
Chapter 6
Hypothesis Testing

The temptation to form premature theories upon insufficient data is the bane of our profes-

sion—Sherlock Holmes, in Arthur Conan Doyle, The Valley of Fear (1914).

A phenomenon having been observed, or a group of phenomena having been established by

empiric classification, the investigator invents an hypothesis in explanation. He then

devises and applies a test of the validity of the hypothesis. If it does not stand the test he

discards it and invents a new one. If it survives the test, he proceeds at once to devise a

second test. And thus he continues.—G. K. Gilbert (1886), The inculcation of scientific

method by example with an illustration drawn from the Quaternary geology of Utah, Amer.

J. Sci, 136, 284-299.

6. Introduction

We now turn from estimating parameters of probability density functions, to

testing hypotheses, specifically testing statistical hypotheses. For science in gen-

eral, a hypothesis is some assertion we make about the way the world is; a statistical

hypothesis is something much more restricted, namely an assertion about how a

dataset relates to some kind of probability model. The idea of testing applies to

both. Some examples of scientific hypotheses and the statistical hypotheses they

give rise to would be:

• We may hypothesize that there was a change in the core dynamo between the

time of the Cretaceous Superchron (Section 1.2) and the subsequent period of

frequent reversals. The statistical hypothesis to go with this would be that a

point process that models all the other reversals (that is, a pdf φ(t) for the inter-

reversal times) would be very unlikely to produce so long a time without rever-

sals.

• We may hypothesize that earthquakes are triggered by earth tides. The statis-

tical hypothesis to go with this would be that earthquakes occur more often

than not, on average, at times related to (say) high and low tides—as opposed to

occurring ‘‘at random’’ relative to the tides.

• We may want to claim that a new model for seismic velocity in the Earth is bet-

ter than an existing one. The statistical hypothesis to go with this would be

that the mismatch between some data (say times of propagation of seismic

wa ves) and the new model is smaller than it was for the old model, by an

amount ‘‘much greater than’’ the errors in the measurements.

• And sometimes, we start with a statistical hypothesis; as, for example, that the

GPS data in Section 1.1 are normally distributed, as a prelude to further analy-

sis.

In each case, we start by formulating a probability model to go with the actual

hypothesis we are considering. How to make this step is not a matter of statistical

analysis, but of informed judgment, both about the particular problem and about the

methods that might be available for deciding if a probability model is supported by

the data or not. This chapter gives some general principles about testing statistical

hypotheses, and describes some of the methods that are used most often.
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An important function of statistical tests is to keep us from being fooled into

thinking that what we have observed indicates something important, when it might

as well be expected to happen by chance. Long experience shows that we can be eas-

ily fooled: the normal human propensity is to find patterns even when none are

present.

6.1. Problems and Caveats

To begin, we offer some general remarks about this branch of statistics. There

are many different hypothesis tests, in part because of the range of questions we

may try to answer; but also because is that there are long-standing and fundamental

disagreements about the basic principles of testing. In many cases different princi-

ples end up leading to similar results, but these disagreements make this subject

more difficult to learn. Technical issues aside, it may be that these disagreements

have been so hard to resolve because different approaches are appropriate to differ-

ent areas of reasoning; methods that are appropriate in an economic context (where

costs and benefits are clear) are less obviously useful for making inferences about

scientific theories. We shall select what seems most useful while admitting that it

may have less of a logical basis than we would like.

Leaving aside Bayesian inference, which is a separate approach to almost all of

statistics, there are two approaches to hypothesis testing:

1. The procedures developed by R.A. Fisher, which focus on the use of tests to

determine if data are consistent with some assumption; as we will see, this is

often done by showing that the data are in fact inconsistent with the opposite

assumption.

2. The Neyman-Pearson approach to hypothesis testing, which sought to formal-

ize and justify some of Fisher’s methods by expressing hypothesis testing as a

choice between hypotheses. In this framework it is possible to define tests

which are in some sense ‘‘best’’: this is rigorous, but may not be applicable to the

kinds of inference we may wish to make.

A third approach has been called the ‘‘hybrid‘‘ method, though ‘‘bastardized’’

might be better; this is what is usually taught to non-statisticians—and this course

will be no exception. This combines parts of both the Fisher and Neyman-Pearson

procedures to produce a methodology that is easier to describe, even though it is not

fully consistent. But it does satisfy our aim to infer no less and (especially) no more

from the data than we should.

6.2. A Framework for Tests

If we knew that our data were in fact modeled by a random variable X , whose

density function we also knew, we would know all that we could: for example, that

the data can be described by Normal random variables with known mean and vari-

ance. Estimation was about finding the ‘‘best values’’ for parameters in the density

function. Hypothesis testing is more general, in that it is about testing state-

ments about the density function that produces the random variables that are

believed to describe the data. One such statement (fundamental to the Neyman-

Pearson approach) involves a choice between hypotheses. The Fisherian approach is
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to say that we can see if a particular hypothesis is inconsistent with the data: often

this can be quite useful.

Up to a point, the basic schema for hypothesis testing is the same in either

method, and in part resembles the schema used for estimation. First, we create a

statistical hypothesis that relates to the actual thing we are interested in; as noted

above, this is a matter of judgment, not something that can be done mechanically.

Often, what we actually do is set up a statistical hypothesis contrary to what we

want to show; this is called the null hypothesis, conventionally denoted as H0.

Whatever hypothesis we choose stipulates that the data can be modeled, by some

kind of random variable. In hypothesis testing we can allow much more general

pdf ’s than we could in estimation; for example, in the class of tests called ‘‘distribu-

tion-free’’ we assume only that the data come from a pdf of some kind, otherwise

unspecified.

Having set up a statistical model for the data, we now proceed as follows:

A. Compute a test statistic T(
→
x) from the data

→
x ; that is, we take the data and

produce a relevant number (or numbers), just as we did in estimation.

B. Determine the pdf for the random variable equivalent to T under the assump-

tion that the data are modeled in the way that the null hypothesis H0 assumes.

We call this pdf T̂ = T(
→

X) = φ(t).

C. Given φ(t), compute

α =
T = −T(

→
x)

−∞
∫ φ(t) dt +

∞

T = T(
→
x)

∫ φ(t) dt (1)

This is the area under the tails of the pdf (or some cases, the area under only

one tail) for values of the test statistic greater in magnitude than the value

actually found from the data. This integral, like any other integral of a pdf, is a

probability. It is conventional to call the quantity 1 − α the confidence coeffi-

cient, while α is called the significance level. What we do next is described

in a later section.

6.2.1. An Example: the Schuster Test

We illustrate this by working through a test of a particular hypothesis—one

with geophysical relevance.

A common opinion about California earthquakes is that they seem to often

occur in the early morning: this was true for the 1906 San Francisco earthquake,

and more recently for the San Fernando (1971), Landers (1992), Northridge (1994),

and Hector Mine (1999) events; this has been a good thing, since it meant that most

people were at home, which in California is a relatively safe place to be.

What we have here is an anecdote; to go beyond this, we want to see if such

temporal clustering is true if we look at all earthquakes. In terms of our under-

standing of how earthquakes work, having large earthquakes correlate with local

time would be very odd indeed; so it is not unreasonable to argue that our anecdotal

evidence is ‘‘just coincidence’’.
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We begin by setting up the null hypothesis, which is that the times of large

earthquakes are uniformly distributed throughout the day; that is, that the pdf of

the random variable that we claim model the times of earthquakes is uniform over

[0, 24) (in hours). More formally, if X is the time of day, we have H0: X ∼ U (x).

Figure 6.1

One possible a test statistic (not the only one) can be formed from the n

observed times by taking

r1 =
n

i=1
Σ cos(2π x/24) r2 =

n

i=1
Σ sin(2π x/24)

R = √  r2
1 + r2

2

That is, we represent the time of each earthquake, xi, by a unit vector (r1, r2), whose

direction corresponds to the time on a 24-hour clock; then we add these vectors, and

take the distance from the origin to be the test statistic. Obviously, the more clus-

tered the times, the bigger R will be. The left panel of Figure 6.1 shows this proce-

dure applied to all large earthquakes in California since 1900, with the individual

unit vectors shown head-to-tail; the large dot is the sum, which turns out to be

robs = 14.02.1 In geophysics this is called the Schuster test, after the person who

introduced it (for this very problem); in statistics this test is more often named for

Rayleigh, who determined the pdf of R when n is large, and the distribution of the

X i’s is uniform:

φ(r) =
2r

n
e−r2/n (2)

which we plot on the right-hand side of Figure 6.1. Because of the central limit theo-

rem, this is the same as the Rayleigh distribution of Chapter 3, even for steps of a

fixed length. The shaded region shows the part of the pdf (equation 1) for which

r > robs; probability of observing R in this region (supposing the null hypothesis) is a

1 The earthquakes used are all California events with magnitude 6 or above, for 1900 through

1989 from W. L. Ellsworth (1990), The San Andreas Fault: earthquake history, 1769−1989, U.S.

Geol. Surv. Prof. Pap., 1515, 153-188, with later events from the regional catalogs. Immediate

aftershocks in both catalogs were omitted.
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probability of 0.14, making 1 − α equal to 0.86.

For completeness we note that a better approximation, for n < 50, to the probability is

α = e−z



1 +

2z − z2

4n
−

24z − 13 2z2 + 76z3 − 9z4

288n2





where z = R2/n; for n large this just becomes α = e−z, consistent with integrating (2) from R

to ∞.

6.2.2. What Do We Do With the Results?

The statistical interpretation of the result is simple: if the null hypothesis were

true, and we could run the test many times, we would get a value of the test statistic

as large as we see, or larger, 14% of the time; we say that we have a significance

level of 0.14.

But this is the point at which simplicity, and consensus, end. Here are some

things we might do:

1. Report the value of α as a summary of what we got: suggestive (in that one

chance in 6 is not that likely), but not really conclusive.

2. Say that, since α does not reach some value α0 (decided on before we did the

test), that we cannot reject the null hypothesis, so that it is reasonable to say

that the observed result could have occurred ‘‘by chance.’ ’ This is the original

claim that the apparent clustering in time is ‘‘just coincidence:’’ the data do not

support this claim.

3. Make the stronger statement that the hypothesis of interest is false (in this

case) because the α we observed was above α0. Conversely, argue that the

hypothesis is true if α ≤ α0.

4. Take some action depending on whether α exceeds α0 or not, without prejudice,

as it were, regarding the truth or falsity of the hypothesis. In an industrial set-

ting, for example, if we were using testing to evaluate the quality of our manu-

facturing, we might stop a production line or reject a batch of products. Paral-

lels to this in research are not always obvious, but might be what data to col-

lect, or what other ideas to entertain, next.

We have laid out these options because (in our view) many (but not all) are

acceptable in some way. All too often only one is viewed as correct. In particular, it

is quite common to pick conventional values for 1 − α0 (say 0.95 or 0.99) and then to

exercise only option (3), saying that if this value is reached or exceeded, then H0 is

rejected at (say) a 95% confidence level—and further that the alternative that we set

out to establish is true. This is a very dubious procedure. As a form of words it may

be acceptable to say that a hypothesis has been rejected (option 2), but we should

realize that

• There is nothing special about a particular value of α0. In particular, to view

1 − α = 0. 94 as being a very different outcome from 1 − α = 0. 96 is nonsense.

• We should not confuse having shown that the data do or do not support a

hypothesis at some level as having proved anything about its truth (option

3)—such a result simply makes a strong case. But perhaps not that strong:

remember that one in twenty times we would reach α = 0. 05.
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Confusion about the meaning of values of α has been exacerbated by the custom

(fortunately not present in geophysics) of declaring that if results did not reach some

level of significance, they should not be published. This is much too rigid a rule for

applying statistical results to scientific inference.

For our example of the times of large California earthquakes, perhaps the best

we can say is that anyone arguing for temporal clustering does not have a strong

case, by the usual standards of the field. Note that we cannot rule the proposal out,

but only say that it is not supported by the data in any convincing way.

6.2.3. The Perils of Going Fishing

This is an appropriate place to discuss a different abuse of the testing proce-

dure, and one that all too easily can happen in geophysics because of the difficulty of

often not being able to produce more data just by doing experiments. There is a nat-

ural tendency to look through the data to find a pattern—and then, having found it,

perform a test. But this destroys the assumption, built into the procedure described

above, that we are doing only one test.

An example2 may make this clearer. Suppose we decide to test the idea that

earthquakes occur when the time-varying stress from earth tides is favorable to the

kind of faulting that occurred. We collect source mechanisms for a number of earth-

quakes, and apply a test to see if this is so. (We can use a modified version of the

Schuster test for this). And we decide, quite reasonably, to try the test for different

types of stress and different types of faulting, ending up with 12 possible combina-

tions. We get a result with α = 0. 04, and decide that we have established tidal trig-

gering for that particular class.

But we have done no such thing. Suppose the null hypothesis is true. If we

choose a significance level of 0.04, the probability of not getting a significant result

becomes 0.96. Then not seeing a result in 12 independent trials has a probability of

(0.96)12 = 0. 61, which means that the probability of getting one such result would be

0.39; this is hardly unlikely. There is nothing wrong with using significance tests to

go fishing for a possible result, so long as we do not claim that whatever result we

get is in fact significant. It matters in what order we try different things: applying a

test to the data, and then stopping, is not the same as trying a number of tests, and

finally doing the same test as the original.3

In an experimental science, we can (usually) decide to collect more data to see if

the significance remains with a new dataset; in geophysics we often cannot. One

wa y around this problem is to divide the data, in advance and at random, into two

sets, one for fishing in and one for testing when you are done fishing. Another proce-

dure, called the Bonferroni method, is to set the significance level chosen in

advance to α /k, where k is the number of tests and α the conventional level for one

test. For the tidal-triggering example, this would set the significance level to 0.0033

2 See T. H. Heaton (1982). Tidal triggering of earthquakes, Bull. Seismol. Soc. Amer., 72,

2181-2200, updating, correcting, and apologizing for T. H. Heaton (1975). Tidal triggering of

earthquakes, Geophys. J. Roy. Astron. Soc., 43, 307-326.
3 Likewise, we have to decide on the number of data in advance, and not alter this as we get

results—unless, that is, we are using a sequential test, which is designed to cover exactly this

case.
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(0.04/12).

6.3. Tests for Differing Means

We now leave aside the philosophical complexities of what statistical testing

does, and move to how to do some common tests. We start with tests for differences

in means, followed by tests of whether data conform to a particular pdf. Another cat-

egory of tests—those involving variances—we will discuss in the context of least-

squares fitting, in a later chapter.

6.3.1. Means and Variances Known

To start with a somewhat artificial case, which however we can use to make an

important point, suppose our null hypothesis is that the data come from a normal

distribution with known mean µ0 and variance σ 2; and we are going to test the part

of this that is about the mean. Though there are few geophysical examples of such a

hypothesis, it can arise in other settings, for example, in checking that the dimen-

sion of some manufactured item is within a specified tolerance. The usual shorthand

for this test would be

H0: µ = µ0

The conventional phrase to describe such a statistical hypothesis, in which all the

parameters of the pdf are known, is that it is a simple hypothesis. The Schuster

test was also of a simple hypothesis, since the pdf we were testing against was com-

pletely specified by the statement that it was uniform over [0,24).

For this H0, the test statistic is the difference between the sample mean, x, and

the assumed mean:

t = T(
→
x) =

1

n

n

i=1
Σ xi − µ0 (3)

We know, from previous discussions (Section 5.2.1) that the pdf of the statistic, t̂ , for

random variables from the assumed normal distribution, would be

φ(t) = √  n

√  2π σ 2
e−nt2/2σ 2

or t̂ ∼ N(0, σ 2/n) (4)

Since H0 would be invalidated if x were either much larger or much smaller than µ0,

we need to include both tails of φ(t) in determining the significance level; for a given

α0 the level is t0 such that (from equation (1)):

α0 =
−t0

−∞
∫ φ(t) dt +

∞

t0

∫ φ(t) dt (5)

But this means that we can write the level t0 in terms of the cumulative distribution

function Φ(t) for the distribution given by equation (3)—or rather, in terms of its

inverse, Φ−1(α); equation (5) will be satisfied for

t0 = Φ−1(α0/2) (6)

where the α0/2 comes from the inclusion of both tails of the pdf in (4). H0 would

thus be rejected, with a confidence of 1 − α0, if
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|x − µ0| ≥ t0 (7)

Another way to write this result is to say that H0 would be rejected if µ0 fell outside

the 1 − α confidence interval for x, because this interval is

[x + Φ−1(α /2), x + Φ−1(1 − α /2)] (8)

There is thus a close relationship between confidence intervals on a statistic, and a

test applied to that statistic: since both specify intervals that include a specified

amount of probability inside them, they give rise to equivalent limits, though these

limits are used differently.

An easy extension of the above is to the case when we have two data sets, which

we shall call
→
x A and

→
x B, with assumed variances σ 2 for both, and assumed means

that differ by ∆µ. The test statistic to see if the difference in sample means is in fact

this value, is then

t = (x A − xB) − (∆µ) (9)

which reduces to (x A − xB) if we are testing to see if the means are equal. The test

statistic t̂ , assuming a normal distribution, is the convolution of the two distribu-

tions for µ̂ A and µ̂ B, and so is distributed as N (0, σ 2(n−1
A + n−1

b )). If we use the cdf Φ(t)

appropriate to this distribution, the critical value for the test, t0 is again given by

equation (6), with equations (7) and (8) following as before.

6.3.2. Testing Against a Known Mean, with Unknown Variance

A more interesting case is

H0: µ = µ0 σ 2 unknown

Because this involves unknown parameters (other than the one being tested for) this

is called a composite hypothesis. The test statistic is then

t =
x − µ0

s/√  n
(10)

where s2 is the sample variance defined in Section 5.3.1. As we showed in that sec-

tion, the statistic t̂ , which is

t̂ =
µ̂ − µ0

σ̂ /√  n
=

µ̂ − µ0

σ /√  n





σ̂

σ





−1

is the ratio between an rv with a normal distribution, and an rv distributed as the

square root of a χ 2
n−1 random variable. Such a ratio, and hence the test statistic t,

are distributed as Student’s t distribution with n − 1 degrees of freedom. So we can

use the pdf φ(t) for that distribution to find critical values t0 for given significance

levels α , again using equation (6). (By now we hope you appreciate that all of these

cases have the same fundamental structure; only the pdf changes).

6.3.3. Means Unknown, Equal but Unknown Variances

Finally, we consider testing for the difference in means, assuming equal but

unknown variances. Our test statistic is the combination of (9) and (10):
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t =
x A − xB − ∆µ

sp

where the sample means are x A and xB for the two data sets A and B. This is nor-

malized by the pooled variance

s2
p = Σi(xi − x A)2 + Σi(xi − xB)2

nA + nB − 2





1

nA

+
1

nB





where nA and nB are the number of data in datasets A and B. The statistic t̂ is dis-

tributed as Student’s t, with nA + nB − 2 degrees of freedom. Of course, this test,

like the others above, assumes that the data are normally distributed.

Note that this test assumes that σ 2 is the same for both datasets, though we do

not know it. While it would clearly be desirable to drop this restriction, doing so

complicates the problem substantially—indeed, there is no test for this specific case

(known as the Fisher-Behrens problem). But all is not lost, as we will now proceed

to show.

6.3.4. A Nonparametric Test for Differences in Location

All the tests we have described so far assume some form for the pdf, and in

most cases assume we know or can estimate parameters associated with that pdf.

But it is possible to have tests that make no such assumptions; these are called non-

parametric or distribution-free to indicate their independence from a specific pdf.

One such test allows us to test whether or not two data sets can be described by the

same pdf, whatever it is:

H0: φ A = φ B, φ unknown

This is about as general a test for equality of distributions between two data sets as

we could ask for.

It is fairly obvious that if we had (say) 100 data values from set A, all falling

between 0 and 1, and 100 values from B, all between 99 and 100, that they are very

unlikely to be modelable as random variables from a single pdf: if the pdf peaked in

these two regions, we would expect to get about 50:50 distribution of points in each

region for each dataset—and if the pdf was nonzero anywhere else, we would expect

to get some data outside these regions. What is important is that all the xA’s are

below the xB’s, a behavior we can quantify using a rank-sum test, also called the

Mann-Whitney or Wilcoxon test.

Figure 6.2

How this works is best shown with an example, and a figure (Figure 6.2). Sup-

pose we have four data values in A (for which we use x’s): x1 = 2. 3 x2 = 5. 6 x3 = 0. 7
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x4 = 1. 0 and five data values in B (for which we use y’s): y1 = −2. 0 y2 = 4. 5 y3 = 3. 6

y4 = 0. 0 y5 = 10.0. Then, after sorting all the data together, we get the arrangement

shown in the figure. The x’s are the dots above the axis, and the y’s the ones below

it; the numbers next to each dot are the ranks of the data. The test statistic is

formed by summing the rank values for one dataset; the sum for the other is related

to it because both must sum to the sum of the first n integers, 1
2

n(n + 1) where

n = nA + nB is the total number of data. In the example the two rank sums are 20

for the x’s and 25 for the y’s.4

Given n and (say) the smaller of the rank sums, we can find the probability of

getting this small a value or smaller, which becomes our significance level for a test

of the hypothesis. If we denote the ranks by ri, then the two statistics in common

use are

S =
nA

i=1
Σ ri and U =

nA

i=1
Σ ri − i

where we have supposed A to have the smaller rank sum. For small n the distribu-

tion of these statistics is complicated, but for n larger than about 20 a good approxi-

mation is a normal distribution:

U ∼ N (µU, σ 2) S∼ N (µ S, σ 2)

where

µU = 1
2

nAnB µ S = 1
2

nA(n + 1) σ 2 =
nAnB(n + 1)

12

This can be used to find significance levels for a one-sided test (one distribution less

than another) or a two-sided one (one distribution different from another).

6.4. Testing for a Given PDF

For the tests above (the last, nonparametric, one aside), we assumed a normal

distribution; can we test this assumption? Yes, this is just another hypothesis test,

one to which we now turn. As we have seen, a lot of statistical theory assumes that

we know the pdf. In spite of the central limit theorem it can be dangerous to assume

that everything is Gaussian. A histogram of the values gives an empirical idea of

the pdf. But we would like a more rigorous method of deciding whether a group of

data can properly be modeled by random variables with a specified pdf. It turns out

that there is a test statistic for this question, one that, somewhat surprisingly, does

not depend on the underlying distribution having some particular form—though we

do have to know what it is.

6.4.1. Kolmogorov-Smirnov Test

Suppose that we have a set of n numbers
→
x = {x1, x2, . . .  , xn} and we want to test

whether they can be modeled as independent random variables
→

X , each element of

4 If values are tied, they all get the average of the ranks assigned to them; for example, if

there were three identical values that had ranks 3, 4, and 5, they would each be assigned a rank

of 12/3 = 4. Alternatively, if the data have only finite precision (that is, are not intrinsically inte-

ger), simply apply small random perturbations to apparently tied data, at a level one or two deci-

mal places below the last significant digit.
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Figure 6.3

which is distributed with a pdf φ(x). There are a number of tests for this, which

make use of the order statistics (x(1 ), x(2), . . .  , x(N )) that we discussed in Section 5.1.2.

From the order statistics we can create the sample distribution function, Sn(x),

which is a ‘‘stairstep’’ version of the cumulative distribution function; like the cdf it

increases monotonically (though discontinuously) from 0 to 1. It is defined as

SN(x) =







0

i/n

1

x < x(1 )

x(i) < x < x(i+1), i = 1, . . , n −1

x(n) < x

if Sn is derived from n random variables with cdf Φ, the law of large numbers guar-

antees that as n gets larger and larger Sn(x) approaches Φ(x). We want a means of

deciding how different Sn(x) and Φ(x) are; this is our test statistic for deciding if a

data set can be represented by random variables with pdf φ .

At each value of i, we can define two distances between Sn and Φ: d+ measured

from Φ to the ‘‘top of the step’’, and d− measured from Φ to the ‘‘bottom of the step’’.

These are defined by

d+(i) =
i

n
− Φ(x(i)) d−(i) = Φ(x(i)) −

i −1

n

Figure 6.3 shows a possible Sn and Φ in the left-hand panel, with one value of d−

indicated. The right-hand panel shows all the positive values of d+ (pluses) and d−

(crosses). The Kolmogorov statistic, d, is the maximum deviation between Sn and

Φ; it is given in two steps, first by taking the maximum value over all the d’s:

dn =
1≤i≤n
max 


d+(i), d−(i)


(11)

as shown by the dashed line in the right-hand panel of Figure 6.3; and then by cor-

recting for the value of n:

d0 =



√  n + 0. 12 +

0. 11

√  n





dn (12)

© 2008 D. C. Agnew/C. Constable



Version 1.2.2 Hypothesis Testing 6-12

which, for values of α small enough to be interesting, has the following expression

for α :

α = P[d > d0] = 2 exp(−2d2
0)

This statistic is used in the Kolmogorov-Smirnov test for determining

whether
→
x , our sample (supposedly modeled by

→
X ) is in fact compatible with the

underlying distribution Φ(x). If α is very small, then we are justified in rejecting the

proposed distribution for X .

If in fact the null hypothesis H0 is true, and the data can be represented by

random variables with pdf φ , it turns out that the distribution of the K-S statistic, d̂,

is independent of the underlying distribution for X ; that is, whatever Φ is, d̂ will be

distributed in the same way. This may seem difficult to believe. What may help to

make it less so is to realize that, given any Φ, we could create any other Φ by stretch-

ing and shrinking the x-axis appropriately (since all cdf ’s are monotone functions).

But such a transformation of the x axis has no effect on the maximum separation

between Sn and Φ, as they transform together.

One disadvantage of the K-S test is that you need to know Φ beforehand.

Often, we assume a type of pdf, and use the data to estimate parameters. This is

not, strictly speaking, correct. But, it will have the effect that we will fit the data

better than we would if we did not have this freedom. Thus our test will be conser-

vative: if we reject the hypothesis, the actual level for rejection will be higher than

what we compute.

It is also possible to apply this test to two sample distribution functions derived

from different datasets, so as to test whether the two datasets can be modeled by

random variables with the same distribution—and we do not need to know what

that distribution function is. This is a very useful non-parametric test. The method

is to form the same statistic as in (11) and (12), except that we take the difference

between the two cdf ’s Sn and Sm (assuming n and m to be the number of data in the

two datasets). For the n in equation (12), we take

ne =
nm

n + m

Another test for deviation is based on the Kuiper statistic, which is found

from the d’s as

vn =
1≤i≤n
max 


d+(i))


+

1≤i≤n
max 


(d−(i)


followed by a correction for n:

v0 =



√  n + 0. 155 +

0. 24

√  n





vn

which, for values of α small enough to be interesting, has the following expression

for α :

α = P[v > v0] = (8v2
0 − 2) exp(−2v2

0)
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Figure 6.4

That is, we find the maximum deviation up and down separately, and sum them.

The statistic v̂ is sensitive to departures of Sn from Φ in different ways than d̂ is.

Most importantly, if we have data defined on a circle, v̂ is invariant for different

starting values of x, which the K-S statistic would not be. It is therefore suitable for

testing, for example, if data are uniformly distributed around a circle or not. Figure

6.4 shows the comparison between Φ and Sn for the California earthquake dataset,

assuming φ to be uniform, and taking two possible starting times. The K-S statistic

dn is not the same, but the decrease in d− in going from a start time at 0h to one at

7h is exactly compensated for by the increase in d+, leaving dn unchanged. The α for

this test and this dataset is 0.07—again, tantalizingly close to being ‘‘conventionally’’

small enough to reject the hypothesis of uniformity.

6.4.2. χ 2 Test for Goodness of Fit to Φ(x)

Another widely used quantitative test for goodness of fit to a particular distri-

bution is based on the chi-square statistic (not the same as the chi-square distribu-

tion, though of course closely related). This statistic is based on the histogram, and

the idea that if we know the underlying distribution we can predict how many obser-

vations will be expected on average in each bin or cell of the histogram. This is well

suited for problems in which observations naturally fall into discrete groups or cells,

but is also widely used for continuous random variables. The general idea is to com-

pare the number of observations that fall within a given cell or interval with the

number to be expected for the theoretical probability distribution Φ. If the two num-

bers are close then Φ is a good model, if they are very different then one might have

grounds for rejecting Φ as a model for the data. Pearson’s χ 2 statistic is given by,

for n cells

T =
n

i=1
Σ (oi − Ei)

2

Ei

where oi is the number of observations in cell i, and Ei is the number expected for
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the theoretical distribution. It can be shown that, when the model is correct, the

sampling distribution of T̂ is approximately the χ 2 distribution, with m degrees of

freedom, where m = n − p − 1 p being the number of independent parameters fitted.

The approximation by a χ 2 distribution improves as the number of counts in each

cell increases; less than 5 counts per cell is usually regarded as inadequate. Note,

however, that the grouping of continuous data into cells discards useful information

from the sample; unless you start with such ‘‘grouped’’ data, it is probably better to

use a test for continuous random variables.

6.5. Probability Plots and Q-Q Plots

There are a couple of methods for examining the distribution of data—some-

what similar to the K-S test in their use of the empirical cdf, but designed more for

qualitative assessment of how well a dataset agrees with a particular pdf. This is an

example of what is called exploratory data analysis: these are graphical methods

that are probably the first thing you should apply to a new dataset.

First, there is the probability plot, which is derived from the empirical and

theoretical cdf ’s in Figure 6.3. Imagine warping the x-axis so that the function Φ(x)

becomes a straight line, and plotting the points of the ordered data. The required

transformation gives the quantiles of the distribution. If the quantile value is q, this

gives the mapping

x(q) = Φ−1(q)

where Φ is the theoretical cdf. We can define a set of quantiles based on the number

of data, n:

ai = Φ−1




i − 1
2

n





i = 1, . . . , n

These quantiles, ai, have the property that they divide the area under Φ(x) into n +1

areas, each exactly 1/(n + 1). To make a probability plot, we plot the order statistics

of the data, making n pairs ai, x(i). If the pdf was a good description of the data

these points would fall on a straight line. For the particular case in which the theo-

retical distribution is taken to be normal, a probability plot is useful for identifying

long-tailed or short-tailed data distributions.

The two top panels of Figure 6.5 show probability plots for (what else?) our GPS

data set. The left-hand plot shows the almost the full dataset; we have not shown all

the data because then the plot shows almost only that there are a couple of very

large outliers. Even with these omitted, the distribution is still long-tailed on both

ends. The right-hand plot, for comparison, shows what the distribution is if we omit

points beyond ±0. 25; removing points outside ±0. 2 leaves us with a distribution that

appears impressively close to normal. Incidentally, the plot also allows us to esti-

mate the mean (from the zero-intercept) and the standard deviation (from the inter-

cept of a line through the data, evaluated for Φ−1(x) = ±1. The lower two panels show

our other two often-used datasets. On the left, we have the intervals between rever-

sals, plotted on the assumption that the intervals are exponentially distributed (as

they would be for a Poisson process); we have to use log scales on both axes to make

© 2008 D. C. Agnew/C. Constable



Version 1.2.2 Hypothesis Testing 6-15

Figure 6.5

the plot readable. The data clearly do not follow a straight line, so we may be sure

that this model is not adequate. The lower right-hand plot is for the times of earth-

quakes from Figure 6.1, assuming a uniform distribution; this is of course very much

the same as the Kuiper-statistic plot in Figure 6.4. The event times approximate

uniformity, but there are more times around 5 hours UT than would be expected,

and fewer from 10 to 20 hours.

This kind of plot can be extended to two datasets, using what is called a Q-Q

plot (for quantile-quantile). Suppose we have two sets of ordered data, of size n and

m:

x(1 ), x(2), . . .  , x(n−1), x(n) and y(1 ), y(2), . . .  , y(m−1), y(m)

If n = m, then we simply plot the ordered pairs x(i), y(i). If not, we have to interpolate

to get the quantiles, which can be done as follows. Take the quantile 0 ≤ q ≤ 1, and
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Figure 6.6

from it find the values r = qn + 0. 5 and s = qm + 0. 5; truncate these to get the inte-

gers k and l, and find the fractional parts e = r − k and f = s − l. Then we can create

data values that are (approximately) associated with this quantile:

x(q) = (1 − e)x(k) + ex(k+1) and y(q) = (1 − f )y(l) + fx(l+1)

which we can evaluate for a selected set of q’s. (It is usually best to use a finer sam-

pling near 0 and 1, and a coarser sampling near 0.5). Note that if n and m are

equal, the simplest approach is to take q to be a multiple of n−1, in which case we

simply end up with ordered pairs (x(i), y(i)).

Now, plot the quantile values of x and y against each other. If the two data sets

have the same distribution, the plotted points will lie along the line y = x. Shifts in

the mean will move the points right or left from this line; differences in the variance

will change the slope awa y from 1. As with the probability plot, the advantage of the

Q-Q plot is that it shows the behavior over the full range of the data, not merely a

few summary values. And, it is completely independent of any assumptions at all

about what some ‘‘underlying’’ distribution is.

Figure 6.6 shows a couple of examples, comparing a couple of our ‘‘standard’’

datasets with closely related ones. On the left, showing the quantiles for times of

large earthquakes against those of smaller ones;5 the smaller ones have times that

are nearly uniformly distributed, so the plot looks very much like the probability

plot in Figure 6.5. The GPS data have been compared with data for a later time

span; the figure shows a clear shift in location, with the later data (along the y-axis)

having just slightly less variance than the earlier data, though a very similar pdf.

Since the limiting quantiles are 0.05 and 0.95, this plot cannot show any long-tailed

behavior, should this be present.

5 The smaller earthquakes are those between magnitude 3.5 and 5.4 in the Southern Califor-

nia earthquake catalog between 1981.0 and 2003.5, omitting days with 5.5 and larger shocks.
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6.6. Testing for Correlation between Random Variables

The last tests we discuss are to test the hypothesis that there is or is not a cor-

relation between two sets of random variables,
→

X and
→

Y , each with n elements. One

diagnostic statistic is the size of ρ, the correlation coefficient. The standard estimate

of ρ for n pairs of numbers (xi, yi) is

r =

n

i=1
Σ(xi − x)(yi − y)

√  
n

i=1
Σ(xi − x)2√  

n

i=1
Σ(yi − y)2

(13)

with x and y being the mean of the xi’s and yi’s respectively. If the variables X and

Y are jointly normally distributed, then the standard deviation of r is

σ r =
1 − r2

√  (n −1)

and −1 < r < 1. We want to decide if r is significantly different from r = 0, the case of

no correlation. This is done using

t =
r√  (n −2)

√  (1 − r2)
(14)

which is t-distributed with N − 2 degrees of freedom. This is perhaps the most

abused test in all of statistics, since it assumes that the data can be modeled by ran-

dom variables with a bivariate normal distribution, an assumption that is often

overlooked by those who use it—sometimes, as we saw in Chapter 1, with deplorable

results.

A more general test for correlation that does not rely on this assumption can be

gotten by replacing the data with their ranks, and then computing the Spearman

rank-order correlation coefficient.

This test is almost exactly the same as the previous test, except that we replace

the n pairs of values (xi, yi) by their ranks, to form pairs (rx
i , r

y)
i . Then we find

rs =

n

i=1
Σ(rx

i − r x)(r
y
i − r y)

√  
n

i=1
Σ(rx

i − r x)2√  
n

i=1
Σ(r

y
i − r y)2

(15)

with, for example, r x being the mean of the ranks for the x’s. But since the sum of

the ranks is just the sum over the first n integers, this is the same for both x and y,

as are the sums in the denominator. If we make use of

n

k=1
Σ k =

n(n + 1)

2

n

k=1
Σ k2 =

n(n + 1) (2n + 1)

6

we find that the denominator is

n(n2 − 1)

12
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Figure 6.7

We can simplify (15) even further if we sort the pairs so the y values are in

increasing order, so that r
y
i = i, as illustrated in Figure 6.7. Then the numerator

becomes

−

(n +1)

2




2

+
n

k=1
Σ krx

k

and the total expression can be written as

rs = 1 −
6

n(n2 − 1)

n

k=1
Σ(rx

k − k)2

which, like r, is between −1 and 1; it will reach a value of 1 only if the ranks for the

x’s and y’s are the same. Continuing in parallel with (14), the statistic

t =
rs√  (n −2)

√  (1 − r2
s)

is also approximately distributed as Student’s t with n − 2 degrees of freedom, the

approximation being adequate for n ≥ 30; for smaller n, an exact expression for φ(rs)

is available. Given the ease with which actual data can violate bivariate normality,

it is probably wise to begin with this test if you want to test for correlation.
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6.7. The Neyman-Pearson Framework for Hypothesis Testing

We finish with what we might have begun with, which is a sketch of the Ney-

man-Pearson approach to testing. The formal procedure is not often used in geo-

physics, but it underlies many discussions of testing, and provides, as the ideas of

efficiently and bias did for estimators, a framework for comparing tests.

The Neyman-Pearson approach explicitly frames the test as one between two

hypotheses, the null hypothesis H0 and an alternative hypothesis, H1, that we

are said to be testing H0 against. A simple example would be if we had data mod-

eled by random variables that are normally distributed with known variance and a

mean that is either µ1 or µ2; the null hypothesis H0 could be µ = µ1, and our test

would be against the alternative hypothesis, H1, that µ = µ2.

Although this is a very different approach than the significance testing we have

discussed up to now, much of the formal procedure is the same: we decide whether to

reject H0 in favor of H1 on the basis of a test statistic t = T(
→
x), using the distribution

of the test statistic t̂ = T(
→

X), where the distribution of the random variables
→

X is

part of the null hypothesis H0. The set of values for which H0 is accepted and

rejected are, respectively, the acceptance region and rejection regions of the

test. And, exactly what ranges of the parameters these regions cover depends on the

value of α , the significance level, which in this framework is always chosen before-

hand, at least implicitly.

If we think of testing two hypotheses we can see that we can have two kinds of

error:

Type I error: we may reject the null hypothesis H0 even though it is valid. For our

earthquake-time problem, this would be deciding that the distribution of times

is nonuniform even though it is actually uniform. Of course, we expect this to

happen if we could do the test many times; it should happen a fraction α of the

time, where α is the significance level. The probability of a Type I error is

therefore just α —and we can in principle choose this to be as small as we like.

For the more complicated case in which H0 is composite, the probability of a

Type I error generally depends on which particular member of H0 (that is,

which parameter) we choose, and the significance level is defined to be the max-

imum of these probabilities.

Type II error. This is where we accept H0 even though it is false. For our earth-

quake-time problem, this would be deciding that the times were uniformly dis-

tributed even though they were in fact distributed according to H1. The proba-

bility of this occurring is denoted by β . We are probably more interested in the

reverse, the probability that H1 is rejected when it is false; this quantity, 1 − β ,

is called the power of the test. Clearly we want β to be as small, and the

power as large, as possible: an ideal test would have a power of one, so we

would always reject a false H0. If H1 is composite then β depends on the par-

ticular parameters of H1.

Thus to compare tests we can ask which one, for a given α , has the smallest

β —that is, is the more powerful. Ideally we could have a power of 1 with α = 0; in

practice this can never be achieved. Also for any given number of data, n, it is

always true decreasing α , will increase β . As indicated above, usually we by fixing
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the significance level in advance (at a rather small number, typically 0.05 or .01),

and then trying to find a test yielding a small value for β .

Given a fixed α and n, β will depend on the test procedure, and so comparison

of powers gives us a means of comparing tests.

You should realize that the power can depend, not only on the nature of the

test, but also on the alternative hypothesis H1, which is usually called what the test

is ‘‘testing against’’. For example, the Schuster test is most powerful when testing

the hypothesis H0 (a uniform distribution) against H1, when H1 is that the pdf for

the times is unimodal (a single peak); it is not difficult to see that this test would do

a poorer job of discriminating between a uniform distribution and one with two

peaks 12 hours apart. This can be quantified by keeping H0, α , and n the same, and

comparing β for different H1. For some tests, H1 can be ‘‘anything other than H0’’;

this is true of the Kuiper test described above, which tests a uniform distribution on

the circle against any alternative. What we lose by employing such a general test is

likely to be that, for a given β , α will be larger than it would be for a test against a

more specific H1. This is quite similar to the tradeoff experienced with estimators: a

estimator that works well for a wide range of pdf ’s will be less efficient than a test

designed around a specific pdf, if that pdf is appropriate (think of the mean and the

median). And the same thinking can be appropriate: we may be willing to sacrifice

some power if the test is usable over a wider range of alternative hypotheses.
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