
Chapter 5
Parameter Estimation

5. Introduction

Many geophysical problems involve the need to estimate some set of unknown

quantities from a collection of observational data. We gave a simple example at the

end of the previous chapter, where we assumed that measurements of distance x for

a falling body at different times could be modeled by a random variable

X i ∼ φ(x − 1
2

gt2
i ) (1)

with φ being some known pdf, assumed the same for all the measurements. The

point estimation problem would then be, given actual data x1, x2,
. . . xn, at times

t1, t2,
. . . tn, to find the ‘‘best’’ value of the parameter g—and, though this is a more

subtle problem, within what range we think it might lie. Note that we use a lower-

case variable x to denote actual data—these are not random variables, but some set

of definite values. Also note that we make the number of data n, partly to distin-

guish this from the dimension of a multivariate rv that we discussed in the previous

chapter—though we will see soon enough that understanding estimation will require

multivariate pdf ’s.

5.1. A Simple Example: Three Sets of Estimates

We will start with a simpler case, which is the first dataset shown in Chapter 1.

We assume that the data, x1, x2,
. . . xn, can be modeled by a random variable

X i ∼ φ



x − l

c




where the two parameters are the location l and the spread c. We begin by dis-

cussing some ways in which we might estimate these, partly to introduce some con-

ventional and useful methods.

5.1.1. The Method of Moments

As an estimate of l we might use the arithmetic average, or mean, often called

the sample mean:1

x =
1

n

n

i=1
Σ xi analogous to µ =

∞

−∞
∫ xφ(x)dx (2)

where the ‘‘analogous to’’ is the same kind of operation performed on a pdf to get (in

this case) the first moment, or expected value. If we make the same analogy for the

second moment, we get, as an estimate of the variance, the sample variance:

1 Th term ‘‘sample’’ comes from the idea that there is a large (potentially infinite) collection of

random variables, from which we have chosen a sample of n values. However appealing this

image may be for the sciences in which such a population exists (which are quite a few, ranging

from astronomy to economics), this concept does not seem appropriate for many parts of geo-

physics (though it does work for statistical seismology). We shall continue to say, instead, that

we model data by random variables, and use the idea of a population as little as possible.
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s2 =
1

n





n

i=1
Σ(xi − x)2 −

1

n




n

i=1
Σ xi − x)




2



analogous to σ 2 =
∞

−∞
∫ (x − µ)2φ(x)dx (3)

The expression for s2 has two summations; in an exact computation the second one

would be identically equal to zero, but in an actual, finite-precision, computation it

improves the accuracy for large n.2

Equations (2) and (3) illustrate the method of moments as a procedure for

estimating parameters, particularly ones that directly describe the pdf. In principle,

if we know all the moments of a pdf we know everything there is to know about it,

and so can deduce all the parameters it includes. So using the method of moments

means estimating the sample moments of the data (something that is computation-

ally easy to do) and taking these to be the moments of the pdf. Of course, in practice

we cannot find all the moments, so unless we are quite sure of the form of the pdf,

this procedure is somewhat limited, and may be misleading; so we do not recom-

mend it. We will see it in use below, when we come to the Monte Carlo and bootstrap

methods of evaluating estimation methods—though in these it is used, not for the

data, but for results derived from them.

In the case of our GPS data, the results are x = −0. 023 4 and s2 = 0. 407

(s = 0. 638). If we compare the distribution of the data (as shown by the histogram)

with the moments we may feel that something has gone badly wrong, at least with

the second moment: it seems much too large. The reason is fairly simple: while

almost all the data are between −1 and 1 (see Figure 5.1), there is one value at

−10.32, one at −1.56, and one at 6.34. Including these in the arithmetic average

(equation 3) might bias the sample mean based on only a tiny fraction of the data;

but these three outlying values unquestionably have a large effect on inflating the

estimated second moment.

5.1.2. Order Statistics

Given these results, we might seek estimation procedures that are less affected

by what values are taken on by a very small fraction of the data; the technical term

for such procedures is robust. One method of getting robust estimates is to sort the

data into increasing order

x(1 ), x(2), . . .  , x(n−1), x(n)

where the use of parentheses on the subscripts is the standard notation to indicate a

sorted set of values. Procedures that make use of sorted data are called order

statistics. One such, which provides an estimate of the location parameter l, is the

sample median

xmed = 1
2
[x(n/2) + x(n/2+1)] analogous to

xm

−∞
∫ φ(x)dx =

∞

xm

∫ φ(x)dx

where the definition given for xmed is for n even (true in the case of these GPS data,

with n = 38 6); for n odd, xmed = x(n/2). For the spread, we can use the interquartile

range, which is just x(0.7 5n) − x(0.25n). If we were to apply this to a normal

2 Chan, T. F., G. H. Golub, and R. J. LeVeque (1983), Algorithms for computing the sample

variance: analysis and recommendations, Amer. Statistician, 37, 242-247.
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distribution, we would find that the IQR is 1.349σ ; for the GPS data the IQR is 0.14,

giving 0.10 for the estimate of the equivalent of the standard deviation. This is

much more satisfying as an approximation to the spread seen in the histogram.

5.1.3. Trimmed Estimates

However, we might be concerned that these two procedures do not make enough

use of the data. For the median, the actual values of almost all the data are irrele-

vant, except to set the midpoint; only one or two values actually enter into the calcu-

lation. As an intermediate approach, we could consider removing data from the two

ends of the sorted distribution, and computing what would then be called a

trimmed mean. Note that this is still an order statistic, dependent on having the

data sorted. For example, the 10% trimmed mean is

x10% =
1

0. 9n

0. 95n

i=0. 05n
Σ x(i)

and the 10% trimmed variance is

s2
10% =

1. 64

0. 9n

0. 95n

i=0. 05n
Σ (x(i) − x10%)2

where the constant in the expression applies for large n (and 10% trimming), and

assumes that the pdf is in fact normal. The resulting values for the mean and vari-

ance are x10% = −0. 0125 and s2
10% = 0. 112, which are much closer to the values from

the median and IQR.

But, all this is more than a bit ad hoc. How can we decide which of these meth-

ods is better than another, either globally, or for a particular case? Answering that

question is what we turn to next.

5.2. Three Ways to Test an Estimator

We begin with some terminology. An estimator is some algorithm for finding

the value of a parameter; we have described three such procedures above. What

such a procedure produces when applied to data is an estimate. So the question we

are discussing is the relative performance of different estimators. We describe three

wa ys to assess this: the classical method using analytic procedures; Monte Carlo

methods; and the bootstrap. (As usual, more cryptic names—but their meaning will

become clearer). Each has its advantages and problems; we examine them using the

example just given, of finding parameters for the location and spread of the pdf used

to model the data.

5.2.1. The Classical Method of Evaluating a Statistic

The title of this subsection may have caused you to stop in confusion, because

we were just promising to evaluate estimators, and now are talking about ‘‘a statis-

tic’’, which at first sight would appear to be the singular of the field, statistics, we

are studying. But in fact a statistic3 is yet another kind of random variable, and one

3 Blame where blame is due: this unhappy terminology is due to R. A. Fisher, whose policy

seems to have been never to coin a name from Greek or Latin if a common English word could be

used instead—the difficulty being that such words often had a common meaning at odds with the
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we use to evaluate an estimator.

To state more generally the problem we are trying to solve, we suppose that we

have n observations x1, x2, . . .  , xn that we model by n random variables

X1, X2, . . .  , X n. These random variables have a joint probability distribution of

φ(x1, x2, . . .  , xn,θ1, θ2, . . .  ,θ p)

where the values of the parameters θ1, θ2, . . .  , θ p are unknown, and are to be deter-

mined from the data, x1, x2, . . .  , xn. Note that we use lower-case letters (for example,

x) to denote both data and the arguments to the pdf for the X’s. Since the observa-

tions are not used as arguments in the pdf. this should not cause confusion.

You need to appreciate that the above problem, of estimating the θ ’s given the

x’s, is quite different from what we have studied in probability theory. In those prob-

lems, we are given the parameters θ1, θ2, . . .  , θ p and use the function

φ(x1, x2, . . .  , xn,θ1, θ2, . . .  , θ p) to tell us the probability of obtaining values of the ran-

dom variables X1, X2, . . .  , X n that fall within specified ranges.

In estimation we are given the measured values of x1, x2, . . .  , xn, and try to

make statements, perhaps using the pdf φ(x1, x2, . . .  , xn,θ1, θ2, . . .  , θ p) about the ‘‘best

values’’, and range of reasonable values, for the different parameters θ1, θ2, . . .  ,θ p.

Estimation is thus a kind of ‘‘inverse’’ to probability theory—except that in this

framework neither the data nor the parameters are random variables, so we cannot

make probability statements about them.4

How do we express what the data tell us about the parameters, when neither is

a random variable. What we do is to introduce a random variable that ‘‘looks like’’ a

parameter. To keep matters simple, we assume we have only one random variable

X , and one parameter θ , so the pdf of X is φ(θ). We assume that X is a model for the

data x1, x2, . . .  , xn; note that there can be n data even if there is only one X .

Next, suppose we have some estimator (such as the average, the median, or the

trimmed mean) that supplies us, given data, with a number that we think is an esti-

mate of the parameter θ . We can imagine applying this estimator (which is just an

algorithm), not to the data, but to the random variable we are using as a model. Per-

forming this algorithm on n random variables X will give us a new random variable,

which we symbolize by θ̂ . This variable θ̂ will have some pdf, which is called the

sampling distribution of θ̂ ,5 which we write as θ̂(X1, X2, . . .  , X n). This pdf depends

on

1. The pdf for X .

2. The wa y the estimator is computed; that is, its functional form.

3. The number of data n.

technical one. However, considering such coinages from the Greek as ‘‘homoscedasticity’’, per-

haps his choice was understandable.
4 We say ‘‘in this framework’’ because there is another way to look at the problem, namely the

Bayesian approach, in which we take the parameters to indeed be modeled by random vari-

ables, with the meaning of the associated probabilities then being our degree of belief in a partic-

ular range of values. For reasons of space we have not introduced this methodology, which cer-

tainly deserves more than a footnote!
5 This term comes from the idea of sampling from a population.
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The random variable θ̂ (X1, X2, . . .  , X n) is called the statistic corresponding to θ .

The estimate is the result of applying the estimation procedure to actual data,

θ̂ (x1, x2, . . .  , xn).6 Note that the statistic is a random variable; the estimate is a con-

ventional variable. Because the statistic is a random variable, but is tied to some-

thing we do with data, it provides the theoretical basis for evaluating different esti-

mation procedures.

To see how this works, suppose we have n data that we assume can be

described by a normal distribution with mean µ and variance σ 2. Note that we do

not, for the following discussion, need to know what the values of these parameters

actually are; we do of course need to know the functional form of the pdf. The proce-

dure (2), applied to these random variables, will produce another random variable,

the statistic,

µ̂ =
1

n

n

i=1
Σ X i

The sampling distribution of this statistic is given by the convolution of n normal

pdf ’s, divided by n: this pdf is again normal, with mean µ and variance σ 2/n, a result

we derived in Chapter 4. So, if we are justified in our assumption that we can model

the data by random variables with the normal distribution, we know that: (1) the

expected value of the statistic is equal to the actual value of the parameter; and (2)

the variance of the statistic decreases as the number of data, n, increases.

What about the median? If we apply this procedure to the same distribution of

random variables (normal) we get, again, a new random variable. It turns out that

the expected value of this is again µ; the variance is approximately

V[µ̂med] =
π σ 2

2(n + 2)


1 +

π

2(n + 4)



(4)

which for large n is 1.57 times the variance of the sample mean, µ̂.

5.2.2. Monte Carlo Methods

The method we have just described can be most tersely summarized as, find the

pdf of some combination of n random variables with known pdf ’s (assumed to model

the data). If we can do all this analytically, taking this approach will give the most

rigorous result; but sometimes there is no analytical result readily available. If not,

we can replace analysis with computation, using what is called a Monte Carlo eval-

uation7

The basic Monte Carlo procedure is simply described:

1. Generate n random variables with the assumed distribution.

2. Compute an estimate (call it θ̂1) from these imitation data.

6 Notation alert: we may (as here) use the same function to describe an estimate and a statis-

tic; what sets them apart is their arguments.
7 The term of course comes from the famous (less so now then when statistics was founded)

gambling center. There are lots of Monte Carlo methods, actually; we refer only to those in

statistics. We should also note that it is common to call any method that uses computed random

numbers a Monte Carlo method, which makes the bootstrap (discussed below) such a method.

For clarity, we have taken a more restricted meaning here.
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3. Repeat steps 1 and 2 a total of k times, to get estimates θ̂1, θ̂2, . . .  , θ̂ k.

4. Find the empirical first and second moments of the θ̂ ’s:

θ =
1

k

k

i=1
Σ θ̂ i σ 2

θ̂
=

1

k

k

i=1
Σ(θ̂ i −θ)2

and take these to be the first and second moments of the pdf of the statistic θ̂ .

Since this is all done numerically, we can be assured that our imitation X ’s

have the distribution we want. We may be interested in other properties of the

pdf (e.g., the bounds within which 95% of the mass lies); these can also be found

from the θ̂ ’s.

The parallel with the analytic procedure should be clear:8 we assume we can

represent the data by random variables, from which we form a statistic. The differ-

ence is that, rather than trying to find the distribution of this statistic analytically,

we do it through lots and lots of computation, generating a large number of (simu-

lated) statistics and then looking at their distribution.

How does this method compare with the classical approach?

A. So far as the assumptions involved go, it is the same: we assume we know

the distribution the data come from (including all the parameters), which

may or may not be valid. (We will see in the next section how we can

escape this assumption).

B. It makes many fewer demands on our analytical skills. So long as we have

an algorithm for generating appropriate random variables, and another for

finding the estimates from data, we can proceed—of course we always have

the latter. Confronted with some novel estimation procedure, and given

ever-faster computers, Monte Carlo methods may often be the quickest

wa y to find out the sampling distribution of the statistic.

C. However, the replacement of the analytical determination of the pdf by

step (4), finding it empirically, can be a disadvantage, because it may take

a very large value of k to make this empirical distribution well-deter-

mined. If all we want to do is find the expected value and variance (the

first two moments) a relatively small number of simulations will do; but if

we want to determine, reliably, such features as the limits within which

95% of the sampling distribution lies, we are trying to make a statement

about the tails of the sampling distribution—and this inevitably requires a

great many simulations.

D. Monte Carlo methods can only answer the question ‘‘How good is this esti-

mator?’’ They cannot provide information on whether an estimator is, in

some sense, the best possible—that is to say, optimal. For this reason we

will spend a fair amount of time, in the rest of this chapter, on analytical

methods, precisely to lay out some general procedures for finding and eval-

uating estimators.

Monte Carlo methods are seeing increasing use, and we certainly suggest you

consider them—but they should, in general, be the second choice, after at least some

8 And this is a situation in which the idea of sampling from a population makes perfect sense.
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Figure 5.2

attempt to find an analytical result for the sampling distribution of the statistic.

And, if you have derived your own analytical result, we strongly suggest doing a

Monte Carlo computation as a check!

Figure 5.2 shows an example of a Monte Carlo calculation, for the sample

mean, median, and 10% trimmed mean, using simulated normal random variables

with the mean and standard deviation taken from the trimmed estimates for the

GPS data. As expected, the distribution of the sample median is somewhat broader

than that of the sample mean; in fact, the ratio of the variances is 1.55, very close to

the 1.57 expected for this large a value of n. The Monte Carlo method easily handles

the 10% trimmed mean, which has a variance essentially the same as that of the

sample mean.

5.2.3. Lifting Ourselves by Our Bootstraps

Our final procedure for evaluating an estimator is also computationally inten-

sive, and very like what we have called Monte Carlo, with one big exception: instead

of assuming we know the distribution of the random variables that we use to model

the data, we assume that the data themselves can be used as the model random

variables—we do not need to compute such variables at all. This seems so much like

getting something for nothing—or at least, more than we ought to get—that it pro-

voked the inventors of the method to refer to the image used as the title of this sec-

tion. For this reason such an approach is known as a bootstrap method, a bit of

jargon now firmly embedded in the statistical lexicon.

A bootstrap approach to finding the sampling distribution of a statistic works as

follows:

1. Generate n random variables distributed as integers j1, j2, . . .  , jn, with a

uniform distribution from 1 to n. Note that this means that some of these

integers will, almost certainly, be identical. Use, as imitation random vari-

ables, the data indexed by these integers (that is, x ji
); again, some of these

values will be the same data values, taken more than once—for which rea-

son this procedure is called sampling with replacement. (Imagine taking
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data values out of a container at random, and putting each one back after

you record it).

2. Compute an estimate (call it θ̂1) from these imitation random variables.

3. Repeat steps 1 and 2 a total of k times, to get estimates θ̂1, θ̂2, . . .  , θ̂ k.

4. Find the empirical first and second moments of the θ̂ ’s, or whatever other

property we are interested in.

Figure 5.3

The parallel with the Monte Carlo method is clear, not least in that this is

something that can be done only with access to significant amounts of computer

power—for which reason these methods were developed relatively recently. A major

strength is the paradoxical feature that we do not need to select a pdf—this is done

for us, as it were, by the data; and the method is certainly straightforward. At the

same time, there is the same disadvantage as Monte Carlo, that a large number of

iterations (large k) may be needed to determine some aspects of the sampling distri-

bution. If the number of data n is not large, it is possible that k may be large

enough that we exhaust all possible arrangements of the data—in which case the

randomness becomes less clear.

Figure 5.3 shows the bootstrap applied to the GPS data, with k = 4000, for the

same three estimators as were used in the Monte Carlo procedure in the previous

section. The presence of a few outliers makes a huge difference, with the mean

being much worse than either the median or the trimmed mean. The lowest vari-

ance of the three is for the 10% trimmed mean, with 0.72 of the variance of the

median (the histogram for the median looks odd because the original data, one of

which will form the median value, are only given to multiples of 0.01; so every other

bin is empty). In this case the bootstrap has made clear that the trimmed mean is

the preferred approach; and the Monte Carlo simulation of the previous section has

shown that even for normal data, it has a variance that is nearly the same as that of

the mean.

The biggest danger in using the bootstrap is that the data will not obey one of

the restrictions that are required for the method to work. For example, the theory
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requires that the values be independent—something easy enough to assure if we are

creating random variables on a computer, but less easy to be sure about in a real

data set. (Indeed, this is probably not true for the GPS data, though not to an extent

that would significantly vitiate the results given here).

Finally, we note that what we have described here as ‘‘the bootstrap’’ is actually

one of a number of bootstrap methods. Suppose, for example, we used the Monte

Carlo methods of the previous section, but, instead of assuming a priori the parame-

ters for the pdf of our computed random variables, took them from estimates from

the data (of course, we sort of did this in our example). This would be called a para-

metric bootstrap: we are, again, using the data, though this time not directly but

through a simulation of data with a known pdf but parameters determined from the

data. This would be appropriate, for example, when we have so few data that direct

use of the data values themselves would not be possible for more than a few simula-

tions.

5.3. Confidence Limits for Statistics

Up to this point we have talked only about the first two moments of the sam-

pling distribution of a statistic: the expected value E[θ̂ ] = θ̂ and the variance V[θ̂ ]. If

we define σ θ̂ =def (V[θ̂ ])
1
2 , then it is conventional to say that our estimate θ (

→
x) has a

standard error of σ θ̂ , and we write the result, again conventionally, as being θ ± σ θ̂ .

This is often interpreted as being a statement about the range within which θ ,

the true value, will fall most of the time—but if we look at this statement carefully,

we realize that this is nonsense. Any statement that includes something like ‘‘most

of the time’’ is a probabilistic one; but we cannot make probabilistic statements

about the true value of something, for this is a conventional variable and not a ran-

dom one. And furthermore, just saying ‘‘x ± σ ’’ is not even a statement of probability,

for it does not have any information about a pdf (or rather, has only the first two

moments).

How can we make this more sensible and more precise?

The answer is what are called confidence limits. These arise by broadening

our view from the question of finding a single value for a statistic (called a point

estimate of a parameter), to finding the probable range for the statistic (called an

interval estimate). Note that since we said ‘‘a statistic’’ we can talk about proba-

bility, since a statistic is a random variable.

To make the discussion more concrete, suppose that the sampling distribution

of θ̂ is normal. Then, 0.95 (95%) of the area under the pdf will lie between ±2σ θ̂ , rel-

ative to the center of the pdf. But, the center of the pdf is at θ̂ = E[θ̂(
→

X)]. Let us fur-

ther assume that E[θ̂ ] = θ (that is, the statistic is unbiased—we discuss this in more

detail in the next section). Then the probability statement we can make is

P[θ − 2σ θ̂ ≤ θ̂ ≤ θ + 2σ θ̂ ] = 0. 95 (5)

Now this is not a statement about what interval the true value θ will fall in, but

rather a statement about how often the random variable θ̂ will fall into an interval

around the true value θ . This is not very satisfying, since we do not know θ .
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Figure 5.4

But, we can make this more useful, while retaining the probabilistic statement,

if we look at the random interval [θ̂ − 2σ θ̂ , θ̂ + 2σ θ̂ ], which would be a 95% confi-

dence interval. Then the implication of the distribution of θ̂ , equation (5), is that

this interval will cover (that is include) the true value, 95% of the time; we write this

as

P[θ̂ − 2σ θ̂ ≤ θ ≤ θ̂ + 2σ θ̂ ] = 0. 95 (6)

You might be forgiven for thinking that in this equation we have just done what we

said we shouldn’t: making a probabilistic statement about θ , by giving a probability

that it lies between two limits. However, there is in fact no problem (though some

chance of confusion) because the limiting values are now random variables, not con-

ventional ones. Expressions of the type of (6) are standard in the statistical litera-

ture; they should be taken to be a probability statement about an interval around θ̂ ,

not a statement about the probability of θ —for the latter is, once again, not a ran-

dom variable.9

Figure 5.4 shows how the concept of a random interval would work; on the left

we show a pdf for the random variable with the 95% range shaded in; this range

gives the size of the random interval. On the right we show 50 examples of an esti-

mate, with the error bars indicating the range of the random interval at the same

level of confidence (0.95, or 95%), along with the true value. We see that 3 of the

intervals do not cover this value; we would expect 2 to 3. What this means is that,

given a single estimate and confidence interval based on a particular dataset, we

have high confidence that the true value lies within the interval, since it is relatively

improbable that the interval would not include it.

We should note that the idea of a confidence interval can be made more general.

What we have done above is to find two values for the random variable, θ̂ , say

θ̂1 < θ̂2, such that the pdf of θ̂ means that

P[θ̂1 ≤ θ ≤ θ̂2] = 1 − α

so that in the case above α = 0. 05 (a smaller α means a longer interval, in general).

Again, this is a statement about the random interval [θ̂1, θ̂2] compared to the true

value θ . This can actually be broken down into the two statements of the reverse

9 We should note one slight ambiguity in the idea of a confidence interval: it is not uniquely

determined by the requirement that it contain a certain fraction of the probability, since different

limits can produce this. The usual approach is to make whatever choice minimizes the length of

the interval.
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case that θ̂ lies outside an interval:

P[θ ≤ θ̂1] = α1 P[θ ≥ θ̂2] = α2 with α1 + α2 = α (7)

Usually, we take α1 = α2, and take the shortest interval consistent with the probabil-

ity statement (7). If we have a symmetric pdf about the expected value E[θ̂ ], say φ θ̂ ,

with cumulative distribution function Φθ̂ , the confidence limits will be given by the

inverse of the cdf, and the interval will be

[ Φ−1(0.5) + Φ−1(α /2), Φ−1(0.5) + Φ−1(1 − α /2) ]

where we have made use of the fact that for a symmetric pdf, the expected value has
Φ(E (θ̂)) = 0. 50. (We can add the values since Φ−1(α /2) <  0 for a normal distribution).

5.3.1. Confidence Limits for the Mean, Variance Unknown

To give a more complete example, we look at the confidence limits for the mean when we do not

know the variance, but have to estimate it. We assume we can model our data with normally dis-

tributed random variables with true variance σ 2 and true mean µ. We estimate the mean using x and

the variance as s2, as in equations (2) and (3). The statistic, µ̂, for x, will be distributed, as we

described in Section 5.2.1, as a normal random variable with variance σ 2/n.

The statistic for s2, being related to the sum of the squares of a set of normally-distributed ran-

dom variables, turns out to be distributed as χ 2
n−1: a chi-squared variable with n −1 degrees of freedom.

To show this we note that the variable

1

σ 2

n

i=1
Σ(X i − µ)2 =

1

σ 2

n

i=1
Σ[ (X i − µ̂) + (µ̂ − µ) ]2 (8)

is exactly a sum of squares of normal random variables, and so distributed as χ 2
n. But if we compute

the square in (8), the cross-product term

n

i=1
Σ2(X i − µ̂)( µ̂ − µ)

vanishes by the definition of µ̂. Hence (8) is

1

σ 2

n

i=1
Σ(X i − µ)2 =

1

σ 2

n

i=1
Σ(X i − µ̂)2 +

n(µ̂ − µ)2

σ 2

Now, it can be shown that µ̂ is independent of any of the X i’s. The second term on the right-hand side

is the square of a normally distributed rv, and so is distributed as χ 2
1 . The left-hand side is distributed

as χ 2
n. The sum of a a random variable distributed as χ 2

n−1, and an independent variable distributed as

χ 2
1 , is distributed as χ 2

n; this is somewhat obvious from the construction of χ 2 from sums of rv’s. There-

fore, the distribution of

σ̂ 2

σ 2
=

1

σ 2

n

i=1
Σ(X i − µ̂)2

is, as stated before, χ 2
n−1.

Having established the distribution of the sample mean and variance, we construct a scaled

(‘‘standardized’’) variable by subtracting the true mean (we don’t know this, but don’t worry), and scal-

ing by the square root of the estimated variance divided by n.10 The result,
x − µ

s/√  n
, has the sample dis-

tribution of the random variables

µ̂ − µ

σ̂ /√  n
=

(µ̂ − µ)

σ /√  n





σ̂ 2

σ 2





−
1
2

The first part of this is distributed as a normal random variable with zero mean and unit variance. The

second part (inside brackets) is distributed as n−1 times the square root of χ 2
n−1. Hence the product is

distributed as (Chapter 3, Section 10), Student’s t distribution with n degrees of freedom, so we may

10 This is sometimes called Studentizing.
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use the cdf of this distribution to come up with exact confidence limits for the sample mean, using only

the sample mean and the sample variance. (This is, of course, why the distribution was invented). The

t distribution is symmetric, so the confidence limits are also. We can write

P[Φ−1(α /2) ≤
µ̂ − µ

σ̂ /√  n
≤ Φ−1(1 − α /2) ] = 1 − α

whence we get the confidence interval expression as being

P[µ̂ + (σ̂ /√  n)Φ−1(α /2) ≤ µ ≤ µ̂ + (σ̂ /√  n)Φ−1(1 − α /2) ] = 1 − α

and which we may interpret, for the actual estimates, as a statement that the confidence limits are

±sΦ−1(1 − α /2)/√  n. The inverse cdf values are what are usually given in a ‘‘Table of the t Distribution’’.

Since finding confidence intervals requires a determination of the pdf of the

sampling distribution, they are more difficult to determine than the standard error;

of course, if we can demonstrate (or choose to assume) normality for the sampling

distribution (as in the example above) finding these is equivalent.

We finish with two important points about how to present limits and errors. It

is conventional to always assume that the ± values in tables refer to standard errors;

if you mean them to be confidence limits, it is important to say so. There is no set

convention for what to show as error bars in a plot; we suggest that this should be

95% confidence, since the purpose of error bars is to give a sense of where the true

value might reasonably fall. Whatever you choose, you should always state what

these bars mean.

5.4. Desirable Properties for Estimators

We turn now to general considerations of the properties of different estimators,

and discuss some that are desirable.

5.4.1. Unbiasedness

We say that an estimator that produces θ̂ is an unbiased estimator11 for θ if

the expectation of θ̂ is the true value θ : that is,

E (θ̂) = θ for all θ

If this is not so, then the estimator is said to be biased; the bias of θ̂ is

b(θ̂) = E (θ̂) − θ

In general, the pdf of θ̂ , and hence its expected value, and the bias b(θ̂) will depend

on n, the number of observations in the sample. If b(θ̂) → 0 as n → ∞ then θ̂ is

asymptotically unbiased, the ‘‘asymptotically’’ referring to what happens as we

move towards there being an infinite number of observations. A large part of statis-

tics is devoted to showing asymptotic properties of estimators (and other things, as

we shall see). This focus on very large amounts of data is not because we always

have this, but because asymptotic properties are sort of a minimum expectation: we

would at least like whatever we do to get better as we get more data. If this is not

true, as for example an estimator being asymptotically unbiased, it is usually a seri-

ous defect. But biased estimators may still be useful provided they are

11 Terminology alert: strictly speaking we should say ‘‘unbiased statistic,’ ’ but we blur (as is

common in the statistical literature) the distinction between an estimator and the statistic it pro-

duces.
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asymptotically unbiased.

Considering some of the estimators described in Section 5.1, x is an unbiased estimator for µ,

since

E[x] = E




1

n

n

i = 1
Σ X i





=
1

n

n

i = 1
Σ E[X i] =

1

n

n

i = 1
Σ µ = µ

but the same is not true for s2 as we defined it earlier:

E[s2] =
1

n
E





n

i = 1
Σ (X i − x)2





=
1

n
E





n

i = 1
Σ (X2

i − 2X i x + x2)




=
1

n
E





n

i = 1
Σ (X2

i − 2µ X i + µ2 + x2 + 2µ X i − 2X i x − µ2)




=
1

n
E



 i
Σ(X i − µ)2 + nx2 + 2µ

i
Σ X i − 2

i
Σ X i x − nµ2





=
1

n
E



 i
Σ(X i − µ)2





− E[x2 − 2µ x + µ2]

Thus

E[s2] = E




1

n i
Σ(X i − µ)2





− E[(x − µ)2] =
1

n
V[

i
Σ(X i − µ)] − V[x − µ]

= σ 2 −
σ 2

n
= σ 2


1 +

1

n




So s2 will always be biased (low) relative to σ 2, although it is asymptotically unbiased. The unbiased

estimator is then easily seen to be

ŝ2 =
1

n −1

n

i = 1
Σ (xi − x)2

Obviously, the bias is small unless n is small (in which case this is not going to be a well-determined

result anyway).

5.4.2. Relative Efficiency

An efficient estimator is one that produces an efficient statistic θ̂ A, relative

to some other statistic θ̂ B. The measure of efficiency is the ratio of variances of the

sampling distributions of the two statistics. Assuming that θ̂ A and another one θ̂ B

are both unbiased, the relative efficiency is

Relative efficiency =




V (θ̂ A)

V (θ̂ B)
×100




%

Clearly we should prefer the more efficient estimator θ̂ A, since the probability that

θ̂ A lies in some interval around the true value θ (say, in [θ − ε,θ + ε ]) will be higher

than the probability of finding θ̂ B (which is more spread out) in the same interval. It

turns out that under general conditions there is a lower bound to the variance of the

sampling distribution of any unbiased estimate of a parameter θ . This lower bound
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is given by the Cramer-Rao inequality, which we discuss below. If the variance of θ̂

achieves the Cramer-Rao bound then the estimator that produces it is called a fully

efficient estimator for θ , or alternatively a Minimum Variance Unbiased Estima-

tor (MVUE).

If we can model our data by a normal distribution, the sample mean is a more

efficient estimate of the mean than the sample median is, as implied by equation (4),

and confirmed by the Monte Carlo simulations in Section 5.2.2.

However, this result is very much dependent on the pdf we assume for the ran-

dom variables X that we use to model the data. To take an extreme case, if their pdf

was a Cauchy distribution rather than a normal, the variance of x would be infinite,

but the variance of the median is not; for a Cauchy pdf

V[xmed] =
4π 2

n

making this estimator infinitely more efficient.

In the particular case of the slightly heavy-tailed distribution of the GPS data,

the bootstrap evaluations show that, for the particular dataset under consideration,

the median is much more efficient than the mean—and the 10% trimmed mean is

even better. This suggests, again, that what can be of most practical importance is

not full efficiency under restricted assumptions, but something close to full efficiency

under less restrictive ones.

5.4.3. Mean Square Error Criterion

If two estimators θ̂1 and θ̂2 are biased, then we cannot use variance alone to

measure efficiency. A more general criterion is the mean square error, which

includes both variance and bias:

M2(θ̂) = E[(θ̂ −θ)2]

This may be expanded as

M2(θ̂) = E[[ (θ̂ − E (θ̂)) + (E (θ̂) −θ)]2]

= E[(θ̂ − E (θ̂))2] + [E (θ̂) −θ ]2 + 2(E (θ̂) − θ)E[θ̂ − E (θ̂)]

Since E[θ̂ − E (θ̂)] = 0 we get

M2(θ̂) = V[θ̂ ] + b2(θ̂)

M2 can be used to choose among competing biased estimators; naturally, we choose

the one with smaller M2. Note that for unbiased estimators M2 reduces to the vari-

ance, so that this then becomes just the relative efficiency.

5.4.4. Consistency

Consistency is yet another ‘‘good adjective’’ we can apply (or not) to an estima-

tor: this is the requirement that an estimator gets closer and closer to the true value

as the sample size increases. Such behavior covers (asymptotically) both bias and

variance. The formal definition of consistency requires a probabilistic statement:
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θ̂ is a consistent estimator for θ if θ̂ → θ in probability as the sample size

n → ∞.

To explain this, we have to explain the idea of convergence in probability. Sup-

pose we have a random variable X whose pdf φ(x) depends on some parameter θ .

Then we say that X converges in probability to x as θ approaches some value θ l if,

for arbitrarily small positive values of the variables ε and η, there exists a value of θ ,

θ0 such that

P[|X − x| < ε ] > 1 − η for all θ in [θ0,θ l] (9)

In this case, the parameter we have is n, the sample size, and the limiting value is

∞; so n0 is a value such that, for all larger values of n, the condition in (9) holds: we

can find an n0 such that, for all larger values of n, the pdf of X is arbitrarily closely

concentrated around x. If V (θ̂) → 0 as n → ∞ and b2(θ̂) → 0 as n → ∞, then

M2(θ̂) → 0 as n → ∞ and θ̂ will be consistent. For a normal distribution the sample

mean is a consistent estimator: x → µ as n increases.

5.5. The Method of Maximum Likelihood

Now that we have established some desirable properties for estimators we need

a recipe for constructing them. We will discuss two very important general estima-

tion procedures: maximum likelihood and (in less detail) least squares. We will

restrict the discussion almost entirely to the univariate case, so we will discuss esti-

mating one parameter: the location parameter for a univariate distribution. This

allows us to focus on the principles. The very important case of estimating many

parameters we leave until later.

The method of maximum likelihood was developed by R.A. Fisher in the 1920’s

and has dominated the field of statistical inference ever since, because it can (in

principle) be applied to any type of estimation problem, provided that one can write

the joint probability distribution of the random variables which we are assuming

model the observations.

Suppose we have n observations x1, x2, . . .  , xn which we believe can be modeled

as random variables with a univariate pdf φ(x,θ); we wish to find the single parame-

ter θ . The joint pdf for n such random variables,
→

X = (X1, X2, . . .  , X n) is, because of

independence,

φ(
→

X,θ) = φ(X1, θ)φ(X2, θ). . . , φ(X n,θ)

In probability theory, we think of φ(
→

X,θ) as a function which describes the X ’s for a

given θ . But for inference, what we have are the x’s—that is to say, the actual data:

so we think of φ(
→
x,θ) as a function of θ for the given values of

→
x . When we do this, φ

is called the likelihood function of θ :

L (θ) =def φ(
→
x,θ)

it has values that will be like those of the pdf, but we cannot integrate over them to

get probabilities of θ , for the simple (but subtle) reason that θ is, we remind you

again, not a random variable.
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The use of the likelihood function for inference goes as follows: if

φ(
→
x,θ1) > φ(

→
x,θ2) we would say that θ1 is a more plausible value for θ than θ2; because

φ is larger, θ1 makes the observed
→
x more probable than θ2 does. The maximum

likelihood method is simply to choose the value of θ that maximizes the value of

the pdf function for the actual values of
→
x ; that is, we find the θ which maximizes

L (θ ) = φ(
→
x,θ), because this would maximize the probability of getting the data we

actually have.

Since φ is a pdf, it, and hence L (θ), is everywhere positive; so we can take the

logarithm of the pdf function. Because the log function (we use natural log, ln) is

single-valued, the maximum of the log of the likelihood function will occur for the

same value of θ as for the function itself:

θ
max L (θ) =

θ
max φ(

→
x,θ) =

θ
max 


ln[φ(

→
x,θ)]


=def

θ
max l (θ)

We take logs because the log-likelihood function, which we write as l (θ), is often

more convenient, since we can replace the product of the φ ’s by a sum, which is a lot

easier to differentiate:

l (θ) =
n

i=1
Σ ln 


φ(xi,θ)



For future use, note the following relationships between derivatives:

∂l

∂θ
=

1

L

∂L

∂θ
(10)

As an initial example, consider finding the rate of a Poisson process from the

times between events. As described in Chapter 3, the interevent times have a pdf

φ(x) = λ e−λ x. Then the log-likelihood is

l (λ) =
n

i=1
Σ ln(λ) − λ xi = n ln(λ) − λ

n

i=1
Σ xi = n ln(λ) − λ xs

where xs is the sum of all the interevent times— which is to say, the time between

the first and the last event. Taking the derivative with respect to λ and setting it to

zero gives the maximum likelihood estimate (MLE) as

λ̂ =
n

xs

Note that this implys that all we need to get our estimate is the total span xs and

number of events n; the ratio of these is called a sufficient statistic because it is

sufficient to completely specify the pdf of the data: no additional information or com-

bination of data can tell us more. Obviously, establishing sufficiency is valuable,

since it tells us that we have enough information.

For another example of an MLE, with equally banal results, consider estimat-

ing the mean of a normally-distributed random variable, X . The pdf is

φ(x) =
1

(2π σ 2)
1
2

e−1
2
[(x − µ)/σ ]2

which makes the log-likelihood
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l (µ) = n ln




1

(2π σ 2)
1
2





−
n

i=1
Σ (xi − µ)2

2σ 2

Taking the derivative

∂l

∂θ
=

1

σ2

n

i=1
Σ xi − µ

which is zero for µ = x (see equation (2)).

These are (intentionally) simple examples; in general the MLE may not have a

closed-form solution. But, given a pdf, and a set of data, we can always find it, since

numerical methods exist to find the maximum of any function we can compute. But

does the MLE have properties that make it a ‘‘good’’ estimator in the sense we

described in the previous section? The answer is yes, but to show this we need to

take a slight detour, though one that involves the likelihood function.

5.5.1. Cramer-Rao Inequality

In Section 5.4.2 above, we described a desirable characteristic of an estimator

as having a high efficiency, meaning that the sample distribution of the associated

statistic had a small variance. We now show that there is a lower bound to this vari-

ance; one that certain maximum likelihood estimators reach, making them fully

efficient. This minimum variance is set, as we noted in that section, by the

Cramer-Rao bound.

Consider a function τ (θ), and let τ̂ be an unbiased statistic for τ . Then, by the

definition of bias,

E[τ̂ ] = τ (θ) = ∫ ⋅ ⋅ ∫ τ̂ L (
→

X,θ)dn
→

X

Note that while we are writing the pdf as a likelihood function, we are integrating

this function over the random variables. Taking the derivative (and taking it inside

the integral, which we shall always assume we can do), we get

∂τ

∂θ
= ∫ ⋅ ⋅ ∫ τ̂

∂l

∂θ
L dn

→
X (11)

where we have made use of (10). Now, since L is a pdf, the integral

∫ ⋅ ⋅ ∫ L dn
→

X = 1

and hence the derivative of this is zero:

∫ ⋅ ⋅ ∫
∂l

∂θ
L dn

→
X = 0

which, when we multiply it by τ (θ) and subtract it from (11), gives us

∂τ

∂θ
= ∫ ⋅ ⋅ ∫(τ̂ − τ (θ))

∂l

∂θ
L dn

→
X

We now make use of the Cauchy-Schwarz inequality, which states that for any two

functions a and b
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
 ∫ ab



2

≤ ∫ a2 ∫ b2 (12)

with equality occurring only if a and b are proportional to each other. Setting

a = τ̂ − τ (θ) b =
∂l

∂θ

then gives us





∂τ

∂θ





2

=def [τ ′(θ)]2 ≤ 
 ∫ ⋅ ⋅ ∫[τ̂ − τ (θ)]2L dn

→
X







∫ ⋅ ⋅ ∫





∂l

∂θ





2

L dn
→

X




But since the integrals are of something times the pdf L over all X , they just give

the expected values, so this inequality becomes

[τ ′(θ)]2 ≤ E[( ̂τ − τ (θ))2] ⋅ E






∂l

∂θ




2



=def E[( ̂τ − τ (θ))2] ⋅ I(θ)

where I(θ), which depends only on the pdf φ , is called the Fisher information.

Noticing that the term multiplying it is the variance of τ̂ , we obtain, finally, the

Cramer-Rao inequality:

V[τ̂ ] ≥
[τ ′(θ)]2

I(θ)

If we look at the MLE for the mean of a normal pdf, above, we see that

∂l

∂µ
= −

n

i=1
Σ xi − µ

σ 2

but also, τ (θ) = µ, so τ̂ − τ (θ) = µ̂ − µ. But then it is just the case that the two ele-

ments of the Cauchy-Schwartz inequality ((12)) are proportional to each other, and

the inequality becomes an equality. The sample mean thus reaches the Cramer-Rao

bound, so that the statistic x is an unbiased and fully efficient statistic for µ. Also

V[x] =
1

I(θ)
=

σ 2

n

5.5.2. Some Properties of MLE’s

Besides the philosophical appeal of choosing θ̂ corresponding to the highest

probability, maximum likelihood estimators are asymptotically fully efficient. That

is, for large sample sizes they yield the estimate for θ that has the minimum possible

variance. They can also be shown to be asymptotically unbiased, and consistent—so

they have most of the desirable properties we want in an estimator. Note that these

asymptotic results do not necessarily apply for n finite.

It can also be shown (though we do not give the proof) that for large n, the MLE

becomes normally distributed; more precisely, under certain smoothness conditions

on φ , the variable

√  nI(θ0)(θ̂ − θ0)

is distributed with a normal distribution with zero mean and unit variance; θ0 is the
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true value of θ , which of course we do not know. Since the MLE is unbiased for large

n, it is safe (and standard) to use θ̂ as the argument for I. The confidence limits

then become those for a normal distribution; for example, the 95% limits become

±
1. 96

√  nI(θ̂)

5.5.3. Multiparameter Maximum Likelihood

We touch briefly on the extension of the maximum likelihood method to esti-

mating more than one parameter. We have the likelihood function

φ(
→
x,θ1, θ2, . . .  ,θ p)

which is now a function of p variables; the log-likelihood is

l (θ1, θ2, . . .  ,θ p) = ln 

φ(

→
x,θ1, θ2, . . .  ,θ p)


The maximum likelihood estimates θ̂1, θ̂2, . . .  , θ̂ p are obtained by maximizing l with

respect to each of the variables, i.e., by solution of

∂l

∂θ1

= 0 ,
∂l

∂θ2

= 0 ,  . . .
∂l

∂θ p

= 0

For example, suppose we want to estimate both µ and σ 2 from x1, x2, . . .  , xn, assum-

ing that these can be modeled by random variables with a normal distribution. As

before,

φ(
→
x, µ, σ 2) =

1

(2π σ 2)n/2
exp




−

1

2σ 2

n

i = 1
Σ (xi − µ)2





yielding

l (
→
x, µ, σ 2) = −

n

2
ln 2π −

n

2
ln(σ 2) −

1

2σ 2

n

i=1
Σ(xi − µ)2 (13)

If we now find the maximum for the mean, we have

∂l

∂µ
= 0

which implies

1

σ 2

n

i = 1
Σ (xi − µ̂) = 0

giving the maximum likelihood estimate for µ, which is again the sample mean:

µ̂ =
1

n

n

i = 1
Σ xi = x

For the variance, the derivative is

∂l

∂σ 2
= 0

which implies, from (13), that
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−
n

2σ̂ 2
+

1

2σ̂ 4

n

i = 1
Σ (xi − µ̂)2 = 0

giving the result for the MLE of

σ̂ 2 =
1

n

n

i = 1
Σ (xi − µ̂)2

=
1

n

n

i = 1
Σ (xi − x)2

So the maximum likelihood estimates of µ and σ 2 are the sample mean and sample

variance, equations (2) and (3). Note though that the sample variance σ̂ 2 is the

biased version, i.e., it uses n instead of n −1 in the divisor.

5.5.4. Least Squares and Maximum Likelihood

Estimation of parameters using least squares is perhaps the most widely used

technique in geophysical data analysis, having been developed by Gauss and others

in the early nineteenth century. How does it fit in with what we have discussed? We

will deal with the full least-squares method in a later chapter; for now we simply

show how it relates to maximum likelihood. Basically, these are equivalent when we

are trying to estimate a mean value of a random variable with a normal distribution.

As a specific problem, consider the estimation problem given by equation (1).

We can write the pdf that we use to model the data x1, x2, . .  , xn as

φ(x) =
1

√  2π σ
e−(x−1

2
gt2

i )
2/2σ 2

(14)

from which the likelihood function for g is

L (g|
→
x) =

n

i=1
Π 1

√  2π σ
e−(xi−1

2
gt2

i )
2/2σ 2

which makes the log-likelihood

l (g) = − n ln[√  2π σ ] −
1

2σ 2

n

i=1
Σ (xi − 1

2
gt2

i )
2

which has a maximum if we minimize the sum of squares of residuals:

n

i=1
Σ (xi − 1

2
gt2

i )
2

Taking the derivative of this,

∂l (g)

∂g
=

n

i=1
Σ t2

i (xi − gt2
i )

and setting it to zero gives the solution

ĝ =

n

i=1
Σ xit

2
i

n

i=1
Σ t4

i
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which of course would reduce to the sample mean (2) if all the ti’s were one.

One further generalization of this is worth noting, namely the case of different

errors for each observation, so the pdf of the i-th observation is, instead of (14)

φ i(x) =
1

√  2π σ i

e−(x−1
2

gt2
i )

2/2σ 2
i

from which the likelihood function for g is

L (g|
→
x) =

n

i=1
Π =

1

√  2π σ
e−(xi−1

2
gt2

i )
2/2σ 2

which makes the log-likelihood

l (g) = −
n

i=1
Σ ln[√  2π σ ] −

n

i=1
Σ

(xi − 1
2

gt2
i )

2

2σ 2
i

Again taking the derivative, we get

∂l (g)

g
= 2

n

i=1
Σ t2

i

2σ 2
i

(xi − 1
2

gt2
i )

which makes the maximum likelihood estimate equal to

ĝ =

n

i=1
Σ xit

2
i σ −2

i

n

i=1
Σ t4

i σ −2
i

which if all the ti’s were one becomes the weighted mean

µ̂ =

n

i=1
Σ xiσ

−2
i

n

i=1
Σσ −2

i

which is a particular case of a weighted least squares solution, meaning that differ-

ent observations are weighted differently. As these equations show, this differential

weighting may arise from different errors being assigned to different data, the struc-

ture of the problem (as the t2 dependence between g and x) or both. We will explore

all this much more completely in a later chapter.

5.5.5. L1-norm Estimation

Least squares estimation operates by minimizing the sum of the squares of the

difference between a model and some data; this is often called minimization of the

L2 norm. We close this section by showing how a different model for errors would

correspond to minimizing a different norm, and what estimator this would corre-

spond to in a simple case.

Suppose our model for the data is that the pdf is a double exponential: the X i’s

are each distributed with a pdf

φ(x) = 1
2

e−|x − µ|

where we have assumed a scale factor of 1. This distribution is, obviously, more
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heavy-tailed than the normal. It is immediately clear that the log-likelihood for µ is

l (µ) = −
n

i=1
Σ|xi − µ| (15)

so that the MLE for µ will be that value of µ that minimizes the sum of the absolute

values of the differences between µ and all the observations xi; this is known as min-

imizing the L1 norm.

Figure 5.5

If we consider the individual terms in (15), we see that each one, gives rise to a

V-shaped function of µ, with the tip of the V being at µ = xi, with value 0; the slope is

−1 below this and 1 above it, as shown in Figure 5.5. The slope of the sum (heavy

line in the figures) will thus be the number of x’s below µ, minus the number above

µ, so this sum will be a minimum when the slope is zero, or changing from −1 to 1.

This will happen when the number of x’s on each side of µ is the same—so, the L1

norm is minimized by taking µ to be the median, which is thus the maximum likeli-

hood estimator for the location parameter of a double-exponential distribution. Fig-

ure 5.5 shows this for the case of eleven data points, indexed as sorted into increas-

ing order.

Viewing the median as an estimate that minimizes the L1 norm allows us to

generalize it to settings, such as data on the circle and the sphere, in which the idea

of sorting does not make sense. The circular median minimizes the sum of angles

from the median point to all the data; the spherical median minimizes the sum of

angular distances on the sphere from the median point to all the data. Unlike the

median on a line, neither the circular or spherical medians will necessarily coincide

with one of the data values.
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