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9. Spherical Harmonics

Now we come to some of the most ubiquitous functions in geophysics, used in gravity,

geomagnetism and seismology. Spherical harmonics are the Fourier series for the

sphere. These functions can are used to build solutions to Laplace’s equation and

other differential equations in a spherical setting.

We shall treat spherical harmonics as eigensolutions of the surface Laplacian.

This would be like developing Fourier series as eigensolutions of the operator (d/dx)2

on a finite line, but with boundary conditions that y and dy/dx match at the two

ends. We sometimes get some mileage from representing a thing in two ways, one

within a fixed coordinate system, the other in coordinate-free form. First we need a

spherical polar coordinate system: see the figure. The origin O is always fixed to be

the center of the unit sphere, and all coordinates are referred to that origin. Let us

define a surface gradient for the sphere in two ways:

∇ 1 = θ̂
∂
∂θ

+
φ̂

sinθ
∂
∂φ

(1)

= r∇ − r
∂
∂r

. (2)

The subscript one is to remind us the operator acts over the unit sphere, S(1). The

first definition shows how to compute the surface gradient in a spherical polar coor-

dinate system; the second assumes the function is defined in all of space and just

subtracts out the radial part. The second definition shows the operator is indepen-

dent of coordinate orientation and also that nothing funny happens at the poles.

The ordinary Laplacian operator in IR3 is

∇ 2 =
∂

∂xi

∂
∂xi

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3)

=
1

r

∂2

∂r2
r +

1

r2
∇ 2

1 (4)

where ∇ 2
1 is the surface Laplacian, sometimes also called the Beltrami operator;

Figure 9: The spherical polar coordinate system
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relative to a coordinate system

∇ 2
1 =

∂2

∂θ2
+ cotθ

∂
∂θ

+
1

sin2 θ

∂2

∂φ2
=

1

sinθ
∂
∂θ

sinθ
∂
∂θ

+
1

sin2 θ

∂2

∂φ2
. (5)

We can think of ∇ 2
1 as the ordinary Laplacian, with the radial part subtracted and

scaled by r2 to make it unitless: from (4)

∇ 2
1 = r2∇ 2 − r

∂2

∂r2
r . (6)

As with (2), this equation shows the operator is independent of any coordinate sys-

tem and the singularity at the poles is not intrinsic to ∇ 2
1, but is an artifact of the

coordinates. We remark there is another surface operator ∇ s = r−1∇ 1; this one has

dimensions of 1/L like d/dx or the regular gradient operator ∇ .

To develop spherical harmonics we ask for the eigenvalues and eigenfunctions

of the surface Laplacian. We do this in part because, just as in IR3 the eigenvectors

of a symmetric matrix provide an orthogonal basis for the space, so here the self

adjoint operator has a collection of orthogonal functions that span the function

space. We regard complex-valued functions on the unit sphere as elements in the

Hilbert space complex L2(S(1)); here S(1) is shorthand for the unit sphere, the set of

points |r| = 1. Then the norm is

|| f || =


 S(1)

∫ d2ŝ | f (ŝ)|
2




½

(7)

and the notation d2ŝ is a surface element on S(1), which would be sinθ dθ dφ in a

particular polar coordinate system. We find it handy to work complex functions on

S(1). The space L2(S(1)) comes with the inner product

( f , g) =
S(1)

∫ d2ŝ f (ŝ) g(ŝ)∗ (8)

It can be show that the service Laplacian is self adjoint, that is

(∇ 2
1 f , g) = ( f , ∇ 2

1 g) .  (10)

Furthermore, as we have already remarked, the eigenfunctions of self adjoint opera-

tors are orthogonal.

Suppose u = u(r̂) = u(θ , φ) satisfies the eigenvalue equation

∇ 2
1u = λ u (11)

and u is continuous everywhere on S(1) but is not identically zero, then u is an

eigenfunction for ∇ 2
1. Not every value of λ can support such solutions. Only when λ

is one of the integers

λ = 0, − 2, − 6, − 12, − 20, . . . − l(l +1) . . . (12)

does (11) have nontrivial solutions. How does one prove this? The traditional way is

by a technique called separation of variables, assuming that u can be written as a

product of two single-argument functions: u(θ , φ) = Θ(θ ) Φ(φ), substituting in and
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getting two one-dimensional eigenvalue problems, one each for Θ and Φ. See Morse

and Feshbach, Methods of Mathematical Physics, Vol II, 1953, for example. Chapter

3 of Backus, Parker and Constable (Foundations of Geomagnetism, 1996) does this

entirely differently, by looking at homogeneous harmonic polynomials.

We call l the degree of the spherical harmonic. The eigenfunctions of ∇ 2
1 asso-

ciated with the eigenvalues are called spherical harmonics; we write them

u(θ , φ) = Y m
l (θ , φ) .  (13)

We will give an explicit formula for these functions later; they are complex-valued on

the sphere. The eigenvalues in (12) are not simple (except λ =0), but 2l +1-fold

degenerate. This means that associated with the eigenvalue λ = − 6 = − 2 × (2 +1),

say, there are 5 =2 ×2 +1 different (that is, linearly independent) eigenfunctions.

This is where the index m comes in: for each degree l the order m can be any one of

−l, − l + 1, . . . 0, 1, . . . l, giving the required number of different functions for any l. In

the traditional arrangement these are chosen to be mutually orthogonal. Thus the

spherical harmonics form an orthogonal family:

(Y m
l , Y k

n) =
S(1)

∫ d2ŝ Y m
l (ŝ) Y k

n(ŝ)∗ = 0, m ≠ k or l ≠ n . (14)

We usually scale the spherical harmonics to be of unit norm:

||Y m
l || = 1 (15)

then the spherical harmonics are said to be fully normalized, although not every-

one does this. With fully normalized harmonics (14) and (15) combine to give

(Y m
l , Y k

n) = δln δmk . (16)

Notice that any linear combination of eigenfunctions of degree l is also a valid eigen-

function with eigenvalue −l(l +1).

It is time to write out an explicit form for Y m
l . These solutions are the ones

obtained by the separation of variables mentioned earlier − they are each a product

of a function of θ (colatitude) and one of φ (longitude). Here we go:

Y m
l (θ , φ) = N lm eimφ Pm

l (cosθ ) (17)

where N lm is a normalization constant to adjust the size of the functions; as I men-

tioned earlier, I usually choose it to enforce (15); then

N lm = (−1)m 

2l +1

4π



½


(l − m)!

(l + m)!




½

. (18)

There are however several different conventions regarding N lm. For example, leav-

ing off the alternating sign and removing the factor ((2l +1)/4π)½, results in func-

tions that are Schmidt normalized. Our convention, (18), is most convenient for the-

oretical work, because of (15), which the others fail to comply with. The factor

exp(imφ) is just the complex Fourier basis for functions of longitude on complex

L2(−π, π). Many old-fashioned authors (in geomagnetism especially) use sines and

cosines with real coefficients here instead. The last factor is called an Associated

Legendre function and is defined by
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Pm
l (µ) =

1

2ll!
(1 − µ2)m/2 ∂l+m

∂µ l+m
(µ2 − 1)l . (19)

When the order m =0, the Associated Legendre function becomes a polynomial in µ
and instead being written P0

l (µ) it is designated P l(µ), the Legendre polynomial

which have seen several time already. We provide a very short table. Here

s =sinθ = (1 − µ2)½.

P0(µ) = 1

P1(µ) = µ P1
1(µ) = s

P2(µ) = (3µ2 − 1)/2 P1
2(µ) = 3µs P2

2(µ) = 3s2

P3(µ) = µ(5µ2 − 3)/2

P1
3(µ) = 3s(5µ2 − 1)/2

P2
3(µ) = 15s2 µ P3

3(µ) = 15s3

P4(µ) = (35µ4 − 30µ2 + 3)/8

P1
4(µ) = 5sµ(7µ2 − 3)/2

P2
4(µ) = 15s2(7µ2 − 1)/2

P3
4(µ) = 105s3 µ P4

4(µ) = 105s4

P5(µ) = µ(63µ4 − 70µ2 + 15)/8

P1
5(µ) = 15s(21µ4 − 14µ2 + 1)/8

P2
5(µ) = 105s2 µ(3µ2 − 1)/2

P3
5(µ) = 105s3(9µ2 − 1)/2

P4
5(µ) = 945s4 µ P5

5(µ) = 945s5.

We have listed only positive m since there is a nice symmetry that allows us to do

without:

Y −m
l = (−1)m(Y m

l )∗ . (20)

We also note these special values − they are worth remembering:

P l(1) = 1, Pm
l (1) = 0, m ≠ 0, P l

l(cosθ ) = cl sinl θ . (21)

Next we note one of the most important properties of the spherical harmonics:

they are a complete set for expanding functions on L2(S(1)). Thus in the usual way,

when

f (θ , φ) =
∞

l=0
Σ

l

m=−l
Σ clm Y m

l (θ , φ) (22)

we get the coefficients from
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clm = ( f , Y m
l ) =

S(1)

∫ d2ŝ f (ŝ) Y m
l (ŝ)∗ . (23)

It is this property that makes spherical harmonics so useful. Orthogonality is a

property that follows from the self-adjointness of ∇ 2
1. Completeness follows from a

more subtle property, that the inverse operator of ∇ 2
1 is compact, a property that

would take us too far afield to explore.

Unless you have seen them before, you probably have no idea what the spheri-

cal harmonics look like at this point. One further property of the Associated Legen-

dre functions helps: for −1 < µ < 1  the function Pm
l (µ) crosses zero exactly l − m times.

With this information we can picture the Y m
l on a sphere, by graphing the places

where Re Y m
l is zero; Im Y m

l has the same pattern, but rotated about the ẑ axis, as

can be seen at once from (17). So here is the recipe: for Y m
l there are two sets of

lines on the sphere where Re Y m
l vanishes: (a) a set of 2m equally-spaced halves of

great circles through the poles (meridians) coming from the exponential; (b) a set of

l − m small circles with planes normal to the z coordinate axis. See the pictures in

Section 7. For example, when m = 0 we always have circular symmetry about the z

axis.

After we have drawn a few we soon get the idea that the higher degree har-

monics are shorter wavelength than the lower ones. In fact one can consider the sur-

face harmonics to be standing waves in the surface of the sphere. Jeans’ formula

says on a unit sphere

λ (l) =
2π

l + ½
(24)

where λ (l) is the wavelength of the waves of degree l. Notice this is independent of

m and the position on the sphere. In analogy with Fourier filtering, people often

make a spherical harmonic expansion, then remove the high-degree terms in order

to emphasize the long-wavelength features; or conversely, the low degree-terms are

removed to show the high-wavenumber behavior, of the geoid, for example. Parse-

val’s Theorem for a spherical harmonic expansion (22) gives

|| f ||
2 =

∞

l=0
Σ





l

m=−l
Σ |clm|

2




(25)

The terms in square brackets gives a power spectrum of f as a function of recipro-

cal wavelength or wavenumber (l is sometimes call the spherical wavenumber). This

is a powerful way of showing how a geophysical field over a sphere is distributed

according to its length scales.

Two powerful properties of the spherical harmonics that do not follow immedi-

ately from their connection with ∇ 2
1 are the Addition Theorem and the generating

function for Legendre polynomials. We state the generating function first:

1

(1 − 2µ x + x2)½
=

∞

l=0
Σ xl P l(µ) .  (26)

We can prove this later from the development of the potential of a point mass.
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The Spherical Harmonic Addition Theorem says

P l(û ⋅ v̂) =
4π

2l +1

l

m=−l
Σ Y m

l (û) Y m
l (v̂)∗ . (27)

The following proof won’t be found in any of the books; for another see Foundations

of Geomagnetism, Chapter 3. Consider a delta function on S(1) which peaks at the

point û which we will write as δ (r̂ − û). From our discussion of the Reproducing Ker-

nel (Section 8) when N →∞ the function K N becomes a delta function. Taking the

complex nature of Y m
l into account, we find that (8.1) gives us the SH expansion of

the delta function at û:

δ (ŝ − û) =
∞

l=0
Σ

l

m=−l
Σ Y m

l (ŝ) Y m
l (û)∗ . (28)

Next consider this expansion for û = ẑ, the north pole. The function is symmetric

about the z axis, so all the coefficients in (28), vanish except those with m = 0. The

same result follows from the second member of (21) which implies that

Y m
l (ẑ) = Y m

l (½π, φ) = N lmeimφ Pm
l (1) = 0 when m ≠ 0. Thus

δ (ŝ − ẑ) =
∞

l=0
Σ Y 0

l (ŝ)Y 0
l (ẑ)∗ =

∞

l=0
Σ 2l +1

4π
P l(cosθ ) (30)

=
∞

l=0
Σ 2l +1

4π
P l(ẑ ⋅ ŝ) .  (31)

Next consider the delta function peak to be moved to some other point on the unit

sphere, say û; then because (31) does not depend on the fact that ẑ is a coordinate

axis, we can replace ẑ by û and the equation is still true:

δ (ŝ − û) =
∞

l=0
Σ 2l +1

4π
P l(û ⋅ ŝ) .  (32)

Equations (28) and (31) are expansions of the same function. We can compare these

two expressions degree by degree. Since these are both expansions in the eigenfunc-

tions of ∇ 2
1 and the eigenfunctions of different degrees are orthogonal to each other,

the degree-l terms in each sum must be equal to each other: hence (27).

Here are a couple of useful spherical harmonic expansions. We combine the

generating function and the Addition Theorem together, to find an expansion for the

potential of point mass, not at the origin. With s < r we write

1

R
=

1

|r −s|
=

1

(r2 + s2 −2rs r̂ ⋅ ŝ)½
(33)

=
1

r

1

[1 + (s/r)2 − 2(s/r) r̂ ⋅ ŝ]½
. (34)

Now we recognize the generating function (26):

1

R
=

1

r

∞

l=0
Σ 


s

r




l

P l(r̂ ⋅ ŝ) (35)
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=
∞

l=0
Σ

l

m=−l
Σ 4π

2l +1

sl

rl+1
Y m

l (r̂) Y m
l (ŝ)∗ . (36)

The last line follows from the Addition Theorem. So if we fix r = |r| and s and

imagine moving around on the sphere of radius r, (36) is the spherical harmonic

expansion of the potential 1/R as seen on that sphere.

A similar expansion (which we won’t derive) used in scattering theory is the

following. Suppose a plane wave comes along and hits a sphere. The wave field over

the sphere can be decomposed in a spherical harmonic expansion:

e2πik ⋅ r = (2π)3/2
∞

l=0
Σ

l

m=−l
Σ eiπl/2 J l+½(2πkr)

(2πkr)½
Y m

l (r̂) Y m
l (k̂)∗ (37)

where J l+½ is a Bessel function, an important kind of function we will discuss later

on in Fourier transforms.

We mention the fact that the surface gradients of spherical harmonics are also

orthogonal and complete in a certain sense. They can be used to expand surface vec-

tor fields, that is vectors defined in S(1) that are always tangent to the sphere. The

relevant relation is

S(1)

∫ d2ŝ ∇ 1Y m
l (ŝ) ⋅ ∇ 1Y k

n(ŝ)∗ = l(l +1) δlnδmk (38)

which we can interpret an an inner product on a different kind of Hilbert space on

S(1).

We mention briefly two more advanced topics. First, the 3- j symbols. Occa-

sionally one runs into the need to perform integrals over the sphere of products of

three spherical harmonics. These can always be done simply, and there are symme-

try relationships that make many such products vanish. The problem was first stud-

ied systematically in quantum mechanics of angular momentum, and so the refer-

ence everyone uses is: Edmonds, Angular Momentum in Quantum Mechanics. There

is a table made worthless because if its lack of supporting explanation in Chap 27

Abramowitz and Stegun, Handbook of Mathematical Functions, Dover, 1970. This

book is worth knowing about in general, and has many results on Associated Legen-

dre functions in Chaps 8 and 22.

And second, one may require a given spherical harmonic expansion in a rotated

coordinate system; how does the spherical harmonic Y m
l (r) transform to a different

set of coordinate axis? Obviously (perhaps) the new Y m
l will be a linear combination

of harmonics of the same degree, a sum over m only. But what are the coefficients?

The Addition Theorem can be viewed as a special case. The general answer is com-

plicated. See Winch’s article in in the Encyclopedia of Geophysics for this and much

more.



ORTHOGONAL FUNCTIONS 31

A Table of Spherical Harmonic Lore

Property Formula Comments

1. Laplacian in polar

coordinates
∇ 2 =

1

r2
∇ 2

1 +
1

r

∂2r

∂r2

∇ 2
1 is angular part of

familiar Laplacian

2. Eigenvalue ∇ 2
1 Y m

l = − l(l +1) Y m
l ,

l =0, 1, 2, . . .
There are 2l +1 lin-

early independent

eigenfunctions per l

3. Orthogonality ∫ d2ŝ Y m
l (ŝ) Y k

n(ŝ)∗ = 0,

unless l = n and

m = k

True for every normal-

ization

4. ∫ d2ŝ |Y m
l (ŝ)|

2 = 1Theoretician’s nor-

malization

Other choices: 4π or

4π / (2l + 1)

5. Completeness
f (ŝ) =

∞

l=0
Σ

l

m=−l
Σ clmY m

l (ŝ)
Works for any reason-

able function f on S(1)

6. Expansion coeffi-

cients
clm = ∫ d2ŝ f (ŝ) Y m

l (ŝ)∗ Requires property 4

7. Addition Theorem 2l + 1

4π
P l(ŝ ⋅ r̂) =

l

m=−l
Σ Y m

l (ŝ) Y m
l (r̂)∗

Requires property 4

8. Wavelength of Y m
l

2π
l + ½

Depends only on

degree l, not on order

m or ŝ

9. Appearance Re Y m
l vanishes on 2m

meridians and l − m

parallels

Im Y m
l the same but

rotated about ẑ

10. Parseval’s Theorem ∫ d2ŝ | f (ŝ)|2 =
∞

l=0
Σ

l

m=−l
Σ |clm|

2

Requires property 4.

Get RMS value of f by

dividing by 4π and tak-

ing square root

11. Generating function 1

(1 − 2µr + r2)½
=

∞

l=0
Σ rl P l(µ)

Often used in conjunc-

tion with property 7

12. Another orthogonal-

ity
∫ d2ŝ ∇ 1Y m

l (ŝ) ⋅ ∇ 1Y k
n(ŝ)∗ =

l(l +1) δln δmk

Requires property 4.
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10. Application: the Solution of Laplace’s Equation

This is the application of spherical harmonics that we need for potential theory. We

consider the region inside a spherical shell R1 ≤ r ≤ R2 inside which Laplace’s equa-

tion is obeyed by V , a potential:

∇ 2V = 0 (1)

Sometimes we will let R2 tend to infinity, but it is useful to keep it finite for now.

Let us write V as a function of spherical polar coordinates V (r,θ , φ) relative to O, the

origin at the center of the concentric spheres. Provided V is reasonably well

behaved we can write it thus:

V (r,θ , φ) =
∞

l=0
Σ

l

m=−l
Σ V lm(r) Y m

l (θ , φ) .  (2)

This follows because in any spherical surface the function V can be expanded in sur-

face harmonics, and (2) simply says there is a different set of expansion coefficient

for each radius r. An expansion like (2) is perfectly general, and does not depend on

V being harmonic. Let us now add the condition that V obeys Laplace’s equation,

which we write using (9.4):

1

r

∂2rV

∂r2
+

1

r2
∇ 2

1V = 0 .  (3)

Inserting (2) into (3) and recalling the eigenfunction property that

∇ 2
1Y m

l = − l(l +1) Y m
l (4)

we obtain

∞

l=0
Σ

l

m=−l
Σ





1

r

d2rV lm

dr2
−

l(l +1)

r2
V lm





Y m
l (θ , φ) = 0 .  (5)

Because of the orthogonality of the surface harmonics the only way that this sum

can be zero is if the factor in square brackets vanishes identically for every r and

each l and m separately. Thus we find the ordinary differential equations:

d2rV lm

dr2
−

l(l +1)

r
V lm(r) = 0 .  (6)

Notice the 2l + 1 different functions with the same l but differing m obey the same

differential equation. The standard way of solving such equations is by substituting

a power series. Omitting the details, we get

V lm(r) = A rl +
B

rl+1
(7)

as the most general solution. Clearly each degree and order in (5) will generally be

associated with different constants A and B; thus the general solution to (3) is given

by

V (r,θ , φ) =
∞

l=0
Σ

l

m=−l
Σ 


Almrl +

Blm

rl+1




Y m
l (θ , φ) (8)
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where the constants Alm and Blm are coefficients in the spherical harmonic expan-

sion of the potential; they must be determined by experiment or analysis for each

different potential V .

There is a physical interpretation of the two kinds of coefficients. We see that

the contribution to V from the Alm grows with increasing radius r. This implies

that the sources for Alm, that is the matter in the gravitational case, lie in the region

outside R2, since V increases with proximity to the sources. Similarly Blm is asso-

ciated with matter inside the inner sphere, radius R1. The sum of the Alm terms is

called the external part of V and the Blm sum the internal part. If the expansion

(8) describes the gravitational field of the Earth, with O at its center, there can be no

exterior part, as the is matter in question all lies within S(R1) Then it is conven-

tional to rewrite (8) thus

V = −
GmE

r




1 +

∞

l=2
Σ

l

m=−l
Σ clm




a

r




l

Y m
l (θ , φ)




. (9)

The numbers clm are sometimes called Stokes coefficients. Notice the absence of

l =1 terms because O is at the center of mass so there is no dipole term. Also note

how the clm are dimensionless, as the radial terms are scaled by the so-called refer-

ence radius a. As we mentioned earlier, a is often the equatorial radius, because

then the inner sphere encloses all the matter; sometimes the Earth’s mean radius is

used instead (often people forget to say!). Of course, practical models of the Earth’s

potential do not sum to infinity, but very large degree model have been found with

lmax = 360; how many coefficients is that?
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