. Note that ekk = tr[e], the
sum of the diagonal elements of e. Using this equation, we can directly write the
components of the stress tensor in terms of the strains:

τττ =

λ tr[e] + 2µe11 2µe12 2µe13
2µe21 λ tr[e] + 2µe22 2µe23
2µe31 2µe32 λ tr[e] + 2µe33

 . (2.30)

The two Lamé parameters completely describe the linear stress–strain relation within
an isotropic solid. µ is termed the shear modulus and is a measure of the resistance
of the material to shearing. Its value is given by half of the ratio between the applied
shear stress and the resulting shear strain, that is, µ = τxy/2exy. The other Lamé
parameter, λ, does not have a simple physical explanation. Other commonly used
elastic constants for isotropic solids include:

Young’s modulus E: The ratio of extensional stress to the resulting extensional
strain for a cylinder being pulled on both ends. It can be shown that

E =
(3λ+ 2µ)µ
λ+ µ

. (2.31)

Bulk modulus κ: The ratio of hydrostatic pressure to the resulting volume change,
a measure of the incompressibility of the material. It can be expressed as

κ = λ+ 2
3µ. (2.32)

Poisson’s ratio σ: The ratio of the lateral contraction of a cylinder (being pulled on
its ends) to its longitudinal extension. It can be expressed as

σ =
λ

2(λ+ µ)
. (2.33)

In seismology, we are mostly concerned with the compressional (P ) and shear (S)
velocities. As we will show later, these can be computed from the elastic constants
and the density, ρ:

P velocity, α, can be expressed as

α =

√
λ+ 2µ
ρ

. (2.34)

S velocity, β, can be expressed as

β =
√
µ

ρ
. (2.35)

Poisson’s ratio σ is often used as a measure of the relative size of the P and S
velocities; it can be shown that

σ =
α2 − 2β2

2(α2 − β2)
=

(α/β)2 − 2
2(α/β)2 − 2

. (2.36)
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Note that σ is dimensionless and varies between 0 and 0.5 with the upper limit
representing a fluid (µ = 0). For a Poisson solid, λ = µ, σ = 0.25, and α/β =

√
3

and this is a common approximation in seismology for estimating the S velocity from
the P velocity and vice-versa. Note that the minimum possible P -to-S velocity ratio
for an isotropic solid is

√
2, which occurs when λ = σ = 0. Most crustal rocks have

Poisson’s ratios between 0.25 and 0.30.
Although many different elastic parameters have been defined, it should be noted

that two parameters and density are sufficient to give a complete description of
isotropic elastic properties. In seismology, these parameters are often simply the
P and S velocities. Other elastic parameters can be computed from the velocities,
assuming the density is also known.

2.3.1 Units for elastic moduli

The Lamé parameters, Young’s modulus, and the bulk modulus all have the same
units as stress (i.e., pascals). Recall that

1 Pa = 1 Nm−2 = 1 kg m−1s−2.

Note that when this is divided by density (kg m−3) the result is units of velocity
squared (appropriate for Equations 2.34 and 2.35).

2.4 EXERCISES

1. Assume that the horizontal components of the 2-D stress tensor are

τττ =
[
τxx τxy

τyx τyy

]
=
[
−30 −20
−20 −40

]
MPa

(a) Compute the normal and shear stresses on a fault that strikes 10◦ east
of north.

(b) Compute the principal stresses, and give the azimuths (in degrees east of
north) of the maximum and minimum compressional stress axes.

2. The principal stress axes for a 2-D geometry are oriented at N45◦E and
N135◦E, corresponding to principal stresses of -15 and -10 MPa. What are the
4 components of the 2-D stress tensor in a (x = east, y = north) coordinate
system?

3. Figure 2.5 shows a vertical-component seismogram of the 1989 Loma Prieta
earthquake recorded in Finland. Make an estimate of the maximum strain
recorded at this site. Hints: 1 micron = 10−6 m, note that the time axis is
in 100s of seconds, assume the Rayleigh surface wave phase velocity at the
dominant period is 3.9 km/s, remember that strain is ∂uz/∂x, Table 3.1 may
be helpful.
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Figure 2.5: A vertical component seismogram of the 1989 Loma Prieto earthquake in Cali-
fornia, recorded in Finland. This plot was taken from the Princeton Earth Physics Project,
PEPP, website at www.gns.cri.nz/outreach/qt/quaketrackers/curr/seismic waves.htm.

4. Using Equations (2.4), (2.23), and (2.30), show that the principal stress axes
always coincide with the principal strain axes for isotropic media. In other
words, show that if x is an eigenvector of e, then it is also an eigenvector of τττ .

5. From Equations (2.34) and (2.35) derive expressions for the Lamé parameters
in terms of the seismic velocities and density.

6. Seismic observations of S velocity can be directly related to the shear modulus
µ. However, P velocity is a function of both the shear and bulk moduli. For
this reason, sometimes seismologists will compute the bulk sound speed, defined
as:

Vc =
√
κ

ρ
(2.37)

which isolates the sensitivity to the bulk modulus κ. Derive an equation for
Vc in terms of the P and S velocities.

7. What is the P/S velocity ratio for a rock with a Poisson’s ratio of 0.30?

8. A sample of granite in the laboratory is observed to have a P velocity of 5.5
km/s and a density of 2.6 Mg/m3. Assuming it is a Poisson solid, obtain values
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for the Lamé parameters, Young’s modulus, and the bulk modulus. Express
your answers in pascals.

9. Using values from the PREM model (Appendix 1), compute values for the
bulk modulus on both sides of (a) the core–mantle boundary (CMB) and (b)
the inner-core boundary (ICB). Express your answers in pascals.
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Figure 2.6: Geodetically determined displacement rates near the San Andreas Fault in
central California. Velocities are in mm per year for motion parallel to the fault; distances
are measured perpendicular to the fault. Velocities are normalized to make the velocity zero
at the fault. Data points courtesy of Duncan Agnew.

10. Figure 2.6 shows surface displacement rates as a function of distance from the
San Andreas Fault in California.

(a) Consider this as a 2-D problem with the x-axis perpendicular to the fault
and the y-axis parallel to the fault. From these data, estimate the yearly
strain (e) and rotation (ΩΩΩ) tensors for a point on the fault. Express your
answers as 2× 2 matrices.

(b) Assuming the crustal shear modulus is 27 GPa, compute the yearly
change in the stress tensor. Express your answer as a 2× 2 matrix with
appropriate units.

(c) If the crustal shear modulus is 27 GPa, what is the shear stress across
the fault after 200 years, assuming zero initial shear stress?

(d) If large earthquakes occur every 200 years and release all of the distributed
strain by movement along the fault, what, if anything, can be inferred
about the absolute level of shear stress?

(e) What, if anything, can be learned about the fault from the observation
that most of the deformation occurs within a zone less than 50 km wide?

(f) Note: The asymmetry in the deformation pattern is a long-standing puz-
zle. To learn more, see Schmalzle et al. (2006).
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11. Do some research on the observed density of the Sun. Are the high sound
velocities in the Sun (see Fig. 1.6) compared to Earth’s P velocities caused
primarily by low solar densities compared to the Earth, a higher bulk modulus
or some combination of these factors?

12. The University of California, San Diego, operates the Piñon Flat Observatory
(PFO) in the mountains northeast of San Diego (near Anza). Instruments
include high-quality strain meters for measuring crustal deformation.

(a) Assume, at 5 km depth beneath PFO, the seismic velocities are α = 6
km/s and β = 3.5 km/s and the density is ρ = 2.7 Mg/m3. Compute
values for the Lamé parameters, λ and µ, from these numbers. Express
your answer in units of pascals.

(b) Following the 1992 Landers earthquake (MS = 7.3), located in south-
ern California 80 km north of PFO (Fig. 2.7), the PFO strain meters
measured a large static change in strain compared to values before the
event. Horizontal components of the strain tensor changed by the follow-
ing amounts: e11 = −0.26× 10−6, e22 = 0.92× 10−6, e12 = −0.69× 10−6.
In this notation 1 is east, 2 is north, and extension is positive. You may
assume that this strain change occurred instantaneously at the time of
the event. Assuming these strain values are also accurate at depth, use
the result you obtained in part (a) to determine the change in stress
due to the Landers earthquake at 5 km, that is, compute the change in
τ11, τ22, and τ12. Treat this as a two-dimensional problem by assuming
there is no strain in the vertical direction and no depth dependence of
the strain.

(c) Compute the orientations of the principal strain axes (horizontal) for the
response at PFO to the Landers event. Express your answers as azimuths
(degrees east of north).

(d) A steady long-term change in strain at PFO has been observed to occur in
which the changes in one year are: e11 = 0.101×10−6, e22 = −0.02×10−6,
e12 = 0.005×10−6. Note that the long-term strain change is close to sim-
ple E–W extension. Assuming that this strain rate has occurred steadily
for the last 1,000 years, from an initial state of zero stress, compute the
components of the stress tensor at 5 km depth. (Note: This is proba-
bly not a very realistic assumption!) Don’t include the large hydrostatic
component of stress at 5 km depth.

(e) Farmer Bob owns a 1 km2 plot of land near PFO that he has fenced and
surveyed with great precision. How much land does Farmer Bob gain or
lose each year? How much did he gain or lose as a result of the Landers
earthquake? Express your answers in m2.

(f) (COMPUTER) Write a computer program that computes the stress across
vertical faults at azimuths between 0 and 170 degrees (east from north,
at 10 degree increments). For the stress tensors that you calculated in (b)
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Figure 2.7: The 1992 Landers earthquake (MS = 7.3) in southern California pro-
duced measurable strain changes at PFO observatory, located about 80 km south
of the event.

and (d), make a table that lists the fault azimuth and the correspond-
ing shear stress and normal stress across the fault (for Landers these
are the stress changes, not absolute stresses). At what azimuths are the
maximum shear stresses for each case?

(g) (COMPUTER) Several studies (e.g., Stein et al., 1992, 1994; Harris and
Simpson, 1992; Harris et al., 1995; Stein, 1999; Harris, 2002) have mod-
eled the spatial distribution of events following large earthquakes by as-
suming that the likelihood of earthquake rupture along a fault is related
to the Coulomb failure function (CFF). Ignoring the effect of pore fluid
pressure, the change in CFF may be expressed as:

∆CFF = ∆|τs|+ µs∆τn,

where τs is the shear stress (traction), τn is the normal stress, and µs is
the coefficient of static friction (don’t confuse this with the shear mod-
ulus!). Note that CFF increases as the shear stress increases, and as
the compressional stress on the fault is reduced (recall in our sign con-
vention that extensional stresses are positive and compressional stresses
are negative). Assume that µs = 0.2 and modify your computer pro-
gram to compute ∆CFF for each fault orientation. Make a table of the
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yearly change in ∆CFF due to the long-term strain change at each fault
azimuth.

(h) (COMPUTER) Now assume that the faults will fail when their long-
term CFF reaches some critical threshold value. The change in time to
the next earthquake may be expressed as

∆t =
CFF1000+L − CFF1000

CFFa
,

where CFFa is the annual change in CFF, CFF1000 is the thousand year
change in CFF, and CFF1000+L is the thousand year + Landers change
in CFF (note that CFF1000+L 6= CFF1000 + CFFL). Compute the effect
of the Landers earthquake in terms of advancing or retarding the time
until the next earthquake for each fault orientation. Express your answer
in years, using the sign convention of positive time for advancement of
the next earthquake and negative time for retardation. (Warning: This is
tricky.) Check your answer against the values of shear stress on the fault.
Generally (but not always) the earthquake time should advance when the
long-term and Landers shear changes agree in sign (either both positive
or both negative), and the time should be delayed when the shear stress
changes disagree in sign.

(i) Hint: Getting the signs correct in parts (f)–(h) can be complicated, par-
ticularly for part (h). Stresses can be either positive or negative. To help
get it right, define two unit vectors for each fault azimuth, one parallel
to the fault (f̂) and one perpendicular to the fault (p̂). Compute the
traction vector by multiplying the stress tensor by p̂. Then resolve the
traction vector into shear stress and normal stress by computing the dot
product with f̂ and p̂, respectively. Naturally, f̂ and p̂ must be of unit
length for this to work.

(j) No increase in seismicity (small earthquake activity) has been observed
near PFO following the Landers event. Does this say anything about the
validity of the threshold CFF model?


