
Four Energy Problems

In this note I give the math behind various assertions made in my Jan-

uary and February columns in the Freewheeler, the North County Cycle

Club’s newsletter.

Problem I

The simplest problem concerns a cyclist heading out and back on a flat

straight (and very dull) ride on two days: the first is calm with no wind;

on the second day a steady wind blows exactly along the direction of the

route. In both cases he rides at the same speed v. We want to show more

energy is used when the wind blows: even though the rider is helped by a

tail wind on the way out, this doesn’t make up for the extra work on the

wa y back, because of the square law for air resistance.

On the calm day the work done, which equals the energy expended

by the rider, is given by force times distance:

W1 = Cv2 ×2L = 2LCv2

where C is a constant (which depends on he shape of the cyclist among

other things) and L is the one-way distance. On the windy day if the wind

speed w is less than v the force opposing the cyclist when he or she rides

down wind is less, namely C (v − w)2, because the air-speed relative to the

rider is v − w. And riding into the wind the force is of course more, since

the headwind adds to his/her speed: C (v + w)2. The energy required is the

sum of the out and back contributions:

W2 = C (v − w)2 × L + C (v + w)2 × L = LC [(v − w)2 + (v + w)2] .

Now we expand the squares in the brackets in the usual way:

W2 = LC [v2 − 2vw + w2 + v2 + 2vw + w2]

= 2LC[v2 + w2] .

We can see at once that this quantity is greater than W1 because w2> 0  as

long as w is not zero. Thus in this highly simplified scenario it is always

more work to ride in the wind.

When the wind blows from the side, as it always will at some point

because real routes are not perfectly straight, we need to put in the direc-

tions which complicates things, and I will not go into the analysis here: it

still comes out a net loss, even if the wind is exactly perpendicular to he

route. Another simplification comes from the approximation of using the

square law, something that shows up if we say that w ≥ v. If the tail wind

speed exactly equals the rider’s speed he or she may still need to pedal

and do work to overcome other frictional forces, such as those with road

and in the hubs. But the conclusion, borne out by experience, holds up:

it’s always more tiring to ride a round-trip on a windy day. This is a little

harder than the first problem.
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Problem II

Two routes of equal length join point A to point B; one is entirely flat, the

other has a uniform grade to the midpoint, then drops uniformly to B. On

a windless day a cyclist does the loop, taking the flat route out and return-

ing on the hilly road, coasting downhill. The rider completes each half in

equal times. Does the hilly part of the course from B to A always use

more energy?

Solution

First set up definitions of some variables for the calculation. The drag

force follows Newton’s law: D = Cv2. The ride out is at velocity v1, the

uphill ride at v2 and the downhill part at v3 and the grade angle be θ and

the distance from A to B be L.

In all these calculations the energy expended equals the work done:

distance times opposing force. The energy expended riding on the flat is

just the distance traveled times the drag force:

EF = LCv2
1 .

Going uphill the work done lifting the cyclist must be included. Remem-

ber the distance is halved, so the energy used ascending is

EH = ½L(mg sinθ + Cv2
2)

where mg is the weight of the rider plus the bike. I have taken the con-

stant C to be the same here, since pedaling uphill and on the flat are simi-

lar enough (no standing). No energy is expended by the cyclist on the

descent; then the drag and the force of gravity balance:

cv2
3 = mg sinθ .

Here the drag constant is different; for a rider in a crouch c<C. Since the

times on the outward and homebound legs are equal

L

v1

=
½L

v2

+
½L

v3

.

At this point we have all the relationships we need to solve the problem.

Eliminate the gravitational force mg sinθ from the second energy

equation by using the downhill force balance:

EH = ½L(Cv2
2 + cv2

3) .

We are interested in the relationship between EH and EF ; therefore cal-

culate their ratio:

EH

EF

=
½L(Cv2

2 + cv2
3)

LCv2
1

=
v2

2 + rv2
3

2v2
1

where r = c/C. Next, eliminate v1 using the equality of time out and back:
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EH

EF

=
(v2

2 + rv2
3)

8




1

v2

+
1

v3




2

=
1

8




1 + r

v2
3

v2
2







1 +

v2

v3




2

.

This equation shows the ratio of energy expenditures depends only on the

ratio v2/v3 and on r the ratio of drag coefficients for aero and normal rid-

ing positions. When v2 = v3 the ratio is ½ (1 + r), which is less than one if

r < 1, as I said in my column this month. So for example, if you can

reduce your air resistance by 30% (so that r = 0. 7), you can potentially

use 15% less energy on the hilly leg of the the ride. Is this the best that

can be done, or can the energy-use ratio be less than this?

That question can be answered by elementary calculus. Write

v3/v2 = u and EH /EF as Y . Then after a bit of algebra

8Y = 1 + r +
2

u
+

1

u2
+ 2ru + ru2

8
dY

du
= 2ru + 2r −

2

u2
−

2

u3
= 2(u + 1)



r −

1

u3




.

The minimum Y arises when dY /du = 0, and for positive u this is evi-

dently when u = r−1/3. Plugging this into the equation for Y gives

Ymin = 1

8
(1 + r1/3)3 .

Returning to the example with r = 0. 7 we find that Ymin = 0. 841 or 15.9%

reduction. The improvement over 15% from the equal-velocity strategy

with v3/v2 = u = 1 is insignificant.
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Problem III

The start and end of the ride are at the same level, with a constant grade

to the crest and constant grade down, but the crest is not necessarily at

the midpoint. A cyclist must ride over this hill without coasting and with

minimum energy use at a specified average speed. Show that maintain-

ing the same speed up the grade and down uses the least energy.

Solution

We will use some advanced calculus for this variant, which shortens the

solution considerably. This solution is for experts only. Now we let the

average speed be v0, the speed uphill be v1, and that downhill v2. The

length of the uphill portion is L1 and downhill L2; the angle of the grades

are θ1 and θ2. The will assign the same drag coefficient up and down the

grade (though it would be somewhat smaller downhill). The total work

done is the sum of the up and down portions:

E = L1(cv2
1 + mg sinθ1) + L2(cv2

2 − mg sinθ2) .

On the downhill leg gravity reduces the force, hence the negative sign.

Also we assume that the cyclist is pedaling, so that cv2
2 ≥ mg sinθ2. Notice

that L1 sinθ1 = L2 sinθ2 = h, the height of the hill, and so the equation

simplifies to

E = c(L1v2
1 + L2v2

2) .

The average speed must be v0; hence

L1 + L2

v0

=
L1

v1

+
L1

v2

.

To minimize E subject to this constraint, we introduce the Lagrange mul-

tiplier λ , and the unconstrained function F:

F(v1, v2, λ ) = E(v1, v2) − λ 


L1 + L2

v0

−
L1

v1

−
L1

v2




.

The minimum energy point occurs when

∂F

∂v1

= 0;
∂F

∂v2

= 0;
∂F

∂λ
= 0 .

The first two equations yield

2cL1v1 −
λ L1

v2
1

= 0 or v3
1 =

λ
2c

2cL2v2 −
λ L2

v2
2

= 0 or v3
2 =

λ
2c

.

Comparing these two equations shows without further algebra that

v1 = v2 as required.
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Proving this stationary point of the system yields a true minimum is

most easily done by appealing to the convexity of the energy function, and

writing the speed constraint as an inequality (the average speed must be

at least v0), which leads to a convex constraint set.
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Problem IV

Returning to Problem I, we ask whether it always takes more work when

a steady wind is blowing to ride a given route out and back at a constant

speed than when the air is still. And that route is allowed to be of any

shape. The answer is yes, provided the wind is constant in speed and

direction, more energy is required of the cyclist when it is blowing.

Solution

First we analyze a straight section. The rider rides along the road with

vector velocity v and the wind blows with constant velocity w, both of

these being constant in time and nonvanishing. The power required to

maintain that speed is

P = − v ⋅ D(v, w)

where D is the drag, given by Newton’s law

D(v, w) = c|w − v| (w − v) .

This result holds only if the power required is positive, that is, the rider

does work against the air, which means he or she is riding faster than the

wind speed. We will proceed on this assumption for the moment. Since

the time, T , taken in either direction is the same by hypothesis, the

energy expended is PT . We sum the work done in both directions:

W = − T[v ⋅ D(v, w) + (−v) ⋅ D(−v, w)] .

Our aim is to show this must be greater than 2cT|v|
3
, the work done in

still air.

Substituting the expression for the drag into the equation for W and

reorganizing trivially we get

W

cT
= |v − w|(v ⋅ v − v ⋅ w) + |v + w|(v ⋅ v + v ⋅ w)

= |v|
2
(|v + w| + |v − w|) + v ⋅ w(|v + w| − |v − w|) .

In the first term, we can use the triangle inequality for vectors that states

for any two vector

|a| + |b| ≥ |a + b| .

Equality holds only if a = 0 or b = γ a with γ ≥ 0. Hence

|v + w| + |v − w| ≥ 2|v| .

And therefore

W

cT
≥ 2|v|

3 + v ⋅ w(|v + w| − |v − w|) .

The second term here can be rewritten
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v ⋅ w(|v + w| − |v − w|) = v ⋅ w
(|v + w| − |v − w|)(|v + w| + |v − w|)

|v + w| + |v − w|

= v ⋅ w
|v + w|

2 − |v − w|
2

|v + w| + |v − w|
=

4(v ⋅ w)2

|v + w| + |v − w|
.

This expression is positive unless one of the vectors is zero or they are

orthogonal. Thus we have shown that

W

cT
> 2|v|

3
.

The possibility of equality can be eliminated since neither v or w van-

ishes, and the triangle inequality is strict when v and w are orthogonal

and of positive length.

We return to the question of what happens if the wind speed is

greater than the rider’s, and the power P < 0. While the rider may be able

to coast and do zero work, (which is P = 0) he or she cannot store up

energy from the wind to be used later, which is what P < 0  implies. The

restriction to nonnegative P only strengthens the inequality already

derived.

We have established the result over a straight section with the wind

in any direction. For a route of arbitrary shape, we imagine its decompo-

sition into infinitesimally short straight segments, on which the inequal-

ity applies uniformly. Therefore it applies to the union of those segments

which means the inequality holds for the complex route too.


