
Chapter 2
Probability and Random Variables

In statistics it is a mark of immaturity to argue overmuch about the fundamentals of probability

theory—M. G. Kendall and A. Stuart (1977) The Advanced Theory of Statistics, Chapter 7.

2. Introduction

This chapter introduces a few concepts from probability theory1, starting with the

basic axioms and the idea of conditional probability. We next describe the most important

entity of probability theory, namely the random variable, including the probability density

function and distribution function that describe such a variable. We then define means,

variances, expectations, and moments of these functions, and discuss, more briefly, distribu-

tions of more than one variable, which leads to the idea of independence. We close with the

central limit theorem, which is a major justification for using the Normal (or Gaussian) dis-

tribution.

2.1. What is Probability?

As we noted in Chapter 1, there is dispute over what things in the real world the for-

mal mathematical system of probability theory corresponds to. The two usual views can be

briefly stated as

• The frequentist interpretation: the probability of something corresponds to what frac-

tion of the time it happens ‘‘at random’’ or ‘‘in the long run’’. This is might also be

called the casino interpretation of probability, since that is one setting where it seems

to make sense; but there are many others in which it does not. Geophysics has many

of these: it might make sense to talk about the probability that the next earthquake in

California will be bigger than some amount, since there are lots of earthquakes; but it

is much less clear how to apply frequentist concepts to the Earth’s gravitational field:

there is only one example of this.

• The Bayesian or subjective interpretation, in which the probability of something cor-

responds to how likely we think it is to happen. In this approach, probabilities repre-

sent states of mind. As we will see, this approach leads to a distinctive set of methods

for analyzing data.

The approach we prefer is the one we have already hinted at: probability is a mathematical

system, which can be used as a model of certain aspects of the real world, just as we use

other mathematical idealizations: for example, in studying seismic waves, we represent the

Earth by an elastic solid—equally a mathematical idealization. If we simply take probabil-

ity as a model, it can represent more than one kind of thing, so both interpretations can be

valid.

1 We use the term probability theory for a branch of mathematics; this is the general usage.

Kendall and Stuart call this the calculus of probabilities, which allows them to make the useful

distinction between this bit of mathematics, and what they call probability theory, which is how

this mathematics applies (or not) to the real world—which we discuss in section 2.1.
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2.2. Basic Axioms

The basic idea of the mathematical theory of probability, as developed by Kolmogorov

on the basis of set theory, is the idea of a sample space Ω, which is a set that contains as

elements subsets containing all possible outcomes of whatever it is we are proposing to

assign probabilities to. Examples of outcomes are heads or tails, a value from a throw of

dice, normal or reversed magnetic fields, or the results of doing some experiment or making

some observation. Note that outcomes need not be numerical values.

We denote each set of outcomes by a letter (e.g., A), and the probability of that set of

outcomes by P (A). Then rules for probabilities are:

1. P (Ω) = 1; the probability of all the outcomes combined is 1 (has to happen).

2. P (A) ≥ 0; probabilities are positive.

3. If two sets of outcomes are disjoint (mutually exclusive) then

P (Ai∪ A j) = P (Ai) + P (A j): the probability of the combination (union of the sets) is the

sum of the individual probabilities.2 That is, if having A precludes B and vice-versa,

the probability of having either one is the sum of the probabilities for each (think of

throwing a die, which has six disjoint outcomes).

All of these rules are pretty good fits to the kinds of things we are attempting to model; they

are, indeed, almost intuitive. But we can, from these few axioms, produce a full theory.

2.3. Conditional Probability

Things become slightly more interesting (because less obvious) once we introduce the

concept of conditional probability, which is written as P (A|B), meaning ‘‘The probabil-

ity of outcome set A given that we have outcome set B’’, the last part of which is sometimes

phrased as ‘‘given that outcome B is true’’. The relation for this is that

P (A|B)P (B) = P (A∩B): the probability that A and B are both true is the probability of B

being true, times the probability of A being true given B. This is more usually written so

as to define conditional probability:

P (A|B) =
P (A∩B)

P (B)
(1)

From this we get the concept of two sets of events being independent: A and B are inde-

pendent if P (A|B) = P (A), which is to say that the probability of A does not depend on

whether B has happened or not3. This means, from (1), that P (A∩B) = P (A)P (B): the prob-

ability of having both A and B is the product of their individual probabilities. In practice,

this rule is easily abused, since it is all too tempting to decide that events are independent

when they actually are not.

2.3.1. An Application: Was That a Foreshock?

An application of conditional probabilities to a geophysical problem (indeed, one of actual

social significance) is the question of what we should do if a small earthquake occurs close to (say)

the San Andreas fault, given that it might either be a foreshock to a major earthquake on this fault,

or it might just be a background shock that happened there by chance. The full treatment4 becomes

2 Remember that A∪ B is the union of A and B; A∩B is the intersection of A and B.
3 Often this is called statistical independence; the extra adjective is confusing, since there

is no use of statistics in the definition.
4 D. C. Agnew and L. M. Jones, Prediction probabilities from foreshocks, J. Geophys. Res., 96,
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rather complicated, but a simplified version runs as follows. We define three possible events:

B: A background earthquake has occurred.

F: A foreshock has occurred.

C: A large (so-called characteristic) earthquake will occur.

Of course, if a small background shock were to happen by coincidence just before the characteristic

earthquake, we would certainly class it as a foreshock. Thus, B and C cannot occur together: they

are disjoint. The same holds true for B and F: we can have a foreshock or a background earth-

quake, but not both.

The probability that we want is the conditional probability of C, given either F or B (because

we do not know which has occurred). This is, from (1),

P (C|F∪ B) =
P (C∩(F∪ B))

P (F∪ B)
(2)

Because F and B are disjoint, the probability of their union is the sum of the individual probabili-

ties (axiom 3), allowing us to write the numerator as

P ((C∩F)∪ (C∩B)) = P (C∩F) + P (C∩B) = P (C∩F)

where the disjointness of C and B eliminates the P (C∩B) term. Again using the definition of condi-

tional probability,

P (C∩F) = P (F|C)P (C) (3)

where P (F|C) is the probability that a mainshock is preceded by a foreshock. Again using the dis-

jointness of F and B, we can write the denominator as

P (F∪ B) = P (F) + P (B) (4)

Because a foreshock cannot, by definition, occur without a mainshock, the intersection of C and F is

F, and therefore

P (F) = P (F∩C) = P (F|C)P (C) (5)

We can use (3), (4), and (5) to write (2) as

P (C|F∪ B) =
P (F)

P (F) + P (B)
=

P (C)P (F|C)

P (F|C)P (C) + P (B)
(6)

For P (B) >> P (F|C)P (C) this expression is small (the candidate event is probably a background

earthquake), while for P (B) = 0, the expression becomes equal to one: any candidate earthquake

must be a foreshock.

The second form of expression in (6) is a function of three quantities, which in practice we

obtain from very different sources. P (B), the probability of a background earthquake, would be

found from seismicity catalogs for the fault zone. P (C), the probability of a characteristic earth-

quake, would be found from the past history of large earthquakes on this fault as found from paleo-

seismological studies. If we had a record of the seismicity before many such characteristic earth-

quakes, we could evaluate P (F|C) But, given the limited time over which there is seismicity data,

we do not have such a record; we in practice assume that the average of P (F|C) over many earth-

quakes on one fault is equal to the spatial average over many faults over a shorter time; even

though this may not be valid, it is the best we can do.

2.3.2. Natural Frequencies: Another Frame for the Problem

While the algebraic manipulations in Section 2.2.1 are needed to solve the full prob-

lem, this is not the easiest way to get the result at the level given there. It turns out that

insight into problems of this sort depends very much on how they are phrased.5 For almost

everyone, stating the numbers in terms of probabilities does not help intuitive reasoning;

11959-11971 (1991).
5 Hoffrage, Ulrich, Samuel Lindsey, Ralph Hertwig, and Gerd Gigerenzer (2000). Communi-

cating statistical information, Science 290, 2261-2262.
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what works much better is to state them in terms of numbers of events (out of some large

but arbitrary number), an approach called natural frequencies. We recommend this

approach either for explaining conditional probability reasoning to other people, or to your-

self: it is a good way to check your algebra. To show how it works for the above example:

suppose we had a C every 100 years, a B 10 times a year, and half the C’s had F ’s. Then in

(say) 1000 years we would expect 10 C’s, and hence 5 F ’s; and also 10,000 B’s. So we would

have 10,005 possible B’s and F ’s, and the chance that an possible member of this class

would be an F would thus be 5/10005. You can easily plug in the daily probabilities for F,

C, and V into (6) to get the same result.

2.4. Bayes’ Theorem

The procedures followed for the foreshock probability estimate are basically those used

to derive Bayes’ Theorem, a basis for much statistical inference—though, as we have

mentioned above and will discuss further, how much it should be, is a subject of consider-

able debate. The theorem itself is not difficult to derive. Suppose we have N disjoint sets

of outcomes, called B1, . . .  , BN , and another set A. The the probability of both A and a par-

ticular one of the B’s (say B j) is, by the definition of conditional probability,

P (A∩B j) = P (B j|A)P (A) = P (A|B j)P (B j) (7)

where you should remember that P (A∩B j) = P (B j∩ A). But, since the B’s are disjoint,

P (A) =
j
ΣP (A|B j)P (B j). Combining this with (7), we find that

P (B j|A) =
P (A|B j)P (B j)

j
ΣP (A|B j)P (B j)

(8)

The different parts of this expression have special names: P (B j) is called the prior proba-

bility of B j , and P (A|B j) the likelihood of A given B j .

All this is unproblematic; the contentiousness comes (as usual) in how this can be

applied to reasoning about things in the real world. One application is to suppose that the

B’s are degrees of belief about something: for example, P (B1) would be our belief (expressed

as a probability) that a coin is fair, P (B2) our belief that it actually has heads on both sides.

Now suppose we toss the coin four times, and get heads in each case. Then A is (for this

example) the result that all of four tosses give heads, the probability of which (the likeli-

hood) is 1/16 if B1 is true, and 1 if B2 is true. Then (8) allows us to find P (B j|A), the poste-

rior probability of each hypothesis.

The attractiveness of this scheme is clear: we have used the data directly to improve

our degree of belief in one or another fact about the world, which is what we would like to

do with all data; this is called Bayesian inference. However, there is a problem which we

have evaded: how to determine the prior probabilities. We have been evasive for good rea-

son, namely that deciding on prior probabilities is a complicated and controversial matter.

So for now we put Bayes’ theorem and Bayesian inference aside.

2.5. Random Variables: Density and Distribution Functions

Up to now we have talked about ‘‘outcomes’’ which are described by set theory. But

most of the time, the things we want to model are described by numbers, which leads us to
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the idea of a random variable, which we call (say) X . It is extremely important to realize

that this is not the same thing as the variables we know from algebra and calculus, which

we call conventional variables. The random variable is a different kind of mathematical

entity; just as vectors and scalars are different kinds of things, so random and conventional

variables are not the same. Conventional variables have definite (if unknown) values, and

could be described by a single number (or a group of numbers); random variables do not

have any particular value, and have to be described using probabilities. We follow the con-

vention in probability and statistics that upper case (e.g., X ) denotes a random variable,

while lower case, x, denotes a quantity which always has the same value. We will also

(sometimes) use the abbreviation (common in the statistics literature) rv for random vari-

able.

A common source of confusion is that these two kinds of variables can refer to very

similar things in the world—though not identical. Consider (again) the paradigmatic case

of rolling dice. For a particular roll of the dice, the conventional variable x describes what

we actually got—this is clearly not subject to variation. But before we roll the dice, or if we

merely imagine doing so, the random variable X is what we have to use to describe the out-

come to be expected.

Formally, a random variable (often abbreviating to rv) is a mapping from a sample

space Ω (containing all possible outcomes) to the relevant space of numbers. For example, if

Ω is the outcomes from rolling a pair of dice, the space of outcomes maps into the integers

from 2 through 12. But the mapping can be into different spaces of numbers. If Ω maps

into some part of the real line R (or the whole of it) X is termed a continuous random

variable; if it maps into the integers, the random variable is a discrete one (as in our dic-

ing example). Either way, each element ω in Ω corresponds to a unique number X (ω).

To describe X we need a probabilistic description, which turns out to be a function,

called the probability density function of X . We approach the idea of a density function

by looking first at a very common way in which we express the relative frequency of observ-

ing different values of a random variable: the histogram. We have already seen examples

of this in Chapter 1, in the distance between two GPS stations and the lengths of magnetic

dipole states. In figures 1.1 and 1.2 we plotted the number of observations; we could make

the plots more independent of the particulars of these datasets if we instead plotted, in each

bin, the number in the bin divided by the total number of observations.

Such a normalized histogram is a crude estimate of a probability density function for

the random variable in question. This function is often referred to by its acronym (pdf),

and we will designate it as φ(x). Note how much more ‘‘complicated’’ this makes random

variables compared to conventional ones: a conventional variable is completely specified by

a number, while to specify a rv takes a function (which may have many parameters).

The pdf relates to probability in the following way: the probability of the random vari-

able X lying in the interval [x, x +δ x] is given by the integral, over that interval, of the

probability density. We denote the probability of X lying in this interval as:

P (x ≤ X ≤ x + δ x) = Prob(x ≤ X ≤ x + δ x) = p[x ≤ X ≤ x + δ x].

where we have used two other common notations for probability, Prob(), and p[]. Then in

equation form the property of the pdf is that
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P (x ≤ X ≤ x + δ x) =
x+δ x

x
∫ φ(u) du

For any x and small interval δ x this means

P (x ≤ X ≤ x + δ x) ≈ φ(x)δ x + (δ x)2

so that φ(x) represents the density of probability per unit value of x in the neighborhood of

x. Probability density functions must satisfy:

1. φ(x) ≥ 0 for all x: probabilities are always positive.

2.

Lt

Lb

∫ φ(x) dx = 1: X must take on some value within its permissible range. Often this

is the real line, with Lb = −∞ and Lt = ∞; but sometimes it is only part of that

line. For example, time intervals have to be positive, in which case Lb = 0 and

Lt = ∞; if we are considering the direction of something, X has to fall within

[0,2π ).

The usual notation for a random variable

X being distributed with a pdf φ is X ∼ φ .

Note that for a continuous random variable X , P (X = x) = 0 for all x: the probability of X

being exactly some value is zero.

Figure 2.1

If we integrate the probability density function, we get a cumulative distribution

function (or cdf), which denote by Φ(x):

Φ(x) =
x

LB

∫ φ(x)dx

which means that

φ(x) =
dΦ(x)

dx

provided this derivative exists, and also that

P (x ≤ X ≤ x + δ x) = Φ(x + δ x) − Φ(x)

which means in turn that

© 2008 C. Constable/D. C. Agnew



Version 1.3.5 Random Variables 2-7

Φ(x) = P (X ≤ x) (9)

The cdf has the following properties:

1. 0 ≤ Φ(x) ≤ 1

2.
x→−∞
lim Φ(x) = 0

x→∞
lim Φ(x) = 1 or Φ(Lb) = 0 Φ(LT) = 1

3. Φ is non-decreasing; i.e. Φ(x + h) ≥ Φ(x) for h ≥ 0

4. Φ is right continuous; i.e.
h→0+
lim Φ(x + h) = Φ(x); that is, as we approach any argu-

ment x from above, the function approaches its value at x.

While the cdf is perhaps less intuitive than the pdf, we will see that there are sometimes

advantages in using the cumulative distribution rather than the pdf. The left panel of Fig-

ure 2.1 shows a possible pdf, φ(x), for a made-up distribution; the right panel shows the cor-

responding cdf Φ(x). The dashed lines are the quantiles, which we discuss below.

2.5.1. Lebesgue’s Decomposition Theorem

Most treatments of probability take the cumulative distribution function for X as

being the more fundamental description of an rv, using equation (9) for the relation to prob-

ability. They then define the pdf φ(x) as the derivative of it, if this exists. The reason for

this approach is to allow discrete as well as continuous random variables, though

Lebesgue’s decomposition theorem. This theorem states that any distribution function,

Φ(x), can be written in the form

Φ(x) = a1Φ1(x) + a2Φ2(x) + a3Φ3(x)

with ai > 0, and a1 + a2 + a3 = 1. Φ1 is absolutely continuous (i.e., continuous everywhere

and differentiable for almost all x), Φ2 is a step function with a countable number of jumps

(that is, the sum of a finite number of Heaviside step functions, suitably scaled), and Φ3 is

singular. We can ignore Φ3 as pathological. Φ2 has the form Φ(x) =
xi < x
Σ pi, where

pi = P (X = xi); that is, the random variable X has a finite probability of occurring at the

discrete values x1, x2, x3, . . ., and zero probability of having any other values. We would

then call pi the probability mass function or the frequency function of the random vari-

able X ; we avoid the term frequency function because of (later) possible confusion with fre-

quency in the Fourier sense. Distribution functions can thus be applied both for continuous

random variables, and for discrete ones—or indeed to both combined (though this combina-

tion is pretty unusual). Dice-throwing has been our standard example for a discrete rv; we

could also use this to model the probability of finding the geomagnetic field in a normal or

reversed polarity state, by assigning integer values to each state, X , say 1 for normal, and

−1 to reversed. A less contrived case would be when X applies to the number of some kind

of event (for example, number of magnitude 6 or larger earthquakes in a year); this has to

be integer-valued, and therefore has to have a discrete distribution.

For such a discrete distribution, the distribution function includes a Φ2 part; that is, it

has steps. While the derivative does not, strictly speaking, exist at these steps, we can

obtain the distribution function from the pdf if the pdf φ(x) contains δ -functions, making φ a

generalized function. While this approach is mathematically consistent, it is not the one

usually followed in probability theory, perhaps because the standard mathematical develop-

ment of that theory predates the development of generalized functions. This is part of the

reason for the preference, in probability texts, for the distribution rather than the density
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function: for a discrete random variable, Φ exists and φ does not, at least as functions.

2.6. From rv’s to Conventional Variables: Means, Variances, Expectations,

Moments

While it takes a function to describe a random variable, we often want to summarize

certain attributes, such as the ‘‘typical’’ value, or the spread or variability, of a random vari-

able. These attributes are, it must be noted, conventional variables and not rv’s: they

involve some kind of operation on the pdf (usually integration) the result of which is a con-

ventional variable. In this section we describe some of the operations that can be performed

on a pdf to extract summary variables about it: of course this involves considerable com-

pression, so that we lose information but perhaps gain manageability. It is also important

to keep in mind that the operations we describe are performed on the pdf ’s that describe an

rv, not on data— though these operations on pdf ’s will certainly suggest how we might form

similar summaries on datasets.

One way to ‘‘summarize’’ the central value of a pdf would be to take the value of x at

which it attains its maximum value; this is called the mode. But density functions may be

unimodal (one peak) or multimodal; we showed a multimodal case in Figure 2.1. Given the

sensitivity of the mode to the details of the peak of the distribution, it is not a very good

measure of the central value.

A better method comes from what are called moments of the pdf (a usage that stems

from mechanics—remember moment of inertia). To start with, consider a discrete random

variable X , with probability distribution pi = P (X = xi), i = 1, 2.. .. (That is, keeping in mind

our approach to pdf ’s through delta functions, the pdf would be
i
Σ piδ (x − i)). Then we can

define the mean µ and variance σ 2 of the pdf by

µ =
i
Σ pi xi

σ 2 =
i
Σ pi(xi − µ)2

If X is a continuous random variable with pdf φ(x) then we replace the summations by inte-

grals over the density function (note that we will say ‘‘probability distribution’’ even when

we refer to the density function). Then the mean is

µ =
∞

−∞
∫ xφ(x)dx (10)

and the variance is

σ 2 =
∞

−∞
∫ (x − µ)2φ(x)dx (11)

which again measure the central value and spread. In the particular case of the normal

distribution, σ = √ σ 2 is called the standard deviation, but it is probably best not to use

this term except when that particular distribution is being used or assumed.

The variance of an rv Y is denoted as V[Y ].
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Of course, µ and σ may not completely describe a distribution (though for some distri-

butions they do). Additional characteristics of a probability distribution are given by

higher-order moments of the density function. These are defined in two ways: the r-th

moments about the origin are, for r = 1, 2, . . .,

µ r′ =
i
Σ xr

i pi for X discrete

µ r′ =
∞

−∞
∫ xrφ(x)dx for X continuous (12)

and µ r is the r-th moment about the mean, r = 2, . . .; for X continuous,

µ r =
∞

−∞
∫ (x − µ′1)rφ(x)dx

which is to say that the mean µ is µ1′; µ1 = 0; µ2 = σ 2; and µ2′ − µ2 = σ 2. The moments of

order higher than two give us additional information. The third moment, µ3, is a measure

of the asymmetry or skewness of the density function. The next moment, µ4, is known as

the flatness (or kurtosis).

While the first two moments of a distribution are the commonest measures of central

value and spread, there are others, which can be defined on the pdf but become most useful

when applied to data with a non-Gaussian distribution. Many of these measures are based

on the quantiles of the cdf, Φ(x). Since the cdf increases over its whole range, it has to have

an inverse, Φ−1, so we can write

y = Φ(x) x = Φ−1(y)

Then the p-th quantile of the distribution Φ is the value x p such that Φ(x p) = p; equiva-

lently, P (X ≤ x p) = p. Thus x p = Φ−1( p). The median of the distribution, µ̃, is the quantile

corresponding to p = 1
2
, which means that

µ̃

−∞
∫ φ(x)dx =

∞

µ̃

∫ φ(x)dx = 1
2

or

P (X ≤ µ̃) = P (X ≥ µ̃) = 1
2

The lower and upper quartiles of Φ, that is to say the quantiles corresponding to p = 0. 25

and p = 0. 75, are frequently used as a measure of spread; the difference x0. 75 − x0. 25 is

known as the interquartile range. The dashed lines in Figure 2.1 show how the median

and interquartile range are found for a particular cdf; since the pdf has two separate peaks

(it is multimodal), neither the mean nor the mode are good summaries: actually, in this

case it is not clear that the pdf can be well summarized with only one or two numbers. A

reason for preferring the median to the mean and variance is that the latter can be heavily

influenced by the tails of the pdf; obviously, these have little effect on the median and

interquartile range. This kind of summary value that is insensitive to small changes in the

pdf is called robust.

A more robust measure of spread than the variance is the mean deviation, σ̃ , defined

by
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σ̃ =
∞

−∞
∫|x − µ|φ(x)dx

If we compare this to the definition for the variance, we see that the mean deviation multi-

plies the pdf by a pair of straight lines to get the function to be integrated, while the vari-

ance multiplies by a parabola. Clearly the parabola gives more weight, or influence, to the

values of the pdf far from the center—which, as we noted above, may not be a good idea.

Both the parabola and the straight lines are examples of what are called influence func-

tions; when we discuss robust methods, we will see that a proper choice of such functions

can make a big difference in how resistant our estimates are to small changes in the pdf.

2.6.1. Expectations

In the previous section we have shown a number of cases of producing conventional

variables from rv’s by taking integrals of pdf ’s multiplied by other functions. This can be

generalized to something that is called the expectation of a random variable, or of a func-

tion of it.

Suppose we have a function (strictly speaking, a functional) which maps the domain of

the random variable into some other domain (for example, maps the real line into itself); we

call this function g. When g operates on a random variable X , the result Y = g(X ) is

another random variable. The expected value of Y = g(X ), also called its expectation, is

given by

Lt

Lb

∫ g(x)φ(x)dx (13)

where the limits are those applicable to g(X ); for example, if X could range over the entire

real line, and g(x) was x2, the limits for g, and the integration, would be from zero to infin-

ity.

The expectation of an rv Y is denoted as E[Y ].

E is a kind of operator, like differentiation or integration, taking any random variable

(in the form of its pdf) and creating a conventional variable out of it. We say that for any

conventional variable c, E[c] = c. Because E involves integration, it is linear, so that

E[
k

i = 1
Σ ci gi(X )] =

k

i=1
Σ ciE[gi(X )] (14)

The simplest case is when g(Y ) is just the variable itself, then we have

E[X ] =
Lt

Lb

∫ xφ(x)dx = µ

by the definition of the mean: so the mean is just E[X ]. Similarly, equations (10), (11), and

(12) become

E[X ] = µ V[X ] =def E[(X − µ)2] = σ 2 E[X r] = µ′r (15)

where we use =def as a shorthand for ‘‘the left side is defined to be what is on the right
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side’’.

2.7. Transformations and Functions of Random Variables

We start to look at what might be called the arithmetic of random variables: that is,

the rules that give us the pdf for a random variable Y that is in some way related to a ran-

dom variable X , whose pdf, φ X(x), we know. We will see in the next section that something

as simple as the sum of two rv’s requires a fairly complicated process to produce the pdf of

the sum; in this section we deal with the simpler cases of combining rv’s with conventional

variables, and of functions of an rv.

The most general combination of an rv with conventional variables is a linear transfor-

mation, which involves both multiplication and addition; we define a new rv Y as

Y = c(X + l) (16)

using the variables c and l because we will use them in the next chapter for the spread and

location parameters of a pdf. Now consider the probability

P (y ≤ Y ≤ y + g) =
y+g

y
∫ φ Y(v) dv (17)

From (16) we have that

P (y ≤ Y ≤ y + g) = P (y ≤ c(X + l) ≤ y + g) (18)

remembering that y is being a limit, is just a conventional variable, and does not change

when the random variable does. We can rewrite the right-hand side of (18) as

P



x − l

c
≤ X ≤

x − l + g

c




=

x−l+g

c

x−l

c

∫ φ X(u)du (19)

by the definition of the pdf φ X . In order to make the limits on the integral the same as

those in (17), we have to perform a change of variables, with w = cu + l so u = (w − l)/c).

Making this change, the integral in (19) becomes

y+g

y
∫ φ X



w − l

c




dw

c

which means that

φ Y(x) =
1

c
φ X




x − l

c




This is a result we will use frequently in the next chapter.

Intuitive though it may be to use the pdf, this is one of many cases in which the cumu-

lative distribution function makes the proof simpler. We can put most of the steps on one

line:

ΦY(y) = P (Y ≤ y) = P (cX + l ≤ y) = P


X ≤

y − l

c




= ΦX



y − l

c




(20)

and have only to take the derivatives:

© 2008 C. Constable/D. C. Agnew



Version 1.3.5 Random Variables 2-12

φ Y(y) =
d

dy
ΦY =

d

dy
ΦX




y − l

c




=
1

c
φ X




y − l

c




where the c−1 in the last expression comes from the chain rule for derivatives.

Now suppose we have a more general case, in which Y = g(X ); how does φ Y(y) relate to

φ X(x)? We can in fact use the same approach, provided that g(X ) is monotone and differen-

tiable over the range of X , so that there is an inverse function that satisfies X = g−1(y).

Then we can follow the steps in (20) and write

ΦY(y) = P (Y ≤ y) = P (g(X ) ≤ y) = P (X ≤ g−1(y)) = ΦX(g−1(y)) (21)

which we differentiate, using the chain rule, to get

φ Y(y) =
d

dy
ΦY =

d

dy
ΦX(g−1(y)) = φ((g−1(y))





d

dy
(g−1(y))





(22)

where the absolute value is present to deal with the case in which Y decreases as X

increases.

As an example, suppose that we have φ = 1 for 0 ≤ X ≤ 1 (the uniform distribution) and

want the pdf of Y = X2. Then g−1(y) = √  y, and

φ Y(y) =
1

2√  y

which is interesting because it shows that the pdf can be infinite, provided only that the

associated singularity is integrable.

While (22) might appear to provide a simple formula to apply, it is actually better in

practice to start with the steps in (21), which are more general and easier to remember. If,

for example, we had φ = 1 for − 1
2

≤ X ≤ 1
2

and Y = X2, we could not use (22) because there is

no unique inverse; but the steps in (21) become

ΦY(y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√  y ≤ X ≤ √  y) = Φx(√  y) − Φx(−√  y)

from which the pdf, y− 1
2

for 0 ≤ y ≤ 0. 25, can easily be derived.

2.8. Sums and Products of Independent Random Variables

The above discussion has actually avoided what we normally consider to be basic arith-

metic operations, such as adding two variables together. We now turn to this by answering

the question, given two rv’s X1 and X2 with known pdf ’s, what are the pdf ’s of X1 + X2 and

X1/X2? We go through the derivations here, and then make use of the one for summation

to demonstrate the Central Limit Theorem (in the next section); we will use the results of

this section extensively in the next chapter for deriving a variety of pdf ’s.

2.8.1. Summing Two Variables

Our first step in answering these questions is one that appears to complicate the prob-

lem; we need to generalizing the concept of a pdf to more than one variable. To do this, we

introduce the idea of a joint probability for random variables. We already have joint

probabilities for sets: the joint probability for set A and set B is P (A∩B). If we say that set

A is having X1 fall between x1 and x1 + δ x1, and set B is having X2 fall between x2 and

x2 + δ x2, then we can write the joint probability in terms of a pdf of two variables:
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P ((x1 ≤ X1 ≤ x1 + δ x1)∩(x2 ≤ X2 ≤ x2 + δ x2)) =
x1+δ x1

x1

∫
x2+δ x2

x2

∫ φ(x1, x2) dx1dx2 (23)

which we write as X1, X2 ∼ φ(x1, x2), meaning that the random variables X1 and X2 are

jointly distributed with pdf φ(x1, x2).

To find the pdf for the sum, we introduce the rv Y = X1 + X2, which has the pdf ψ and

distribution Ψ. Then

Ψ(y) = P (Y ≤ y) = P (X1 + X2 ≤ y) =
x1+x2 ≤ y

∫ φ(x1, x2)dx1dx2

so that the integral is over the shaded area on the left of Figure 2.2.

Figure 2.2

We next suppose that X1 and X2 are independent; Chapter 4 will deal with the case

that they are not. For sets independence means P (A∩B) = P (A)P (B); this can be consistent

with equation (23) only if the pdf for the two variables has the form

φ(x1, x2) = φ1(x1)φ2(x2)

where φ i is the pdf of X i. In this case the properties of X1 can be found independently of

the distribution of X2; that is to say, from φ i alone. Then

Ψ(y) =
x1+x2 ≤ y

∫ φ1(x1)φ2(x2)dx1dx2

Letting s = x1 + x2 we get

Ψ(y) =
y

−∞
∫

∞

−∞
∫ φ1(x1)φ2(s − x1)dx1ds

Differentiating gives the pdf for Y :

ψ (y) =
dΨ
dy

=
∞

−∞
∫ φ1(x1)φ2(y − x1)dx1 =def φ1 +×φ2

In the last part of this equation we have introduced a new notation, namely +× to mean the

particular integral of a product of functions, which is called the convolution of the two

functions φ1 and φ2 to form the function ψ . We can generalize this result for multiple inde-

pendent rv’s X1, X2, ..., X n, with X k ∼ φ k: the sum has the pdf
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X1 + X2+. . . +X n ∼ φ1 +×φ2 +×φ3. . . +×φ n

which is to say, if we add independent random variables, we will get a random variable

whose pdf is the convolution of the component pdf ’s.

2.8.2. Multiplying Two Variables

For the product of two rv’s, we proceed similarly to the derivation for sums: we intro-

duce the rv Y = X1 X2, with pdf ψ and distribution Ψ; Y ∼ ψ with ψ =
dΨ
dy

. Then

Ψ(y) = P (Y ≤ y) = P (X1 X2 ≤ y)

To get this, we have to integrate the joint pdf φ(x1, x2) over the set such that x1 x2 ≤ y; if

x1 < 0, x2 ≥ y/x1, while if x1 > 0, x2 ≤ y/x1, making the integral of the joint pdf over the

shaded area on the right of Figure 2.2. We can write this as the sum of two integrals

0

−∞
∫

∞

y/x1

∫ φ(x1, x2)dx2dx1 +
∞

0

∫
y/x1

−∞
∫ φ(x1, x2)dx2dx1 (24)

We introduce a new variable s = x1 x2, which makes (24)

0

−∞
∫

−∞

y
∫

1

x1

φ(x1, s/x1)dsdx1 +
∞

0

∫
y

−∞
∫

1

x1

φ(x1, s/x1)dsdx1 =

0

−∞
∫

y

−∞
∫

1

−x1

φ(x1, s/x1)dsdx1 +
∞

0

∫
y

−∞
∫

1

x1

φ(x1, s/x1)dsdx1 =

y

−∞
∫

∞

−∞
∫

1

|x1|
φ(x1, s/x1)dx1ds

Since this is Ψ(Y ), we can differentiate to get

ψ (y) =
∞

−∞
∫

1

|x1|
φ(x1, y/x1)dx1 =

∞

−∞
∫

1

|x1|
φ1(x1)φ2




y

x1



dx1 (25)

where only at the last step have we assumed that that X1 and X2 are independent. A simi-

lar approach for Y = X1/X2 gives

ψ (y) =
∞

−∞
∫|x1|φ1(x1)φ2(x1 y)dx1 (26)

which we will also use in Chapter 3.

2.9. The Central Limit Theorem

In all of probability theory and statistical inference the normal distribution (also

called the Gaussian distribution)6 plays a major role. The pdf for this, with the mean set

to zero, is

6 For the history of the names, see Stephen S. Stigler (1980). Stigler’s Law of Eponymy, Trans.

New York Acad. Sci. Ser. 2 39, 147-157 (1980).
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φ(x) =
1

σ √  2π
e−x2/2σ 2

which is conventionally written as X ∼ N (0, σ ).

The overriding importance of the normal distribution is justified by the central limit

theorem; loosely speaking this theorem states that if a random variable X is the sum of a

large number of other random variables, then X will be approximately normally dis-

tributed, irrespective of the distributions of the components.

We now demonstrate this, with two caveats. The first is that this is not a fully rigor-

ous proof. The second is that, despite this theorem, actual data (see, for example, Figure

2.1.1) have a stubborn habit of not being normally distributed. Often they are ‘‘close

enough’’ that it doesn’t matter (much), but the careful data analyst will always check this,

and allow for the possibility that the data are non-normal.

2.9.1. The Characteristic Function

We begin by doing something that, unless you are already familiar with convolution,

will not be too obvious: we take the Fourier transform of the pdf. We do this because then

the convolution operation on the pdf ’s is replaced by multiplication of their Fourier trans-

forms, which is much more manageable. If we have an rv X ∼ φ , we want the Fourier trans-

form of φ , which we denote as F[φ] or φ̂( f ),7 and which is given as

φ̂( f ) =
∞

−∞
∫ φ(x)e−2π ifxdx

This is called the characteristic function of φ ; it has the inverse transform

φ(x) =
∞

−∞
∫ φ̂( f )e2π ifxdf

Because pdf ’s are such well-behaved functions (positive and with a finite area) this trans-

form always exists. Note that

φ̂(0) =
∞

−∞
∫ φ(x)dx = 1

where the integral follows from direct substitution into the Fourier-transform equation.

Because of the uniqueness of the inverse Fourier transform (something we have

assumed), the characteristic function uniquely determines the pdf, through the inverse

Fourier transform, and so completely specifies the properties of X , just as φ does. The char-

acteristic function can also be defined in terms of the expectation operator (13); if we take

g(x) to be e−2π ifx, we see that the Fourier transform corresponds to our definition of an

expectation, so that

φ̂( f ) = E[e−2π ifX ] (27)

which, mysterious as it might seem at first glance, is just the application of a function to

some random variable. Expanding the exponential in equation (27), and making use of the

7 Notation alert: this use of a ˆ for the Fourier transform of a function is conventional and con-

venient. But, you should be aware that we will also use, for example, m̂ to denote the estimate of

a conventional variable m. In practice the meaning should be clear from the context.
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linearity of the expectation operator (equation (14)) and the definition of the higher

moments (equation (12)), we find that

φ̂( f ) =
∞

r=0
Σ (−2π if )r

r!
µ′r (28)

where µ′r = E[X r]. Since a Taylor series (which this is) determines the function uniquely,

and the density function is uniquely determined from the characteristic function, we have

shown that knowledge of all the moments of a distribution determine it completely.

We can use equation (28) to express the mean and variance of a distribution in terms

of derivatives of the characteristic function, evaluated at zero. For example, if we take the

derivative of (28), and then evaluate it at zero, we have only one term left in the expansion,

so that

φ̂ ′(0) = −2π iµ′1 whence E[X ] = =
−φ̂ ′(0)

2π i

by (15); similarly, φ̂ ′′(0) = −4π 2 µ′2, so for the variance we get

V[X ] =
φ̂ ′(0)2

4π 2
−

φ̂ ′′(0)

4π 2

where, since φ̂ ′′(0) <  0, V[X ] >  0 as it should be.

2.9.2. Summing Many Variables

Our actual demonstration of the Central Limit Theorem uses characteristic functions;

indeed, the main use of such functions is for proving theorems. To start, we find the charac-

teristic function of the normal pdf, which is

φ̂( f ) =
1

√  2π σ

∞

−∞
∫ e−1

2
(x2/σ 2)e−2π ifxdx

This may be evaluated by completing the square in the exponent to give a definite integral

in x, which yields another Gaussian.

φ̂( f ) = exp[−2π 2σ 2 f 2]

Now, suppose we have random variables X1, X2, . . .  , X n, which are independent and

identically distributed, a situation so common that it gets its own acronym, namely iid.

We assume the pdf has mean of zero, a variance σ 2, and that all the higher moments exist.8

Let Sn =
n

i=1
Σ X i. The Central Limit Theorem is that, in the limit as n → ∞, the distribution

of Sn approaches N (0, σ √  n); the variance σ 2 grows as n. If Sn ∼ φ n and each X i ∼ φ then φ n

is an n-fold convolution

φ n = φ +×φ +×φ +× . . . +×φ

which means that the characteristic function φ̂ n is given by

φ̂ n = φ̂ ⋅ φ̂ ⋅ . . . φ̂ = (φ̂)n = en ln φ̂

Assuming that all the moments of φ exist, then so do all the derivatives of φ̂ at f = 0 and we

8 As we will see in the next chapter, there are pdf ’s for which this is not the case.

© 2008 C. Constable/D. C. Agnew



Version 1.3.5 Random Variables 2-17

can expand φ̂ in a Taylor series:

φ̂( f ) = φ̂(0) +
f

1!
φ̂ ′(0) +

f 2

2!
φ̂ ′′(0) + . . . = 1 +

f 2

2!
φ̂ ′′(0) +

f 3

3!
φ̂ ′′′ (0) + . . .

where we have made use of φ̂(0) = 1 (true for all φ̂ ) and φ̂ ′(0) = 0 (because we assumed

E[X ] = 0).

Figure 2.4

Putting this series into the en ln φ̂ , we get

φ̂ n( f ) = exp






n ln



1 +

f 2

2!
φ̂ ′′(0) +

f 3

3!
φ̂ ′′′ (0) + . . .










= exp




nf 2

2!
φ̂ ′′(0) +

nf 3

3!
φ̂ ′′′ (0) + . . .





where we have used the power series expansion ln(ε) = 1 + ε + ε 2/2 + . . .. Next we define a

new variable

σ 2
n = V[Sn] =

−nφ̂ ′′(0)

4π 2
= nV[X i]

and a constant

c3 =
4φ̂ ′′′ (0)

3(−φ̂ ′′(0)/π )3/2

Then the series can be rewritten as

exp






−2π 2σ 2
n f 2 + (σ n f )3

c3

n
1
2

+ O




(σ n f )4

n










The effect of introducing σ has been to make all terms but the first approach zero as n → ∞,

and the first term gives a Gaussian characteristic function, with V[Sn] = nV[X i]; φ(x) tends

to a Gaussian with mean 0 and variance nV[X ] = nσ 2, which is what we wanted to show.
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To go from mathematics to real data, Figure 2.4 shows the histogram, and the cumula-

tive distribution function for the heights at which GPS antennas were set above the ground,

for a very large database. Heights outside the range from 0.5 to 1.8 m usually involved

some kind of pole with a fixed height; between these heights the usual stand for the

antenna was a surveyor’s tripod, which can be set up over a wide range. In the right frame,

the dashed line shows that, indeed, the cumulative distribution function for these heights is

very nearly a Gaussian, or Normal, distribution: since these data represent nearly 17000

decisions by hundreds of people over two decades, it is impressive that they can be

described so simply. This, and other distributions of random variables, will be the subject of

the next chapter.
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