
GEOPHYSICAL DATA ANALYSIS

GEOPHYSICAL DATA ANALYSIS:

TIME SERIES

DUNCAN CARR AGNEW

ROBERT L. PARKER

SIO 223B CLASS NOTES, SPRING 2011

© 2011 Duncan Carr Agnew

Contents

Contents i

1 Introduction 1

1.1 Random Time Series . 1

1.2 Overview of the Subject . 5

2 Linear Systems and Fourier Transforms 8

2.1 Linear Time-Invariant Systems 8

2.2 Convolution . 12

2.3 The Fourier Transform . 14

2.4 A Transform Pair . 15

2.5 Fourier Theorems I: Similarity and Shift 17

2.6 Generalized Functions . 19

2.7 Fourier Transforms of Generalized Functions 21

2.8 Fourier Theorems II: Derivatives and Differentiability 23

2.9 Fourier Theorems III: Convolution, Power, Modulation 25

2.10 The Correlation Function . 28

3 Fourier Theory for Discrete Time 30

3.1 Introduction . 30

3.2 Discrete-Time Sequences and Operations 31

3.3 Fourier Transforms for Infinite Sequences 32

3.4 Discrete Fourier Transform . 36

3.5 Fourier Theorems for the DFT 39

3.6 The Dirichlet Kernel . 46

3.7 Computing the DFT: the Fast Fourier Transform 48

4 Sampling Theory for Time-Series 52

4.1 Introduction: Logging Data . 52

4.2 The Sampling Problem . 54

4.3 The Nyquist Theorem . 55

4.4 Aliasing . 58

4.5 Decimation . 61

i

ii Contents

4.6 Violating the Nyquist Criterion 62

4.7 Quantization Error . 63

5 Digital Filters I: Frequency-Selective Filters 65

5.1 Introduction: Digital Filters in General 65

5.2 FIR Filters for Frequency Selection 67

6 Digital Filters II: Recursive Filters and Simulating Linear

Systems 79

6.1 Introduction . 79

6.2 Lumped-Parameter Systems . 79

6.3 The Laplace Transform: System Poles and Zeros 84

6.4 The z-transform for Digital Filters 87

6.5 Recursive Digital Filters . 90

7 Digital Filters III: Differentiators, Least-Squares, and Minimum-

Phase Filters 97

7.1 FIR Filters: Other Applications 97

7.2 Differentiators and Digital Hilbert Transformers 97

7.3 Least-squares Fits as Filters . 100

7.4 Minimum-Phase Filters . 102

8 Stochastic Processes 108

8.1 Introducing Ordered Random Data 108

8.2 Stationary Processes and Autocovariance 111

8.3 White Noises and their Relatives 113

8.4 Examples from the Real World 117

A Computing the Discrete Fourier Transform 121

A.1 Introduction . 121

A.2 The Basis of the Fast Fourier Transform 121

A.3 Computing DFT’s of Real Series 123

A.4 Computing the Fourier Transform for a Few Frequencies . . 125

B Other Reading 128

B.1 Introduction . 128

B.2 Linear Systems and Fourier Analysis 128

B.3 Digital Signal Processing . 129

B.4 Time Series and Spectral Estimation 130

Contents iii

Bibliography 131

Index 134

CHAPTER 1

INTRODUCTION

1.1 Random Time Series

In this course we consider datasets in which the data have a particular

structure, namely that the data are ordered, whether in time or space

(or both); we shall use the term time series for the general case of data

ordered in one dimension. Most data are actually ordered, though we may

choose to ignore this; even repeated measurements of the same thing are

usually done sequentially rather than all at once.

We begin with some mathematical concepts for ordered data. In fact, we

start by focusing on the “ordered” part while ignoring the “random” part:

we discuss concepts and methods useful for working with ordered data re-

garded as conventional (rather than random) variables. Only after we have

introduced these concepts, in particular Fourier theory and methods, will

we return to randomness. Our ultimate aim is to develop Fourier meth-

ods for random variables, which leads to the idea of the power spectrum:

this spectrum, and the procedures for estimating it, will be our focus in the

latter part of this section of the course.

1.1.1 Two Examples of Time Series

We start with some examples of ordered data to show some of what we will

be discussing in more detail. Our first examples come from very close by:

sea level at the end of the Scripps pier (Figure 1.1). The ordering of these

data is crucial: if we selected values at random from those shown, we would

lose significant information. Given the ordering, two obvious features are a

periodic variation and a long-term rise. The periodic variation turns out to

be annual,1 so that a preliminary model for the data values as a function

1 This comes from the “steric effect”, and is caused by the annual variation in water

temperature at shallow depths; as it warms, water expands, and level rises. This annual

change does not reflect any annual variation in the amount of water in the oceans; to

1

2 Chapter 1. Introduction

Figure 1.1: Monthly mean sea level measured at the end of the SIO

pier; data from the Permanent Service for Mean Sea Level. The refer-

ence level is chosen to be well below the lowest water level.

of time t (in years) is

xi = a1 +a2t i +a3 sin(2πt i)+a4 cos(2πt i)+ r i

We can use the least-squares methods learned earlier to estimate the pa-

rameters a1 through a4; doing this, and subtracting the result from the

data, gives the residuals r i, also plotted in Figure 1.1. These residuals cer-

tainly cannot be called “error;” rather, these fluctuations in sea level are

caused by changes in the ocean and atmosphere, and show, for example, a

period of high sea level in the early 1980’s, caused by an El Niño.

Our next example uses exactly same quantity (water level at the end of

the Scripps pier), but measured at a much finer time resolution, to record

the ocean waves. Figure 1.2 shows 10 minutes of 1-second data, 24 hours

apart. The dominant behavior on both days is an oscillation with amplitude

about 15 cm and period about 10 seconds: the ocean swell. More than this

it is difficult to say.

Figure 1.3 shows the power spectral density (PSD) of these data, es-

timated from a longer sample (an hour of measurements). We define the

PSD later; for now, a simple way of looking at it is that it shows how much

of the variation is occurring at different frequencies. In this case, the PSD

is large for periods of 8-15 seconds (frequencies of 0.06-0.12 Hz), as we

what extent the long-term change is steric, and to what extent driven by changes in water

storage elsewhere, is much debated.

1.1. Random Time Series 3

Figure 1.2: Sea level measured at the end of the SIO pier; data from

the Coastal Data Information Program. Zero level is arbitrary (and

not the same as in the previous figure). Each frame shows 10 minutes

of data, on the top starting at 1997:240:00:00:00 and on the bottom

one day later.

might expect from the plot of the time series. But we also can see that the

decrease at higher and lower frequencies has very different forms (suggest-

ing different physics). Further, we can see that the peak of the energy on

day 241 has moved to a frequency 0.008 Hz higher than on day 240. If we

take a series of such spectra and make a contour plot of the power spectral

density over time, we see a “ridge line” of high values which shifts gradu-

ally with time. The explanation for this is that surface waves in liquids are

dispersive; the wave energy was generated over a broad range of frequen-

cies in one place (where there were high winds), but the lower-frequency

energy traveled faster and arrived first.2 Given the frequency shift over

three days and the known physics of wave propagation, the distance to the

source is found to be 64◦±1◦. We show this example to illustrate a common

occurrence: characteristics of the data that are not obvious in a time series

can become very obvious after we find the power spectrum of that data.

2 See, for much more on this subject, based on an ocean-spanning data set, the classic

paper by Snodgrass et al. (1966); a more recent summary, using satellite data, is Ardhuin

et al. (2009).

4 Chapter 1. Introduction

Figure 1.3: Spectrum of the wave data in Figure 1.2 (actually, of a full

hour beginning at the times shown in that figure). In each frame the

spectrum from the other frame is shown as a light line at the lowest

frequencies, to indicate the shift in frequency of the lowest-frequency

peak.
.

Figure 1.4: Power spectral density as a function of time for sea level

at the end of the SIO pier. Contours are in dB relative to 1 m2/Hz.

The two dashed lines show the “slices” that give the spectra in Figure

1.3. .

1.2. Overview of the Subject 5

1.1.2 A Note on Decibels

Figures 1.3 and 1.4 shows the amplitude of the spectrum plotted in units

that may be new to you: decibels (dB). These are another way of creating a

logarithmic scale, and it is sufficiently common that you need to know what

it is. The term comes, via acoustics, from telephony: hence the name, Bel,

which refers to Alexander Graham Bell. The original definition is that if a

signal has a power (think loudness) P, and there is a reference power P0,

the signal level in decibels is 10log10(P/P0). The logarithm is used for two

reasons: one is the usual reason that we can use a small range of numbers

for very large changes. . The other is peculiar to acoustics, namely that the

intensity of a sensation (e.g., perceived loudness) is roughly proportional to

the logarithm of the power, a rule of psychophysics known as Fechner’s law.

In digital signal processing, the reference level is taken to be unity. If we

have something with amplitude A, then by definition the amplitude in dB

is 10log10(A2) = 20log10 A. The square comes from the fact that squared

quantities relate to power: for example, if we have a voltage V across a

resistance R, the power dissipated in the resistor is V 2/R. With this defi-

nition, a factor of two in amplitude is very nearly equal to 6 dB; a factor of

four to 12 dB, and a factor of eight to 18 dB. Conversely, if signal A is half

as large as signal B, we would say “A is 6 dB below B”; if A had a value

of one half, with the reference level being one, we would say that "A has a

level of −6 dB”. And after a little practice, you will too.

1.2 Overview of the Subject

A major aim of this course is to teach you to understand what a spectrum

is, know how to estimate it from the data, and how to decide which of the

bumps on the plotted spectrum mean something and which do not. But to

get to this, we need to spend time introducing Fourier methods and some

specialized parts of probability and statistics: all quite useful in them-

selves, but with the consequence that we will only discuss spectral methods

towards the latter part of the course.

We start with mathematics applicable to ordered conventional vari-

ables, in particular the Fourier analysis of functions and linear systems

theory. As we just saw, looking at data in terms of frequency rather than

time can be a very powerful tool - and this is what Fourier methods are

about: moving between a function defined in time, and its transform de-

6 Chapter 1. Introduction

Figure 1.5: Monthly mean water density at the end of the SIO pier,

found from the daily data for salinity and temperature archived at

http://shorestation.ucsd.edu/. The upper trace is the raw data;

the bottom trace is the residual (offset for clarity) after fitting and

removing an annual cycle.

fined in frequency. Linear systems theory helps to explain why this proce-

dure is so useful, and also provides a useful way of looking at many phe-

nomena.

This way of looking at time series was developed by electrical engineers

(and mathematicians who worked in collaboration with them), something

also true of our next topic, digital signal processing. This name covers

a range of concepts and methods: notably how to look at Fourier theory

applied to time series in which the data occur as samples from a continuous

function, and how to filter data for various purposes.

After this we move to ordered random variables. The subfield of proba-

bility that deals with random variables ordered in one or more dimensions

is called the study of stochastic processes; we will utilize this mathe-

matics to create descriptions that help us understand the process. For

non-ordered random variables such descriptions include things like the

moments of the probability density function (pdf); for time series we will

develop the theory of the power spectrum, or power spectral density.

Of course, defining the mathematics of ideal models is only part of work-

ing with data: we also have to develop methods for getting a “good” esti-

mate of this model from actual data. This, like all estimation from sets

of data modeled as random variables, is a problem in statistics, not prob-

ability; within statistics it falls into the subfield termed (by statisticians)

1.2. Overview of the Subject 7

time-series analysis. The concepts for estimating other parameters (e.g.,

bias, efficiency, consistency) apply equally to power spectrum estimation;

but spectrum estimation is more complex, in part because the spectrum is

a function, not just a single parameter or a set of them. Because of this

complexity, this area suffers from much confusion and reliance on obsolete

procedures. We will introduce you to useful and modern methods.

The power spectrum is a way of looking at a single set of ordered random

variables. Often we have more than one set, and want to know how to relate

them. To take an example, Figure 1.5 shows the water density at the end

of the Scripps pier; if we compare this with the sea-level data in Figure 1.1,

we can see that both show an annual cycle. We might ask if these two series

are related at other frequencies, and if so how: to answer this question we

would employ a generalization of the power spectrum known as the cross-

spectrum, for which there are, again, good and bad estimation methods.

Another generalization of the power spectrum comes when we want to

describe a time series in which the “spectrum” (in a rough sense of the

amount of energy at different frequencies) changes with time. The data in

Figures 1.2 through 1.4 is an example, though an “easy” case because the

spectrum changed over times that were long (days) compared to the recip-

rocal of the frequencies involved (seconds to minutes). But there can be

more rapid changes in frequency content, as, for example, in most seismo-

grams. To describe such a process (which is termed nonstationary) we

would need to replace the mathematical framework of Fourier analysis by

what is called wavelet analysis – a topic we will not have time to discuss.

You should realize that there are many other areas of time series anal-

ysis that we will not touch on at all; we hope that what we do discuss will

provide a useful framework for any topics you may want to learn about

later.

CHAPTER 2

LINEAR SYSTEMS AND

FOURIER TRANSFORMS

2.1 Linear Time-Invariant Systems

We begin with the mathematical theory – Fourier analysis – that underlies

many kinds of analysis of time series, including signal processing, data

filtering, and spectrum estimation. In order to make this theory usable, we

will need to introduce new kinds of functions, called generalized functions.

Fourier analysis, as we will use it, is about representing a function,

not as something that depends on the original variable (time) but as some-

thing that depends on a different variable, frequency. We can use this al-

ternate representation because we can write the original function in terms

of the “sum” of a series of sines and cosines in time, these sines and cosines

being “indexed” by this frequency variable. We have used quotes around

“sum” and “index” because these are only analogies to what actually done

in Fourier transforms of functions on the real line – though, when we talk

about digital data series we could remove the quote marks, since in that

case these terms are correct.

We can construct functions from sums of a number of different families

of functions; for example, over a finite interval we can form any function

from sums of polynomials. Why use sines and cosines? There are number of

ways of answering this; from the standpoint of geophysical data the answer

lies in the ubiquity of linear time-invariant systems, and the especially

simple way in which sinusoids are treated by such systems.

What do we mean when we refer to a system? It is just something into

which we put an input function x(t) (a function of some variable, usually

thought of as time), and out of which we get an output function y(t). We

can write this symbolically, either as a block diagram (as shown below) or

symbolically, as x(t)⇒ y(t).

8

2.1. Linear Time-Invariant Systems 9

x(t) - System - y(t)

Actual systems may well have more than one x and y, but we avoid this

complication for now. Some examples of systems are:

Input System Output

Ground motion Seismometer Voltage

Magnetized sea-floor 3-4 km of water Surface magnetics

Solar-lunar gravity Oceans Ocean tides

Ice loads Upper Mantle Postglacial rebound

Wind Oceans Swell

Solar radiation Atmosphere & ocean Weather & climate

These systems are given in order of increasing difficulty in studying

them. The first three are examples of systems that are linear and time-

invariant, which are the ones we will focus on. The last two are definitely

not linear, and as a result are by far the least understood. The fourth,

postglacial rebound, may or may not be linear depending on the rheology of

the mantle; the advantages of linearity are shown by the almost-universal

use of linear models of viscoelasticity in studying this problem.

The important point about linear time-invariant systems is that they

are basically all alike – the same mathematics applies to them all – whereas

nonlinear systems can be nonlinear in many different ways.

A system is linear if

x1(t)⇒ y1(t) and x2(t)⇒ y2(t)

implies that

x1(t)+ x2(t) ⇒ y1(t)+ y2(t)

which is often called the principle of superposition. Repeated applica-

tion of this definition shows that

ax(t)⇒ ay(t)

for any rational value of a; it can be shown to be true for any real value of

a.

Time-invariance is a separate behavior, and means that for a particular

input the output does not depend on the absolute time:

x(t+τ) ⇒ y(t+τ)

10 Chapter 2. Linear Systems and Fourier Transforms

for all τ. An example of a linear system that would not be time invariant

is a pendulum whose length varies over times much longer than its period;

even though a simple pendulum is linear in its response to small forces

applied to the bob, gradual changes in length would keep it from being

time-invariant. Time-invariance automatically holds for any system that

depends only on physical laws, as in the magnetics example above; and

can often be assumed as an idealization for many actual systems. One

of the linear systems mentioned above, the ocean tides, will vary as the

shape of the oceans changes over geologic time because of sea-level changes

and continental motion; but over the past few centuries we can reasonably

assume time invariance.

What do these characterizations of systems have to do with Fourier

methods? The answer is that sinusoids (or indeed any exponential) are

unchanged “in form” by a linear time-invariant system: the output and the

input have the same functional representation. One way to see this is to

note that shifting an exponential est by a time τ simply multiplies it by esτ,

and a linear system does not change the form of the output because the

amplitude of the input changes. More formally (and working with complex

exponentials), we suppose that

x(t)= e2πi f t ⇒ y(t)= g̃(f , t)e2πi f t

which, since g̃(f , t) is unspecified, allows y to be an arbitrary function of

time. Then applying a time shift, and time-invariance, gives

x(t+τ)= e2πi f τe2πi f t ⇒ g̃(f , t+τ)e2πi f τe2πi f t

Linearity allows us to cancel out the constant factor e2πi f τ from both sides,

with the result

e2πi f t ⇒ g̃(f , t+τ)e2πi f t

which implies

g̃(f , t+τ)= g̃(f , t)

But this means that g̃ can depend only on f ; the time-dependence of input

and output are then the same, namely a complex exponential, which is to

say a sinusoid.

We call g̃(f) the frequency response of the system, where f is the

frequency of the sinusoid. In general g̃(f) will be complex (just as x and y

are in our example), even though actual series are usually real. This use of

2.1. Linear Time-Invariant Systems 11

Figure 2.1: Some sinusoids, and their amplitude and phase displayed

on a phasor diagram. A is a unit sinusoid with 0◦ phase shift (note

that this depends on where we put the t = 0 point). B is a unit sinu-

soid with −30◦ phase shift (a delay); C is a unit sinusoid with −90◦

phase shift (we say that it is in quadrature with A); D is a unit si-

nusoid with ±180◦ phase shift; and E is a sinusoid with amplitude 2

and a 0◦ phase shift. F is another unit sinusoid with 0◦ phase shift,

but a different frequency; in the phasor diagram, it plots in the same

location as A though usually a single phasor diagram is taken to refer

to sinusoids of the same frequency.

complex numbers simplifies the bookkeeping; what we really mean when

we say that the input is Ae2πi f t is that

x(t)=R[Ae2πi f t]= 1/2[Ae2πi f t + A∗e−2πi f t]

=R[A]cos2π f t−I [A]sin2π f t
def= acos(2π f t+φ)

so that we can write the complex amplitude A as a(cosφ+ isinφ) = aeiφ, a

complex number with amplitude a and phase φ. We thus can represent

our sinusoid on the Argand diagram often used for complex numbers; in

this application it is called the phasor diagram (or vibration diagram) for

this sinusoid. The modulus of A is the amplitude and the angle φ the phase

(relative to some time, which is arbitrary but must be chosen). Figure 2.1

shows some examples.

It is very important to be aware of an arbitrary part of the amplitude

and phase representation, namely which sign of φ represents a lag (or lead).

12 Chapter 2. Linear Systems and Fourier Transforms

Consider our sample sinusoid, e2πi f t. If φ = 0, a maximum will occur at

t = 0. If φ is slightly greater than 0, this maximum will be at t < 0, and

the waveform will be advanced (we reach the maximum sooner in time)

relative to φ= 0; similarly for φ< 0, we reach the maximum later (a delay).

Thus, φ < 0 is a phase lag, and φ > 0 a phase lead; we will see shortly

that this convention corresponds to a particular choice of how we define

the Fourier transform. Unfortunately there is no universal agreement on

this sign convention; our choice is that used in electrical engineering (and

hence in signal processing), but much of the older geophysical literature

(for example, in tidal studies) takes phase lags to be positive.

2.2 Convolution

We have shown that what a linear time-invariant system does to a sinusoid

is specified by its frequency response g̃(f); but what about more general

inputs? We shall simply state that, in general, we can relate the output

y(t) to the input x(t) through the convolution integral

y(t)=
∫∞

−∞
x(u)g(t−u) du

where g(t) is a function characteristic of the system. We say that y is the

convolution of x and g, which we write as y(t)= x(t)∗ g(t),

It is clear that the system described by this integral is linear; to show

that it is time-invariant we first show it to be commutative. Letting u′ =
t−u we see that

∫∞

−∞
x(u′)g(t−u′)du′=

∫∞

−∞
x(t−u)g(u) du

which means that x∗ g = g∗ x Delaying x(t) by τ is expressed in the convo-

lution by x(t−τ), which gives

∫∞

−∞
x(t−τ−u)g(u)du = y(t−τ)

so convolution is time-invariant.

There are lots of ways of looking at convolutions; see Bracewell (1986)

for a selection. The most direct way of viewing convolution, at least for

those who think visually, is to imagine a plot of x(t) (strictly, x(u)), together

with one of g (plotted reversed because it is g(t− u)). The position of g

2.2. Convolution 13

Figure 2.2: A graphical representation of convolution. The left panel

shows x(u), and g(t− u) for three values of t. The dots in the right

panel show the integral of the product gx for these three values; when

this operation is performed for all values of t, we get the function y(t)

as shown.

depends on the value of t; as t increases, g moves to the right. For any

value of t, we form the product gx, and the value of y is just the area

under this product function. Figure 2.2 illustrates the process. To develop

a better sense of how convolution works, it can be useful to practice drawing

functions and sliding one past the other.

Convolution is also associative, as we can show by writing the following

series of integrals, using changes of variables to get through most steps.

(x∗ y)∗ z =
∫∞

−∞
z(t−τ)

∫∞

−∞
x(u)y(τ−u) dudτ

=
∫∞

−∞
x(u)

∫∞

−∞
y(τ−u)z(t−τ) dτdu

=
∫∞

−∞
x(u)

∫∞

−∞
y(v)z(t−v−u) dvdu

=
∫∞

−∞
x(u)

∫∞

−∞
y(v)z[(t−u)−v] dvdu

=
∫∞

−∞
x(u)w(t−u) du = x∗ (y∗ z)

What this means in terms of linear systems is that we can aggregate

them together as we see fit, as suggested in the accompanying sketch,

where the systems A and B can be viewed separately or as a single system

C. While this result may seem a bit trivial, it is actually very important:

the concept of linear systems is so useful partly because we can combine

simple systems together to make complicated ones.

14 Chapter 2. Linear Systems and Fourier Transforms

x(t) - A - B - y(t)

C

2.3 The Fourier Transform

We are now ready to discuss the Fourier transform of a function. We have

seen that exponentials e2πi f t are modified in an especially simple way by

linear time-invariant systems; but how can we use exponentials for a more

general input? The most obvious method is to take a sum of exponentials,

otherwise known as a Fourier series:

x(t)=
∑

n

x̃ne2πi fn t

where the sum is over some finite set of frequencies fn There are some

geophysical signals that can be represented in this way, most notably the

tides, for which this is called a harmonic development.

But the Fourier series certainly cannot represent an arbitrary function;

for one thing, it cannot represent a transient (a function that is zero out-

side some range of t). So we generalize the weighted sum to an integral,

and write

x(t)=
∫∞

−∞
x̃(f)e2πi f t d f (2.1)

where f is now the numbers on the real line, not just a finite set of values.

It can be shown that this integral holds if and only if

x̃(f)=
∫∞

−∞
x(t)e−2πi f t dt (2.2)

These two equations define a function, x̃(f), that is the Fourier transform

of the function x(t), which we write as F [x(t)] = x̃(f).1 We say that equa-

tions (2.1) and (2.2) define a transform pair, (2.2) being the forward and

(2.1) the inverse Fourier transform.

1 Our notation for the Fourier transform of x(t) being x̃(f) (the tilde is meant to remind

you of the sinusoid) is different from (Bracewell, 1986), who uses regular capital letters

(e.g., X (f)) for the transforms of functions; unfortunately, this conflicts with the usage

of capital and lower-case letters in probability and statistics. Another common notation

denotes the Fourier transform of x(t) by x̂(f) – though this, too, conflicts with statistical

notation.

2.4. A Transform Pair 15

Any user of canned programs or other people’s formulae should be aware

that the definitions (2.1) and (2.2) are common but not universal. One al-

ternative usage writes (2.2) using radian frequency ω rather than cyclic

frequency f . The transform pair then becomes

x̃(ω)=
∫∞

−∞
x(t)e−iωtdt x(t)=

1

2π

∫∞

−∞
x̃(f)eiωt d f

or

x̃(ω)=
1

2π

∫∞

−∞
x(t)e−iωt dt x(t)=

∫∞

−∞
x̃(f)eiωt d f

or

x̃(ω)=
1

p
2π

∫∞

−∞
x(t)e−iωt dt x(t)=

1
p

2π

∫∞

−∞
x̃(f)eiωt d f

A more insidious danger is that the transform is taken to be

x̃(f)=
∫∞

−∞
x(t)e2πi f t dt (2.3)

so that the inverse transform uses e−2πi f t. This will give results quite dif-

ferent than the convention we use. A check on this, if you want to test a

particular algorithm, is to give it the same signal with a time lag, and com-

pare the phases: for our convention, a lag means a more negative phase.

As we saw in the previous section, this convention comes from our choice of

e2πi f t as a test function; using e−2πi f t would give the reverse Fourier con-

vention. There are sometimes good reasons to use this other convention;

for example, if we write a traveling wave as ei(kx+2π f t) we get something

that propagates backwards, which is undesirable. The definition in (2.3) is

therefore common when dealing with waves.

2.4 A Transform Pair

When we have a pair of functions related by (2.1) or (2.2), we often say that

x(t) is the function viewed in the time domain, and its transform x̃(f) is

the same function viewed in the frequency domain. If you have not encoun-

tered this phraseology before, talking about the two domains can sound

rather mysterious; but in fact we do it all the time: for example, in music

pitch is about frequency and rhythm about time. When we say “Doing A

in the time domain has effect B in the frequency domain”, you should re-

member that this is just another way of saying, “If we modify the function

16 Chapter 2. Linear Systems and Fourier Transforms

Figure 2.3: The left panel shows the Π function. The next two panels

show the sinc function plotted on a linear scale (center) and on a log-

log scale (right). (In the log-log plot, the zeroes in sinc should go off

the bottom of the plot but do not because of the way the plot program

works.) This plot also shows the “corner frequency” fc, defined in two

ways: one (left) as the intersection between the high-frequency and

low-frequency asymptotes, and the other (right) as the frequency at

which sinc(f)= 1/2 (−3 dB).

in according to A, its Fourier transform will be modified according to B”.

And, as we illustrated in the first chapter, what is invisible in one domain

is often obvious in the other.

To some extent a familiarity with transform pairs and their behavior

comes only with experience; to start developing this we begin with a simple

case and explore some of the behaviors that it illustrates, and then look at

x̃(f) for a few more functions.

Our first transform pair starts with the most basic of transients, the

rectangle (really square) function (often called a boxcar, at least in Ameri-

can usage):

Π(t)=







1 |t| < 1/2
1/2 for |t| = 1/2
0 |t| > 1/2

(2.4)

This function is discontinuous; the value at t = 1/2 is required in a fully rig-

orous definition. A more general form of Π is aΠ([t−b]/c), which is centered

at b, and has amplitude a and duration c.

The Fourier transform of Π(t) is easy to find and gives another impor-

2.5. Fourier Theorems I: Similarity and Shift 17

tant function:

F [Π(t)]=
∫∞

−∞
Π(t)e−2πi f t dt =

∫1/2

−1/2

e−2πi f t dt =
∫1/2

−1/2

cos2π f t dt

=
sinπ f

π f

def= sinc(f)

Figure 2.3 shows what the sinc function looks like. We can then write the

inverse transform

Π(t)=
∫∞

−∞
sincf e2πi f t d f

but if we interchange f and t, and substitute − f for f , which is allowable

because sinc is an even function, we get

Π(f)=
∫∞

−∞
sinc(t)e−2πi f t dt

another Fourier transform. We see that while sinc(t) is nonzero over an

infinite range, and very smooth, its distribution with frequency is Π(f),

which is nonzero only over a finite range (“bandlimited”) and not smooth at

all.

2.5 Fourier Theorems I: Similarity and Shift

Now, suppose we make the rectangle function broader or narrower, so it is

Π(at). The transform is (defining t′ = at):

∫1/2a

−1/2a
e−2πi f t dt =

1

a

∫1/2

−1/2

e−2π(f /a)t′ dt′ =
1

a
sinc

(

f

a

)

If a becomes large, Π(at) becomes narrower, but its Fourier transform sinc(f /a)

becomes wider. This duality of width between the two domains is in fact a

general result, called the similarity theorem; again letting t′ = at

∫∞

−∞
x(at)e−2πi f t dt =

1

|a|

∫∞

−∞
x(t′)e−2πi f t′/adt′

which means that if F [x(t)]= x̃(f),

F [x(at)]=
1

|a|
x̃(f /a)

18 Chapter 2. Linear Systems and Fourier Transforms

where the |a| comes from the exchange of limits for a < 0. Shortening in

the time domain thus implies broadening in the frequency domain; a gen-

eralization of the obvious case of a sine wave, for which less time between

peaks means a higher frequency.

We can be more precise about this relationship between broadening and

narrowing by noting that, by the definition of the transform and its inverse,

x̃(0)=
∫∞

−∞
x(t)dt and x(0)=

∫∞

−∞
x̃(f) d f

which means that
∫∞
−∞ x(t)dt

x(0)
=

[

∫∞
−∞ x̃(f)d f

x̃(0)

]−1

Since

∫∞

−∞
x(t) dt is just the area under the function,

1

x(0)

∫∞

−∞
x(t) dt is a

kind of measure of the width of the function, specifically of the width of a

rectangle of height x(0) with the same area. This width, and the width of

the transform, are thus reciprocals. Also note that we have now seen the

first example of another duality: global aspects in one domain (the area)

are connected to local aspects in the other (the value at zero).

Rather than changing the scale of the t axis, and thus the “width” of

a function we can ask what happens if we shift it in time. The Fourier

transform of a function x(t) that has been shifted in time by an amount τ

is:

F [x(t−τ)] =
∫∞

−∞
x(t−τ)e−2πi f t dt =

∫∞

−∞
x(t′)e−2πi f (t′+τ) dt′ = x̃(f)e−2πi f τ

Looking at the amplitude and phase of x̃(f)e−2πi f τ, we see that the first,

which is |x̃(f)|, is unchanged; but the phase has −2π f τ added to it: a time

shift thus causes a phase that varies linearly with frequency. If (as is usual)

we use the term amplitude spectrum to refer to the amplitude of the

Fourier transform, we can say that a time shift leaves the amplitude spec-

trum unaltered, but changes the phase spectrum. For our sign convention

for the Fourier transform, a time delay will cause the phase to be more

negative at a given frequency. In any situation in which uncontrollable, or

irrelevant, delays are present, the amplitude spectrum will be the part of

the Fourier transform to look at. For example, this is the spectrum usually

taken of seismic wave arrivals, unless the travel time is important.

2.6. Generalized Functions 19

2.6 Generalized Functions

So far we have proceeded as though, given a function, there would in fact

be another function that is its Fourier transform. But this may easily not

be true; we can easily come up with functions, for example x(t) = cos t, or

x(t) = 1, for which the transform integral (2.2) does not exist. We could

limit ourselves to functions for which (2.2) does exist, but it turns out to

be possible, to extend, without loss of rigor, the idea of what x(t) can be, to

include what are called generalized functions; once we introduce these

we can assume that a much wider class of functions has Fourier transforms.

Adding to the kinds of entities we can consider, rather than declaring

results to be meaningless, is often a fruitful approach. To take the sim-

plest examples, if we start with the integers, we have to introduce rational

numbers for division of any integer by any other to make sense. Similarly,

for subtraction of any two to be possible requires that we introduce nega-

tive numbers; and allowing square roots requires irrational and imaginary

numbers. As the names of the last two attest, some of these extensions

have not been easily accepted.

A full and rigorous treatment of generalized functions goes well beyond

the scope of this course. We give a brief, and very nonrigorous, version,

though our strategy for developing generalized functions will be the same

as the one used in a rigorous approach: we treat such functions as the limit

of a sequence of ordinary functions.

As a start, consider the convolution of the rectangle function with an-

other function x(t). Evaluated for t = 0, this is

x(t)∗Π(t)|t=0 =
∫∞

−∞
x(u)Π(−u)du =

∫1/2

−1/2

x(t) dt

Next, do the same thing for aΠ(at)∗ x(t); the t = 0 value is

a

∫1/2a

−1/2a
x(t) dt

What happens as a → ∞, making the rectangle function higher and nar-

rower? Provided that x(t) is itself well-behaved near zero, what we get is

the area under a rectangle with height close to the average of x(t), and

with base a−1; we then multiply this by a. The a−1 and a cancel, so that

this product is the average of x(t) over the range from −1/2a to 1/2a. As a gets

larger, this average of x approaches x(0), so that

lim
a→∞

[aΠ(at)∗ x(t)]t=0 = x(0)

20 Chapter 2. Linear Systems and Fourier Transforms

If we take the limiting operation “outside” the convolution, we may define

a generalized function

δ(t)= lim
a→∞

[aΠ(at)]

such that
∫∞

−∞
x(u)δ(u) du = x(0)

This is the Dirac δ-function, which can be pictured as an infinitely nar-

row, infinitely high spike at x = 0. By using a shifted version of Π(t) we can

equally well show that

∫∞

−∞
x(u)δ(u− t) du = x(t)

which means that convolution with δ(t−a) selects the value of the function

at t = a. The δ-function thus is the mathematical link between continuous

time and sampled data.

Note that from the above we can conclude

δ(t)= 0 for t 6= 0 but

∫∞

−∞
δ(t) dt =1

making the δ function one that vanishes everywhere but zero, but still has

a finite integral. Note that the value of δ at t = 0 is undefined: this func-

tion (like other generalized functions) only has meaningful properties when

integrated, not when standing alone.

A function closely related to the δ function (but not itself a generalized

function) is the Heaviside step function

H(t)=







1 t > 0

for

0 t < 0

which is the mathematical way of saying, “Throw the switch.”2 If we per-

form the convolution x∗H we get

∫∞

−∞
x(u)H(t−u)du =

∫t

−∞
x(u) du

2 Entirely appropriately, Oliver Heaviside, the inventor of this and much of the other

mathematical machinery in this field, worked as a telegrapher.

2.7. Fourier Transforms of Generalized Functions 21

which is just the integral of x evaluated at t. Taking the derivative of this,

by the theorems of calculus, gives x(t) again. We may, very nonrigorously,

write:
d

dt
[H∗ x] = x

and applying the derivative operator to the step function (interchanging

differentiation and integration) gives H′ ∗ x = x, which means that H(t)′ =
δ(t). That the derivative of H is the δ-function, while graphically appealing,

does considerable violence to the usual notion of derivative, but again can

be made rigorous by considering sequences of functions which approach

H(t); if these are differentiable, it can be shown that the derivatives ap-

proach δ(t). Indeed, it is possible to keep “taking derivatives” in this fashion

to get a function δ′(t), which when convolved with a function x(t) produces

the derivative x′(t).

2.7 Fourier Transforms of Generalized

Functions

So, what additional Fourier transforms can we do now? If we take Fourier

transforms of the sequence of rectangle functions, F [aΠ(at)], the transform

is

a

∫+1/2a

−1/2a
e−2πi f t dt =

∫1/2

−1/2

e−2π(f /a)t′ dt′= sinc(f /a)

If we now let a go to ∞, f /a→ 0 and since sinc(0)= 1, we have (interchang-

ing integration and the limiting operation)

F [δ(t)]= 1

which says that the δ-function contains all frequencies equally. Of course

just taking the transform, and using the properties of the δ-function, gives

the same result:

F [δ(t)]=
∫∞

−∞
δ(t)e−2πi f t dt = e−2πi0 = 1

The inverse transform then implies that

∫∞

−∞
e2πi f td f = δ(t)

22 Chapter 2. Linear Systems and Fourier Transforms

One way to “see” this is to note that for t 6= 0 the integrand oscillates and

so gives a zero integral, but for t = 0 the integral is infinite. Again, in ordi-

nary function theory this equation would be a complete nonsense; the left

side is nonintegrable and the right side is meaningless. The extension to

generalized functions allows us to deal with such problems in a consistent

and rigorous way.

If we now swap f and t, we get

F [e2πi f0 t]=
∫∞

−∞
e2πit(f0−f)dt = δ(f0 − f)= δ(f − f0)

with, as might be expected, an “infinite” peak at frequency f0. A δ function

away from zero is thus the Fourier transform of a complex sinusoid.

This is the transform of a complex sinusoids; what about sines and

cosines? Their transforms are:

F [cos2π f0t]=F [1/2(e−2πi f0 t + e−2πi f0 t)]=
1

2
[δ(f − f0)+δ(f + f0)]

which is two δ-functions at ± f0. Similarly,

F [sin2π f0t]=F [
−i

2
(e2πi f0 t − e−2πi f0 t)]=

−i

2
[δ(f − f0)−δ(f + f0)]

which is purely imaginary, and also has δ-functions at +− f0, though they

are oppositely directed.

These two results cases illustrate some important symmetry relations

for the Fourier transform: cos2π f0t is real and even, and so is its trans-

form; sin2π f0t is odd, and its transform is also, but is purely imaginary.

Since any real function can be split into even and odd parts, its transform

must have a real part which is even, and an odd part which is imaginary:

for x(t) real,

R[x̃(f)]=R[x̃(− f)] I [x̃(f)]=−I [x̃(− f)]

which is to say x̃(f) = x̃∗(− f). Functions with this property are known as

Hermitian. Because real functions have Hermitian transforms, the trans-

form only needs to be specified for f ≥ 0.3 Table 2.7 summarizes most of the

useful symmetry relations between functions and their transforms.

Since we have just established that negative frequencies are superflu-

ous when we are dealing with real-valued functions, and knowing that all

3 Or f ≤ 0, but nobody does that.

2.8. Fourier Theorems II: Derivatives and Differentiability 23

Time Domain Frequency Domain

Complex Complex

Imaginary anti-Hermitian x̃(f)=−x̃∗(− f)

Real Hermitian x̃(f)=−x̃∗(− f)

Real, even Real, even x̃(f)= x̃(− f)

Real, odd Imaginary, odd x̃(f)=−x̃(− f)

data are real-valued, you may wonder if there is any meaning, outside the

formalism of the mathematics, for negative frequencies. The answer is that

they are useful in certain cases, namely, in dealing with 2-dimensional vec-

tor processes: for example, horizontal currents in the ocean. We can rep-

resent such data as complex numbers using the Argand-diagram represen-

tation: given a North velocity vN and East velocity vE, we can write the

vector velocity as v = vE + ivN, where v is complex-valued. The transform

of data v then has no symmetry about f = 0: we need to look at it for both

positive and negative frequencies. What the sign of the frequency tells us,

is whether the vector rotates in one sense or the other (clockwise vs anti-

clockwise). For systems in which gyroscopic forces are important, this can

be a useful way of looking at the data. It would be very useful if there were

something like this for vectors in three dimensions; unfortunately there

isn’t.

2.8 Fourier Theorems II: Derivatives and

Differentiability

We now return to general theorems on Fourier transform pairs, concerning

ourselves now with derivatives. A (nonrigorous) application of integration

by parts gives

F [x′(t)]=
∫∞

−∞
x′(t)e−2πi f tdt =

e−2πi f tx(t)

2πi f

∣

∣

∣

∣

∞

−∞
+2πi f

∫∞

−∞
x(t)e−2πi f t dt

(2.5)

so that F [x′(t)] = 2πi f x̃(f), which also holds in reverse, with, F
−1[x̃′(f)] =

−2πitx(t).

These results are the basis for using Fourier transforms to solve some

classes of linear differential equations, something we discuss later on in

24 Chapter 2. Linear Systems and Fourier Transforms

Figure 2.4: Sketches to show what level of discontinuity (left to right:

in function, first derivative, and second derivative) provides what

level of asymptotic decay of the Fourier transform.

designing some kinds of digital filters. In the terms we are developing, of

looking at the function in two domains, what this result is important for

is showing what taking a derivative or integral in the time domain does

to the function in the frequency domain. For example, consider ground

motion from an earthquake: for given displacements, the velocities (the

first derivative) will have a transform scaled by f , and will thus be much

rougher (richer in high frequencies); and the accelerations will be rougher

still, with a Fourier transform scaled by f 2.

This result leads to other ones, which like the earlier results on widths

connect local properties in one domain with global ones in another. For

second derivatives

F
−1[x̃′′(f)]=−4π2t2x(t)

Taking the transform of both sides gives

∫∞

−∞
t2x(t)e−2πi fo tdt =

−x̃′′(f)

4π2

which means that the second moment of the function x(t) is

∫∞

−∞
t2x(t)dt =

−x̃′′(0)

4π2

that is, the second moment of the function is proportional to the second

derivative of its Fourier transform, evaluated at the origin. Once again

we see that a global property (the second moment) in the time domain is

connected to a very local property (the second derivative at the origin) in

the frequency domain.

Still another example of the local/global relation between the original

and the transform is a theorem which relates the differentiability of x(t) to

2.9. Fourier Theorems III: Convolution, Power, Modulation 25

the asymptotic behavior of x̃(f) at large f ; that is, to the bounds on |x̃(f)| as

f →∞. Intuitively one might suppose these to be connected; the “rougher”

a function is, the more high frequencies we would expect it to contain. We

can motivate (not prove!) the result we seek by supposing x(t) to contain

steps; then x′(t) (using our extended notion of differentiation) contains δ-

functions, and so |F [x′(t)]|∝ 1 for f large. But then we have, from equation

(2.5):

|F [x(t)]| = |x̃(f)| =
∣

∣F [x′(t)]2πi f
∣

∣∝ f −1

for f →∞. Similarly, a function with steps is the derivative of one that is

continuous but has corners (discontinuous derivatives) and so by the same

argument the Fourier transform of such a function will be proportional to

f −2 as f →∞. Extended, this shows that if x(t) has a discontinuous n-th

derivative, |x̃(f)| will fall off as f −(n+1) at high frequencies; Figure 2.4 gives

a graphical summary of the first few cases.

Two extreme examples are Π(t), for which the zeroth derivative is dis-

continuous; and indeed

|F [Π(t)]| = |sinc f | < k/ f as f →∞

(here k = 1/π, but it is the rate of the falloff that matters). At the other

extreme, suppose x(t)= e−πt2

, which is infinitely differentiable. For this,

x̃(f)=F [x(t)]=
∫∞

−∞
e−(πt2+2πi f t) de

= e−π f 2
∫∞

−∞
e−π(t+i f)2 dt

= e−π f 2
∫∞

−∞
e−πu2

du = e−π f 2

which for large f falls off (goes to 0) more rapidly than any power of f . We

also see that the Gaussian is its own Fourier transform.

2.9 Fourier Theorems III: Convolution,

Power, Modulation

So far, we have looked only at properties of a single function and its Fourier

transform. We now consider combinations of functions. Linearity means

that if we add two functions the transform of the result is the sum of the

two transforms. A much more interesting result appears if we consider the

26 Chapter 2. Linear Systems and Fourier Transforms

function formed by convolution of two functions. The result is the convo-

lution theorem, which states that

F [x(t)∗ y(t)]=F [x(t)]F [y(t)]

which is to say, the transform of the function formed by convolving two

functions is the product of the transform of the individual functions. This

is not difficult to show; again, using change of variables freely, we have:

∫∞

−∞
e−2πi f t

∫∞

−∞
x(u)y(t−u) dudt =

∫∞

−∞
x(u)

∫∞

−∞
y(t−u)e−2πi f t dtdu

=
∫∞

−∞
x(u)

∫∞

−∞
y(t′)e−2πi f t′ e−2πi f udt′ du

=F [y(t)]

∫∞

−∞
x(u)e−2πi f u du =F [y(t)]F [x(t)]

Writing F [x]= x̃, F [y] = ỹ, we can state the related results

x∗ y=F
−1[x̃ ỹ] F

−1[x̃∗ ỹ]= xy F [xy] = x̃∗ ỹ

This theorem is the main reason for our use of Fourier transforms: while

the action of a linear system is a convolution in the time domain, it is a

multiplication in the frequency domain – and multiplication is much easier

to grasp than convolution. While the frequency domain may initially seem

less natural than the time domain, operations in it are often much simpler.

Our earlier result, that a sinusoid e2πi f t put into a linear time-invariant

system yields another sinusoid g̃(f)e2πi f t out, now appears as a special case

of the convolution theorem. We write the effect of the system as y = g∗ x,

which implies ỹ(f)= g̃(f)x̃(f), and if x̃(f)= δ(f − f0), ỹ(f) will be

g̃(f)δ(f − f0)= g̃(f0)δ(f − f0)

since δ(f − f0) = 0 for f 6= f0. Again, and now perhaps more clearly than

in our earlier discussion, we see that g̃(f) is the frequency response of the

system.

If we make the input to the system x(t)= δ(t), then the output is

y(t)=
∫∞

−∞
δ(t−u)g(u)du = g(t)

which is called the impulse response of the system; albeit this is not

easy to produce in practice, it is still a useful characterization. Then the

frequency response is seen to be g̃(f)=F [g(t)]

2.9. Fourier Theorems III: Convolution, Power, Modulation 27

A function related to the impulse response is its integral, the step re-

sponse:

h(t)=
∫t

−∞
g(u) du

which is the response of the system to a Heaviside step function H(t) ap-

plied at t = 0. For any actual system this is much easier to produce than

the impulse response is.

As an example of a system’s frequency response, consider differentia-

tion, which is a linear time-invariant system – though not usually thought

of as such. We have seen that F [x′(t)] = 2πi f x̃(f) and so the frequency

response for this system is g̃(f)= 2πi f , with amplitude and phase spectra

| g̃(f)| = 2π f Ph[g̃(f)]=π/4= 90◦

As might be expected, the response rises with increasing frequency; the 90◦

phase response means that sines are turned into cosines, and vice versa.

The frequency response of a system is often much simpler to describe

than its impulse response (and more indicative of the underlying physics);

we will (eventually) get to ways of estimating it given x(t) and y(t).

An interesting consequence of the convolution theorem relates to the

total variance, also called energy (or, sometimes, power) in x(t), which is

∫∞

−∞
|x(t)|2 dt

We first consider the Fourier transform of the conjugate of x, which is

F [x∗(t)]=
∫∞

−∞
x∗(t)e−2πi f t dt =

[∫∞

−∞
x(t)e−2πi(−f)tdt

]∗
= x̃∗(− f)

and so, using one version of the convolution theorem,

F [x(t)|2]=F [xx∗]= x̃(f)∗ x̃∗(− f)

Remembering that the area under a function is the value of its Fourier

transform at f = 0, this means that

∫∞

−∞
|x(t)|2 dt = x̃(f)∗ x̃∗(− f)

∣

∣

∣

∣

f=0

=
[∫∞

−∞
x̃(u)x̃∗(u− f) du

]

f=0

=
∫∞

−∞
|x̃(f)|2 d f

so that the total energy is the same in the function as in its transform. This

result goes by several names; Bracewell (1986) calls it Rayleigh’s theo-

rem, but says that the name Plancherel’s theorem is also in use; this result

28 Chapter 2. Linear Systems and Fourier Transforms

is also sometimes called Parseval’s theorem, especially for the analogous

case of discrete-time Fourier transforms, which we will meet later on.

As another example of the convolution theorem, we derive the trans-

form of a modulated waveform, in which the data looks like a “slowly vary-

ing” sinusoid, where “slow” means “over many cycles of the sinusoid”. The

slow variation, termed a modulation, can be in amplitude, frequency, or

phase; all of these are used in different forms of radiowave communication.

Suppose the sinusoid (“carrier” in radio parlance) is the cosine cos2π f0t;

this has the Fourier transform

F [cos2π f0t]= 1/2[δ(f − f0)+δ(f + f0)]

Suppose also that the modulation is purely in amplitude, and the modu-

lating function is x(t). Then the modulated waveform is x(t)cos2π f0t. We

can now apply the inverse of the convolution theorem: the transform of a

product of two functions is the convolution of the individual transforms. Re-

membering that convolution with a δ-function recovers the function being

convolved, this means that

F [x(t)cos2π f0t]= 1/2[δ(f − f0)∗ x̃(f)+δ(f + f0)∗ x̃(f)]

= 1/2[x̃(f − f0)+ x̃(f + f0)]

where x̃(f)=F [x(t)].

The effect of multiplying a function by a sine wave is thus to replicate

the original transform at ± f0 (Figure 2.5); alternatively, we can say that the

effect of modulating a sine wave is to spread its original δ-function trans-

form out over a broader band, though if x(t) contains only frequencies much

less than f0 (as is true in the case of radio), the band will be narrow. This is

also true for other classes of modulation, though the relation between x̃(f)

and the transform of the modulated function is less straightforward.

2.10 The Correlation Function

We can modify the convolution integral by not time-reversing one function.

The result is called the cross-correlation, because that is the form taken

by the correlation between two random time series, as we will see later on.

For now we look at some of the properties of this expression when we use

the same function for both parts; this is called the autocorrelation. For a

complex-valued x, this is:

C(τ) =
∫∞

−∞
x∗(t)x(t+τ) dt

2.10. The Correlation Function 29

Figure 2.5: From top to bottom, the time series and spectra for a sig-

nal, a carrier waves, and the amplitude-modulated carrier. The spec-

tra are schematic.

The location of the conjugate part matters; if we conjugate the other x in

the integral, we have, since yz∗ = (y∗z)∗ in general, that

∫∞

−∞
x(t)x∗(t+τ)dt =

(∫∞

−∞
x∗(t)x(t+τ) dt

)∗
= C∗(τ)

which is not the same as C(τ). C has some symmetry properties; if we

change variables, we get the result:

C(−τ)=
∫∞

−∞
x∗(t)x(t−τ)dt =

∫∞

−∞
x∗(u+τ)x(u) du

which from the previous result is C∗(τ). Hence, C(−τ) = C∗(τ), which is to

say that C is Hermitian; this implies that its Fourier transform is always

real. If x(t) is real, C is also; which means that C, and its transform, must

be even. All of these properties will become relevant when we define the

power spectral density, since the most general form of this is the Fourier

transform of a Hermitian function, and the most usual form is the Fourier

transform of a real symmetric function.

CHAPTER 3

FOURIER THEORY FOR

DISCRETE TIME

3.1 Introduction

We now turn from Fourier theory for functions to the same theory for or-

dered sets of numbers: this is part of digital signal processing. As we

will see, much of what has been covered in the Fourier theory discussion

will have parallels here – though also significant differences, which come

about because the theory of the Fourier transform assumes that what is

being transformed (and the transforms themselves) are functions on the

real line (or a higher-dimensional equivalent). If we specifically take these

functions as functions of time, we say that they are defined “in continuous

time”. However, digital signals are, intrinsically, not so defined: rather,

they are collections of numbers, representing (usually) a continuous time

signal sampled at regular intervals. Such functions are called sampled

data1 and are be said to be defined in discrete time.

We begin by describing how Fourier theory works applied to such data,

for two cases:

• Discrete-time data defined, like that in continuous time, over an in-

finite range, so the data “go on forever.” The Fourier transform of

such data turns out to be a function on the real line; but unlike the

Fourier transform of a function, which is another function, the trans-

form of an infinite amount of discrete data is a function defined on

only a part of the real time. A discrete-time series and its transform

are very different.

1 This terminology is more commonly (in statistics) used for the act of getting data on

a subset of some population, ideally without biasing the results of an statistical investiga-

tion. We will not deal with this topic.

30

3.2. Discrete-Time Sequences and Operations 31

• Discrete-time data defined over a finite range – which is what we

actually have to deal with. The Fourier transform of this turns out to

be a finite set of numbers at discrete frequencies: in this case, as with

functions on the real line, a function and its transform are the same

kind of thing.

The Fourier transform of a finite amount of discrete-time data is called

(what else?) the Discrete Fourier Transform or DFT. We will spend

some time in this chapter exploring the properties of the DFT, including

an overview of how to compute it efficiently, though we relegate the details

of this to Appendix A. In Chapter 4 we will use the theory to discuss how

to go from continuous time to discrete time without losing information: a

question best approached, as it turns out, by looking at Fourier transforms.

The following chapters describe the commonest operations we perform on

discrete-time data: filtering them to remove certain frequencies (Chapter

5), to emulate how systems behave in continuous time (Chapter 6), or for

other reasons (Chapter 7).

3.2 Discrete-Time Sequences and Operations

In discrete time there are no functions, only sequences of numbers; we

denote such a sequence by xn or x(n) or xn, where in all cases n is an integer-

valued index. To start with we assume that we have an infinite amount of

data, with n running from −∞ to ∞.

We seek as many parallels with the continuous-time case as we can.

Some things are much simpler in discrete time. For example, the distinc-

tion between generalized functions and other functions disappears: all are

just sequences. The δ-function is just another the sequence:

δn = δn0 =
{

1 n = 0

0 n 6= 0

where δi j is the Kronecker δ-function. The discrete-time version of the

Heaviside step function is

δn = δn0 =
{

1 n > 0

0 n ≤ 0

so that

Hn =
n
∑

k=−∞
δk

32 Chapter 3. Fourier Theory for Discrete Time

In discrete time summation replaces integration, and we face none of the

difficulties in making things rigorous that we had to consider when dealing

with functions on the real line.

Likewise, convolution is a summation rather than an integral; the con-

volution of two sequences (also called the serial product) is still written

as z = x∗ y, but this now denotes

zn =
∞
∑

k=−∞
xk yn−k

(again one series is reversed). This definition satisfies the requirements for

convolution of being linear in x and y, and also invariant with shifts in time

(sequence number); if we shift x by m terms, the convolution x∗ y is

∞
∑

k=−∞
xk−m yn−k =

∞
∑

l=−∞
xl yn−m−l = zn−m (3.1)

so z is also shifted.

Convolution is just as important in discrete time as in continuous time;

indeed, some types of sequences are defined by what they do in convolution.

One example is that a sequence {gk} is causal if and only if gk = 0 for k < 0;

this means that if {xk} is causal, g∗ x will be also: the output will not pre-

cede the input. If you are processing data in real time, or trying to emulate

a system that is causal (such as an instrument, or wave propagation) this

is an important distinction; more generally, however, it is not: usually we

analyze data long after they are collected, so that for most on a computer

the actual time is usually far behind real time.

3.3 Fourier Transforms for Infinite

Sequences

We started our discussion of Fourier theory by looking at what linear sys-

tems do to sinusoids; similarly, we develop Fourier transforms for infinite

sequences by considering the convolution of a sinusoidal sequence with the

sequence of interest. In continuous time we saw that a sinusoid input into

a linear system produced an output sinusoid, scaled by a function (the fre-

quency response) that is the Fourier transform of the convolving function.

3.3. Fourier Transforms for Infinite Sequences 33

The same thing holds in discrete time; if we convolve xn = e2πi f n with

gn, we get, starting by commuting the series,

∞
∑

k=−∞
gkxn−k =

∞
∑

k=−∞
gk e2πi f (n−k) = e2πi f n

∞
∑

k=−∞
gke−2πi f k def= g̃(f)e2πi f n

g̃(f) is again the frequency response, and regarding it as the Fourier trans-

form of the sequence gk gives the definition for the Fourier transform of an

infinite sequence xn

x̃(f)=
∞
∑

k=−∞
xke−2πi f k (3.2)

Another way to get this definition from the continuous-time Fourier

transform is to introduce the sampled-data function xs(t), defined by

xs(t)=
∞
∑

k=−∞
δ(t−k)x(t)

While this is a continuous-time function (actually a generalized function),

it is like a sequence in that it contains information about the value of x(t)

only at the sample points. Just as a single δ function samples x at a single

time, an infinite array of them samples x at the times of the sequence xn.

We will explore the effects of such sampling in the next chapter; for now we

simply note that the Fourier transform of the sampled-data function is

F [xs(t)]=
∫∞

−∞

∞
∑

k=−∞
δ(t−k)x(t)e−2πi f tdt =

∞
∑

k=−∞
x(k)e−2πi f k

which is equivalent to how we defined the Fourier transform for a sequence.

Notice that, as is conventional in digital signal processing, we are setting

the sample interval to unity; for a sequence indexed by integer values there

is no clue to this interval, and one is a convenient choice.

x̃(f) is a function of f , that is, a function on the real line; but it is a

function that is periodic, and with period one:

x̃(f +m) =
∞
∑

k=−∞
xk e−2πi f k e−2πimk = x̃(f) for m an integer

It is often more useful, and certainly sufficient, to regard x̃(f) as defined

only over [−1/2, 1/2]. (This is the interval for f ; for ω = 2π f , the interval

would be [−π, π].) When we discuss sampling, we will see that these limits

34 Chapter 3. Fourier Theory for Discrete Time

Figure 3.1: An example of the relationships between a function, a

discrete-time sequence related to it, and their Fourier transforms.

The function (top left) is a Gaussian, e−x2

; its Fourier transform is

shown top right. The bottom left panel shows part of a discrete-time

sequence that matches this (with the original function in gray). The

bottom right shows the Fourier transform of the sequence; the region

of f between the two dashed lines is sufficient to describe it. Note that

the transform of the sequence is close to the Fourier transform of the

function, except near to these two lines – the effect of aliasing, which

we will discuss in Chapter 4.

are what is called the Nyquist frequency for a sample interval (∆) of one.

The result for F [xs(t)] can be generalized to ∆ 6= 1 by replacing k by k∆, in

which case the Fourier transform becomes

x̃(f)=
∞
∑

k=−∞
xk e−2πi f k∆

which is periodic with period 1/∆, and so defined over −1/(2∆) to 1/(2∆);

again, this will turn out to be the range between Nyquist frequencies. This

result also shows that formulas for arbitrary ∆ can be gotten from those for

∆= 1 by replacing f with f∆.

If we swap time and frequency in 3.2 we get an expression for a function

of time as a sum of an infinite set of sinusoids in time:

x(t)=
∞
∑

k=−∞
x̃ke2πitk

which is just the Fourier series expansion of a periodic function of time

in terms of sinusoids: this is the result that Fourier first obtained, and the

3.3. Fourier Transforms for Infinite Sequences 35

way that Fourier theory is often introduced. Of course, we need a way to

find the coefficients for the sinusoids; these are given by Fourier’s result

that

x̃n =
∫1/2

−1/2

x(t)e−2πitk dt

So, swapping t and f again, we get the inverse transform for the Fourier

transform x̃(f) of a sequence xn; the xk ’s can be regarded as the Fourier

series coefficients, which are given by

xn =
∫1/2

−1/2

x̃(f)e2πi f n d f

So we have a transform pair – albeit not a symmetric one, since the forward

transform is an infinite sum and the inverse transform a definite integral.

Many of the theorems already outlined for Fourier transforms carry

over to this new transform pair, although others (e.g., the derivative theo-

rems) do not. Some examples of ones that do involve integrals that become

sums. Using x̃(f) for the Fourier transform of both the function x(t) and the

sequence xn (remember that these are different x̃’s), we have for continuous

time:
∫∞

−∞
x(t) dt = x̃(0)

and in discrete time, from 3.2

∞
∑

n=−∞
xn = x̃(0)

For Rayleigh’s theorem we take complex conjugates of the inverse Fourier

transform relation,

x∗n =
∫1/2

−1/2

x̃∗(f)e−2πi f n d f

which means that

∞
∑

n=−∞
|xn|2 =

∞
∑

n=−∞
xnx∗n =

∞
∑

n=−∞
xn

∫1/2

−1/2

x̃∗(f)e−2πi f n d f

=
∫1/2

−1/2

x̃∗(f)
∞
∑

n=−∞
xne−2πi f n d f =

∫1/2

−1/2

x̃∗(f)x̃(f) d f =
∫1/2

−1/2

|x̃(f)|2 d f

36 Chapter 3. Fourier Theory for Discrete Time

The convolution theorem becomes one of sums rather than integrals: if we

have a sequence z = x∗ y then

z̃(f)=
∞
∑

k=−∞
zke−2πi f k =

∞
∑

k=−∞

∞
∑

l=−∞
xl yk−l e−2πi f k

=
∞
∑

l=−∞
xl

∞
∑

k=−∞
yk−l e

−2πi f k =
∞
∑

l=−∞
xl e

−2πi f l
∞
∑

k=−∞
yk−l e

−2πi f (k−l)

=
∞
∑

l=−∞
xl e

−2πi f l
∞
∑

m=−∞
yme−2πi f m = x̃(f) ỹ(f)

3.4 Discrete Fourier Transform

Now we suppose that our sequence xn is, not infinite, but finite in length,

with terms x0, x1 . . . xN−1: N terms in all. How do we define the Fourier

transform now?

We start in what is a somewhat unusual way, or at least one that is dif-

ferent from most treatments in signal processing: we consider the general

problem of fitting sine waves to the data. We can always represent the data

as a sum of sine waves plus a residual:

xn =
L−1
∑

l=0

Cl e
2πinf l +ǫn n = 0, ...N−1

where the frequencies f0, f1 . . . are assumed to be specified. If we choose the

coefficients Cl to minimize the sum of squares of the residuals,
N−1
∑

n=0

|ǫn|2, we

do so using least-squares theory. To apply this we write the sequences as

vectors:

xT = (x0, x1 . . . xN−1) CT = (C0, C1 . . . CL−1)

and the array of exponentials (in l and n) as a matrix A, which is most eas-

ily written in terms of its adjoint (the complex conjugate of the transpose)

A†:

A† =











1 e−2πi f1 e−4πi f1 . . . e−2πi(N−1)f1

1 e−2πi f2 e−4πi f2 . . . e−2πi(N−1)f2

.

1 e−2πi fL−1 e−4πi fL−1 . . . e−2πi(N−1)fL−1











The coefficients C that minimize the sum of squares of the residual is then

given by the normal equations

(A† A)C = A†x or BC = A†x

3.4. Discrete Fourier Transform 37

where B is an L×L matrix with elements

Bpq =
N−1
∑

n=0

e−2πinf p (e−2πinfq)∗ =
N−1
∑

n=0

e−2πin(f p−fq) (3.3)

The solution for C is then

C = B−1(A†x)

In a general least-squares problem solving this will involve inverting an

L×L matrix: a good-sized computational task if L is large.

However, for the special form of B given in equation (3.3), and with

proper choice of the frequencies, we can simplify the form of B substan-

tially. First, we can compute the elements of B analytically rather than by

actually computing the sum 3.3, since there is a closed-form expression for

finite sums of the exponential function e−2iπ f n. To get this expression, we

first note that for any z, we have

L−1
∑

n=0

zn = (1− zL)
∞
∑

n=0

zn

as can be verified through term-by-term expansion; then setting L = 1 we

get

1

(1− z)
=

∞
∑

n=0

zn

Combining these two results gives us a closed-form expression for a finite

sum; then if we set z = e−2iπ f , we get

N−1
∑

n=0

e−2iπ f n =
1− e−2iπ f N

1− e−2iπ f
=

e−iπ f N

e−iπ f

(

eiπ f N − e−iπ f N

eiπ f − e−iπ f

)

= e−iπ f (N−1) sinπN f

sinπ f

(3.4)

which gives, for the elements of B,

Bpq = e−iπ(N−1)(f p−fq)
sinπN(fp − fq)

sinπ(fp − fq)

Next, we choose a particular set of frequencies:

f l =
l

N
l = 0, 1, . . . N −1 (3.5)

38 Chapter 3. Fourier Theory for Discrete Time

so that there are as many frequencies as there are data values. Given this

choice of frequencies, the matrix elements become:

Bpq = e−iπ(N−1)(p−q)/N sinπ(p− q)

sin(π(p− q)/N)
=

{

N p = q

0 p 6= q
= Nδpq (3.6)

where we get the result for p = q by treating p and q as real variables and

taking the limit as p → q. Note that this relationship, as given, is only true

if the integers p and q are in the range from 0 through N −1; but this is

true for the matrix elements. A more general expression is

N−1
∑

n=0

e−2πiln/N = e−iπl(N−1)/N sinπl

sin(πl/N)
=

{

N l = 0,±N,±2N . . .

0 otherwise
(3.7)

which we will use a little bit later.

Using 3.6, we find that B = NI, where I is the identity matrix. This

could not be easier to invert; the inverse M−1 is just N−1I, which means

that the coefficients for our fit are

C =
1

N
A†x

which we can write out explicitly as

Cl =
1

N

N−1
∑

n=0

xne−2πin(l/N)

Getting the matrix B to be the identity matrix has required two condi-

tions and a mathematical result. The first condition is that an increment

in sequence number is a constant increment in the fitting function; this is

a consequence of equal spacing in time. The second condition is that we

choose our frequencies according to equation (3.5). Given these specifica-

tions, the result we use is that the imaginary exponentials are orthogonal

in summation over the finite interval. A major reason for assuming eq-

uispaced samples is that without this, we lose orthogonality in the fitting

functions.

We define the Discrete Fourier Transform (DFT) as our fit, though

with a different normalization:

x̃k =
N−1
∑

n=0

xne−2πink/N k = 0,N−1 (3.8)

3.5. Fourier Theorems for the DFT 39

Figure 3.2: An example of a DFT pair, using a finite length of the same

discrete-time sequence shown in Figure 3.1. The right side shows

the DFT values (filled circles), with the gray line being the Fourier

Transform of the infinite sequence; in this case these look the same

because the infinite sequence is very small outside the range shown.

The unfilled circle is an “extra” DFT point to show the periodicity of

the DFT.

which, if we compare it with the definition of the Fourier transform of an

infinite sequence (3.2), shows that

x̃k = x̃(f) for f =
k

N
with k = 0, 1, . . . N −1

The DFT coefficients can thus be considered as samples from the continuous-

frequency transform.

To obtain the inverse transform, we use the orthogonality relations 3.7

again, writing

1

N

N−1
∑

k=0

x̃k e2πink/N =
1

N

N−1
∑

k=0

N−1
∑

m=0

xme2πi(nk−mk)/N =
1

N

N−1
∑

k=0

N−1
∑

m=0

xme2πik(n−m)/N

=
1

N

N−1
∑

m=0

xmNδnm = xn

(3.9)

where the next-to-last step makes use of the orthogonality relationship

(3.7). We thus have a transform pair – the DFT (equation 3.8) and the

inverse DFT (equation 3.9) – between finite-length sequences of numbers.

3.5 Fourier Theorems for the DFT

While the DFT and inverse DFT are completely consistent, there are no-

table pitfalls in using them, mostly arising from trying to apply lessons in

40 Chapter 3. Fourier Theory for Discrete Time

continuous and infinite time, some of which do not carry over into the world

of finite-length sequences. The basic confusion lies in supposing that our

finite sequence is just a part of a longer sequence, so that we can apply

continuous-time (and infinite-range) Fourier theory simply by multiplying

the series by a function that is zero over most of the range, and one over

some part of it: that is, by a scaled version of the boxcar Π(t)).

This kind of multiplication by a function that is nonzero only over some

range is called windowing. It is tempting to take the view that the DFT of

a finite sequence is the FT of a windowed version of an infinite series; after

all, the data we analyze are usually obtained from a longer series in just

this way. However, this view is wrong. Once the data have been obtained,

the process of getting them ceases to matter: we have to regard them as

a finite sequence, not part of some longer one, and use the mathematics

appropriate to such sequences.

As an introductory example, suppose we compute the value of the in-

verse DFT of the DFT of a sequence for term numbers outside the original

range from 0 to N −1. If we do this for the regular Fourier transform of

a windowed function, we of course get the original function back; having

been windowed, it is indeed zero except over a limited range. But this is

not what happens for the DFT. From the definitions of the transforms, we

can write the “recovered” series xrec as

xrec
n =

N−1
∑

m=0

xm

[

1

N

N−1
∑

k=0

e2πik(n−m)/N

]

(3.10)

Now, by 3.7, the part in square brackets is nonzero (and indeed equal to one)

for n−m a multiple of N; that is, for n−m= jN, which we can rewrite as n =
m+ jN, where j is any integer. The usual way to express this relationship

between n and m is to say that “n equals m, modulo N”, the notation for

which is

m= nmodN

which, if we apply it to (3.10), gives us the result

xrec
n = xnmodN

In this expression n can be any integer, but nmodN ranges only from 0

through N −1: this is just the range over which we actually know the orig-

inal sequence. The infinite sequence we have thus “recovered,” and which

is in some sense equivalent to the finite sequence, is therefore the finite

3.5. Fourier Theorems for the DFT 41

sequence replicated over and over; because it is periodic, it contains no in-

formation not in the original sequence – and after all, how could it?. If we

want to apply our earlier Fourier theory to an infinite sequence, it has to be

to one that is periodic, not to a finite sequence surrounded by zeros on both

ends.

Another interesting example comes from supposing that our finite peri-

odic sequence is just a sinusoid

xn = e2πi f0n

with f0 real; the discrete Fourier transform of this is

x̃k =
N−1
∑

n=0

e2πin(f0−k/N) k = 0...N −1

If, but only if, f0 = l/N, with l an integer, we get

x̃k =
{

N k = l

0 k 6= l

so that this finite sequence can have a (discrete) Fourier transform that is

a discrete-frequency δ-function, with only one nonzero value. In continu-

ous time we get a δ-function as the transform only if the time series is an

infinitely long sinusoid; the transform of a section of a windowed sinusoid

is

F [e2πi f0 t
Π(t/T)]= Tδ(f − f0)∗sinc(f T)= Tsinc[(f − f0)T]

which is not a δ-function for any choice of f0.

This all fits with the concept of replicating the sequence over an infinite

interval: f0 = l/N means that exactly l cycles occur over the finite segment,

and repeating the function then gives an infinite, untruncated sinusoid –

with a δ-function transform. But if f0= l/N, the replicas of the sequence do

not join smoothly, so the Fourier transform is not a δ-function – and neither

is the DFT. Figure 3.3 shows an example.

3.5.1 Shift Theorem

We next consider what is the effect in the time domain of some opera-

tion carried out in the frequency domain, with the “time domain” being

a finite sequence. For conventional Fourier transforms, the shift theorem

42 Chapter 3. Fourier Theory for Discrete Time

Figure 3.3: The top two pairs of plots show a 12-point sequence and

its DFT, where the sequence is xn = cos(2π f n), with n = 1/6 in the top

left plot and n = 1/6.5 in the middle left plot. For each the right-hand

plot shows the corresponding DFT. Especially when plotted on a log

scale (lowest plot), a very large difference is apparent between the

DFT for a cosine with an integral number of cycles, (for which the

DFT sequence is a δ sequence with roundoff error), and the DFT for

one which is merely close to an integral number of cycles.

3.5. Fourier Theorems for the DFT 43

states that, if we take the Fourier transform of a function x(t) shifted by an

amount τ, we get

F [x(t−τ)] =
∫∞

−∞
x(t−τ)e−2πi f t dt =

∫∞

−∞
x(t′)e−2πi f (t′+τ)dt′

= x̃(f)e−2πi f τ

and so if we multiplied a Fourier transform x̃(f) by e−2πi f τ, and took the

inverse transform, we would get x(t−τ).

Now we consider the parallel case for finite sequences. Call the DFT of

xn, x̃k; and multiply x̃k by e2πimk/N . What does the inverse DFT produce?

We use xs
n for the series whose transform is x̃k e2πimk/N ; then we write down

the definitions for the DFT and inverse DFT, to get

xs
n =

1

N

N−1
∑

k=0

x̃k e2πimk/N e2πink/N =
1

N

N−1
∑

k=0

N−1
∑

l=0

xl e
−2πilk/N e2πimk/N e2πink/N

=
N−1
∑

l=0

xl

[

1

N

N−1
∑

k=0

e2πik(m+n−l)/N

]

The sum in square brackets is nonzero for n = (l −m)modN , since then n−
(l−m) is a multiple of N. Thus

xs
n = x(l−m)modN

To see what this means, it helps to take a specific value for m; if we take

m= 3, then taking l = 3 gives n = 0, l = 4 gives n = 1, and so on:

xs
0 = x3 xs

1 = x4 . . . xs
N−4 = xN−1

This is all as we expect, but the “right end” of the back-transformed

series is

xs
N−3 = xNmodN = x0 xs

N−2 = xN+1modN = x1 xs
N−1 = x2

which is to say, the start of the original series. We can look at this in two

ways. One way is to view this as a linear shift applied to a replicated,

periodic sequence. The other way is to view it as a circular shift, where

we imagine the finite sequence to be on a circle, so that any shift moves the

end to the beginning.

44 Chapter 3. Fourier Theory for Discrete Time

3.5.2 Convolution Theorem for the DFT

A much more important result, with parallels to the one just given, is pro-

vided by the extension of the convolution theorem to discrete, finite-length

series. We know that the Fourier transform of the convolution of two func-

tions is the product of the two Fourier transforms; so what is the sequence

produced by multiplying two sets of DFT coefficients and taking the inverse

DFT? More precisely, suppose xn and yn to have DFT’s x̃k and ỹk; what

series zn has the DFT z̃k = x̃k ỹk? As before, the derivation just involves

writing the inverse transform, replacing z̃ by the product x̃ ỹ, substituting

in the DFT expressions for these, and finally collecting all the exponentials

together:

zn =
1

N

N−1
∑

k=0

z̃ke2πink/N =
1

N

N−1
∑

k=0

x̃k ỹk e2πink/N

=
1

N

N−1
∑

k=0

N−1
∑

l=0

N−1
∑

m=0

xl e
−2πilk/N yme−2πimk/N e2πink/N

=
N−1
∑

l=0

xl

N−1
∑

m=0

ym

1

N

N−1
∑

k=0

e2πik(n−m−l)/N

Once again, we need the sum over k to be nonzero; the orthogonality rela-

tion (3.7) then implies that

(n−m− l)modN = 0 or m= (n− l)modN

giving the final result that the sequence z is given by

zn =
N−1
∑

l=0

xl y(n−l)modN

This is somewhat like the convolutions we have seen before, though not

exactly. Again, an example may help; taking n = 5 gives

z5 = x0 y5 + x1 y4 + . . . x5 y0 + x6 yN−1 + x7 yN−2 + . . . xN−1 y6

meaning that as the convolution sum goes off the beginning of the yn se-

quence it goes around to the end. One way to visualize this is to imagine

both sequences mapped onto circles: a shift is then merely a rotation of

one circle relative to another, and the kind of convolution described by the

above equation is therefore called circular convolution.

3.5. Fourier Theorems for the DFT 45

If we attempt to convolve two series in the time domain by multiply-

ing their DFT’s, we must be careful to ensure that such “wraparound ef-

fects” do not create any problems. These effects complicate such seemingly

simple techniques as removing certain frequencies from data by taking the

DFT, setting some of the DFT values to zero, and taking the inverse DFT.

This can work – but we must remember that the series we get back can

show the effects of data at one end influencing data at the other, since us-

ing the DFT makes the two ends contiguous.

It is indeed possible (and indeed often most efficient) to convolve two

sequences by multiplying their transforms. To avoid wraparound problems,

we need to pad both time series with zeroes before taking the DFT’s; with

enough zeros, the circularity of the convolution has no effect. Specifically,

if we have an M-term series, xn and an L-term series yn, we will get the

correct result if we pad both out to length M +L−1 before doing the DFT.

The circular convolution is then

zn =
M+L−2

∑

l=0

xl y(n−l)modM+L−1 =
M−1
∑

l=0

xl y(n−l)modM+L−1

giving (as examples from the two ends of zn)

z0 = x0 y0 + x1 yM+L−2 + . . . + xM−1 yM+L−M

zM+L−1 = x0 yM+L−2 + . . . + xM−2 yM+L−M + xM−1 yL−1

For the first sum, all terms but the first are zero; for the second sum,

all terms but the last, so we get the same series zn as we would from a

time-domain convolution in which both sequences were padded with infi-

nite numbers of zeroes on both ends.

3.5.3 Symmetry Relations

The DFT output runs from 0 to N −1, whereas we have been plotting the

Fourier transform from negative to positive frequency. The connection is

given by the result

x̃N−k =
N−1
∑

n=0

xne−2πin(N−k)/N =
N−1
∑

n=0

xne−2πin(−k)/N = x̃−k

This result is consistent with the notions of periodicity that we have been

discussing; but it also means that the “upper half” of the DFT sequence

46 Chapter 3. Fourier Theory for Discrete Time

(k from N/2 to N −1) can also be thought of as the negative frequencies

k =−N/2 to −1.

As with the Fourier transform in continuous time, we have symmetry

rules for the transforms of special classes of sequences: for example, if the

sequence xn is real, the transform x̃ is Hermitian. Combining this with the

previous result, we see that, for a real sequence, half of the spectrum is

redundant: usually we say this is the top half, or equivalently the negative

frequencies. Formally, we have that if xn is real, then

x̃N−k =
N−1
∑

n=0

xne2πink/N =
N−1
∑

n=0

x∗n

(

e−2πink/N
)∗

= x̃∗k

so the top half is just the complex conjugate of the bottom half. This makes

sense, since if we put in N real numbers, we expect to get N independent

numbers out – and we do, namely, N/2 independent complex DFT coeffi-

cients. Actually, for xn real, two x̃’s are real, namely

x̃0 =
N−1
∑

n=0

xn and x̃N/2 =
N−1
∑

n=0

(−1)nxn

Our final theorem for the DFT is Parseval’s relation:

N−1
∑

n=0

|xn|2 =
N−1
∑

n=0

xnx∗n =
1

N2

N−1
∑

n=0

N−1
∑

k=0

x̃ke2πikn/N
N−1
∑

l=0

x̃∗l e−2πiln/N

=
1

N2

N−1
∑

n=0

N−1
∑

k=0

N−1
∑

l=0

x̃k x̃∗l e2πin(k−l)/N =
1

N2

N−1
∑

k=0

x̃k x̃∗k

N−1
∑

n=0

1

=
1

N

N−1
∑

k=0

|x̃k|2

which is useful for checking the normalization (and accuracy) of any actual

DFT algorithm.

3.6 The Dirichlet Kernel

We now use the result (3.4) to find the Fourier transform of the discrete-

time version of the rectangle (or boxcar) function; remember that in con-

tinuous time the Fourier transform is sinc(f). In discrete time the Fourier

transform is called the Dirichlet kernel; this is worth a section because

3.6. The Dirichlet Kernel 47

Figure 3.4: The Dirichlet kernel DN plotted for N equal to 20 and 200,

on the left on linear scales and on the right on log scales.

it plays a fundamental role in many topics in Fourier analysis and signal

processing.

We consider a rectangle function in discrete time that is centered on the

origin and runs from −M to M; the total length N = M+1 is then odd, but

the derivation may be extended to an even length. The sequence is:

wn =
{

1 |n| ≤ M

0 |n| > M

If we now form the Fourier transform of this (in continuous frequency, since

this is an infinite sequence), we find

W(f)=
n=∞
∑

n=−∞
wne−2iπ f n =

M
∑

n=−M

(e−2iπ f)n = e2iπ f M

[

n=2M
∑

n=0

e−2iπ f n

]

We evaluate the sum in square brackets using equation (3.4), with 2M =
N −1; the result is

WM(f)=
sinπ(2M+1) f

sinπ f

The Dirichlet kernel is normalized slightly differently:

DN (f)=
sinπN f

N sinπ f

48 Chapter 3. Fourier Theory for Discrete Time

which means that WM(f) = (2M +1)D2M+1(f), and also that at f = 0 the

value of the Dirichlet kernel is one. Sometimes the Dirichlet kernel is nor-

malized so that D2M+1(f)=WM(f), in which case the value at zero depends

on N but the total area under all the lobes is invariant. Either way, the

zeroes are at f = l/N, with |l| ranging from 1 through N/2. The first mini-

mum, which is close to f = 3/2N, is about −N/5, the next extremum is about

N/7, and so on. Away from zero the function thus decays rather slowly with

increasing f .

To see the connection between the Dirichlet kernel and the sinc func-

tion, put y = N f and let N go to infinity while keeping y fixed: this is

analogous to finer and finer sampling. Then DN (f) behaves like

sinπy

N sinπy/N
→

sinπy

πy
= sinc(y)

3.7 Computing the DFT: the Fast Fourier

Transform

Many methods of signal processing and data analysis require that we com-

pute the DFT – sometimes many DFT’s. This computation can be done

rapidly, though this is not immediately obvious; the DFT formula, equa-

tion (3.8), appears at first sight to be the multiplication of an N-length

vector (the sequence xn) and an N-by-N matrix (the e’s) to produce an-

other N-vector (the x̃k ’s). Computing such a matrix multiplication in gen-

eral requires a multiple of N2 operations (additions and multiplications),

an algorithm that we say takes polynomial time: the number of opera-

tions is a polynomial (above a linear one) of the number of data. It might

also appear that we have to compute N2 sines and cosines (for the matrix

of e’s), but this is not so; because of the periodicity of e−2πim/N , we have

e2πink/N = e−2πi(nk)modN /N , so that while the matrix of e’s has N2 elements

there are only N distinct values.

In fact, the periodic nature of e2πink/N allows us to compute the DFT

with many fewer than N2 operations. For certain N we can compute all

the x̃k ’s with only N logN
2 operations, so that the computation can be done

N/ log2 N times faster: for example, 100 times faster for N = 1024. The

algorithm that does this is called the Fast Fourier Transform (or FFT).

You should realize that the FFT is just an algorithm for computing the

DFT quickly, not a definition of the DFT. A common error is to suppose that

3.7. Computing the DFT: the Fast Fourier Transform 49

any restrictions that apply to an FFT algorithm (notably restrictions on N)

also apply to the DFT; but this is not so: the DFT is defined for any N.

The FFT algorithm is not completely obvious, as is shown by how many

people failed to develop it: at the time the FFT was first announced, in

1965, many groups were computing DFT’s using matrix multiplication, and

it was with some amazement that they learned how much time they could

save just by using a different procedure.2 At the same time, the FFT was

obvious enough that by 1965 it had already been invented independently

several times: but either the inventors dismissed it as too small an im-

provement to be worth publishing (true for N very small), or the invention

was simply ignored.3

The publication, and popularization, of an FFT algorithm for N = 2M, by

Cooley and Tukey (1965) led to a complete change, and since then, devising

faster transforms, and fast techniques for other transforms, has become a

subarea of signal processing.

The FFT is something you are very unlikely to program yourself – in-

deed, you shouldn’t, since other people have spent lots of time doing so. We

have therefore relegated our derivation of it to Appendix A. But it is worth

discussing the FFT because it illustrates several points:

1. The FFT shows that considerable increases in speed can come from

using a good algorithm; for whatever problem you will be doing, you

should become familiar with how the time needed (the operations

count) scales with problem size. There is a big difference between

scaling as N log N, which is not much worse than scaling as N (linear

time), and scaling as a power of N (even if the power is only N2).

Even worse is when a computation scales not in polynomial time but

in exponential time: that is, the operations count scales as eN . If

the only algorithms available have this scaling, computational meth-

ods are impracticable unless N is quite small.

2. A related lesson from the FFT is that the scaling with N is much

2 For example, Alsop and Nowroozi (1966), computing spectra of seismic data for free

oscillations, reported that their computation time shrank from 23 minutes to 2.4 seconds.
3 The first (and uninfluential) discovery of an FFT algorithm was by Gauss in 1805

(Heideman et al., 1985). A notable example of the use and non-use of the FFT in the

early 1960’s was here at SIO: Philip Rudnick, at MPL, had been using his own version

of an FFT for a number of years, but only published it after Cooley and Tukey published

theirs. At the same time, Walter Munk’s group, at IGPP, was computing transforms in the

less-efficient way.

50 Chapter 3. Fourier Theory for Discrete Time

Figure 3.5: Fraction of highly-composite numbers for all values less

than N, as a function of N. “Highly-composite” means having no

prime factors larger than 23, a not-uncommon restriction in some im-

plementations of the FFT.

more important than the details of implementation. The FFT at once

gave at least two orders of magnitude improvement in speed for even

moderate values of N. Thirty-five more years of effort have produced

about a factor of four improvement between a general-purpose FFT

from 1969 (Singleton, 1969) and the best one available in 2004.4

3. The shortest and simplest FFT algorithms are for N a power of 2.

But this is not a requirement: there are algorithms that are nearly

as fast if N is highly composite: that is, can be factored into a

product of small primes. While some special cases (N prime) also

can be done quickly, you should if possible avoid values of N whose

4 FFTW, currently the fastest general-purpose program (hence the name: Fastest

Fourier Transform in the West). For information on FFTW, and links to lots of other

FFT programs and results, see http://www.fftw.org. Note that FFTW only gives its

best performance if you will be doing many transforms of the same length within a single

execution of the program – which may well not be true.

3.7. Computing the DFT: the Fast Fourier Transform 51

factors include large primes, Fortunately this is not difficult. Figure

3.5 shows the percent of lengths available, as a function of length;

while this decreases towards zero, it does so slowly: up to lengths of

10000, about 5% of the lengths are feasible. Another way to put this is

that for lengths greater than 1000, the largest change in series length

needed to be at an acceptable value is almost always less than 1%.

You should approach with care any DFT program that will handle all

N; if N is not highly composite, then what the program actually does

may be a slow Fourier transform.

4. If, as is usually the case, your sequence xn is real, you should not

simply treat it as complex with all imaginary parts zero; you can get

a factor of two improvement in speed by instead treating alternate

terms as real and imaginary parts of a sequence of length N/2. The

DFT result then needs some auxiliary processing, which we describe

in Appendix A.

5. If you only need the transform x̃ at a few frequencies, or at those

that are not automatically produced by the DFT relationship, there

are special algorithms for rapid computation. We describe one, the

Goertzel algorithm, in Appendix A.

CHAPTER 4

SAMPLING THEORY FOR

TIME-SERIES

4.1 Introduction: Logging Data

We now consider the transition between continuous time and discrete time,

namely the sampling of a function at specified times (or, for spatial data,

specified places) to get the numbers that we later process. This sampling is

what takes place in a digital datalogger, which converts an analog function

of continuous time (almost always a voltage) x(t), into a sequence of num-

bers xn, each number being the value of x(t) at some instant: xn = x(tn). For

this chapter we use xn for a single sample and xn for a sequence of samples.

Raw
voltage

Antialiasing

filter

Filtered
voltage

Sample

& hold

Stepped

voltage
Discrete
sequence

Quantizer

(A/D Conv.)

Digital
sequence

Continuous
time

Discrete
time

Clock

The block diagram above shows the steps of converting an analog signal

to a digital sequence; Figure 4.1 shows the corresponding time series. The

first step is to to remove high frequencies from the continuous function; this

is done with an analog filter (we will encounter a simple analog filter in the

next chapter). This is called an anti-aliasing filter. for reasons we will see

below. The filtered signal now varies smoothly; it goes to a sample-and-

hold circuit; this produces a continuously-varying voltage that is held at

fixed values for a time determined by a clock; each time a clock signal goes

to the sample and hold, the value of the output changes to the value of the

input at that time (tn). We call this the “stepped voltage”.

This voltage is still a function of time x(t), but it has the same informa-

tion as, and so can be be regarded as equivalent to, a sequence of values xn.

52

4.1. Introduction: Logging Data 53

Figure 4.1: The upper block diagram shows the steps included in

recording an analog signal and converting it to a digital sequence; the

lower plots are cartoons of the different forms of the signal at each

step. See text for details.

In the block diagram this point is the division between continuous and dis-

crete time, though in the datalogger there is no explicit division. The next

stage in the datalogger is a quantizer, or analog-to-digital converter

(usually called “an A to D”). This device is a nonlinear system which, given

a real number x, produces a value x̆ that can be represented in a finite num-

ber of digits; the reason for the sample-and-hold is to give a constant input

voltage to the A-to-D for the amount of time needed for it to compute its

output value. We naturally want x̆ to be as close to x as possible, and it can

be an interesting problem to choose a representation for x̆ and then design

the quantizer to make the difference x̆− x unimportant. However, in prac-

tice this is usually not too difficult, as is suggested by the bottom two plots,

which show the discrete sequence xn and the digital sequence x̆n, quantized

by rounding to the nearest integer. For most of this chapter we assume that

we have the real-valued xn’s available; we discuss quantization error very

briefly at the end.

54 Chapter 4. Sampling Theory for Time-Series

Figure 4.2: A mathematical model for sampling, shown in pictures.

We start with a function (on the real line), then create another func-

tion whose values depend only on those of the sampled data. The

arrows are schematic for differently-weighted δ-functions. If we can

reconstruct the original function from the sampled-data function, we

have lost no information by sampling. The gray lines in the left and

right panels are the zero of the y-axis.

4.2 The Sampling Problem

What we shall discuss for most of the chapter is how to choose the tn’s such

that, given {xn} we could (in principle) reconstruct x(t) – and what errors

we incur if we cannot. Classical interpolation theory would be one way of

studying this; but a different approach, working in the frequency domain,

turns out to be much more useful.

To avoid what would be substantial complications, we require the sam-

ples to be equispaced in time; the spacing is the sample interval ∆, given

in whatever time units we are using, so the times are:

tn = n∆ n =−∞, . . . −2, −1, 0, 1, 2, . . . ∞

In the last chapter we implicitly set ∆ to be unity; for now we do not do this,

though we will assume it to be unity later on.

Slight departures of tn from absolutely equal spacing do not much mat-

ter, since they can be viewed as adding some error (noise) to the data; for

a timing error ǫ, the sample value x(n∆+ ǫ) will be approximately x(n∆)+
ǫẋ(n∆), and so long as the second term is usually smaller than the first

there will not be a problem. As we saw in our earlier discussion of the Dis-

crete Fourier Transform, larger irregularities complicate analysis greatly

and are best avoided if at all possible, if necessary by filling in missing

data.

4.3. The Nyquist Theorem 55

To get from functions to sequences we need an intermediate step. We

start with x(t), a function in continuous time; mathematically we say that

it is a function on the real line, which we would express pictorially as the

left-hand panel of Figure 4.2. The sequence xn, on the other hand, is just

an array of numbers, which we would express pictorially as the right-hand

panel of Figure 4.2. We connect these two using the delta-function δ(t− tn);

the (generalized) function

x(t)δ(t− tn)

is zero at t 6= tn, and contains the value x(tn) in the weighting of the delta-

function. It thus is equivalent to the sampled value xn: not equal to it, since

one is a function and the other a number, but equivalent in the sense that

either could be constructed given the other. Such a link between functions

and numbers is just what we seek.1

For equispaced sampling the sequence xn is thus equivalent to the func-

tion

x(t)
∞
∑

n=−∞
δ(t−n∆)=

∞
∑

n=−∞
x(n∆)δ(t−n∆)= xs(t)

which is shown in the middle panel of Figure 4.2 (using arrows for delta-

functions). We can view this function as formed by multiplying x(t) by an

infinite “comb” of delta-functions. The normalized version of such a comb

is the III function (so called by Bracewell because it looks like the Hebrew

letter shah):

III(t)=
∞
∑

n=−∞
δ(t−n)

Changing the spacing to ∆ rescales the III, making our sampled-data func-

tion, for a sample interval ∆,

xs(t)=
1

∆
III(t/∆)x(t)

4.3 The Nyquist Theorem

To return to our original question, we can, given xn easily get xs(t) as a

weighted array of delta-functions, but how do we get (and can we get) x(t)

1 It might seem more in keeping with the action of a sampling circuit to multiply x(t)

by a function that is 1 at t = tn and zero elsewhere. But such a function, even multiplied

by any finite value, has an integral of 0. This makes any integral transform, such as the

Fourier transform, also 0: not very useful.

56 Chapter 4. Sampling Theory for Time-Series

from xs(t)? We approach this problem by comparing x̃s(f) = F [xs(t)] with

x̃(f)=F [x(t)]. By the convolution theorem,

x̃s(f)=F

[

1

∆x(t)
III(t/∆)

]

=
1

∆x̃(f)
∗F [III(t/∆)]

To proceed further we need F [III(t)], which is

F [III(t)]=
∫∞

−∞
e−2πi f t

∞
∑

n=−∞
δ(t−n)dt =

∞
∑

n=−∞
e2πi f n

An extremely nonrigorous way to see what this might give is to observe

that for f an integer this is
∑

1, and hence infinite; while for f noninteger

2πi f n assumes all possible values (modulo 2π) and so the sum will be zero.

This suggests what is the actual result:

F [III(t)]= III(f)

that is, that the III function is its own Fourier transform. This can in fact

be proved rigorously.

We then have

x̃s(f)= x̃(f)∗
1

∆
F [III(t/∆)]= x̃(f)∗ III(∆ f)

Convolving any function with a δ-function simply recovers the original, and

if we convolve with δ(f − f0) we recover x̃(f) shifted by an amount f0. Thus

x̃s(f)= x̃(f)∗ III(∆ f)=∆

∞
∑

n=−∞
δ(f −n/∆)∗ x̃(f)

=∆

∞
∑

n=−∞
x̃(f −n/∆)

Our sampled-data series xs thus has a Fourier transform that can be gotten

by replicating that of the original series at frequency interval ∆
−1, and

adding up the replicas. Figure 4.3 shows the whole process.

We can now show that if x̃s has a certain form, we can recover x(t) from

xs(t). The requirement for this is called the Nyquist criterion, and is

given in the frequency domain:

4.3. The Nyquist Theorem 57

Figure 4.3: The upper panels show a function, then a sampled version

of it, then a version sampled half as often. The lower panels show

the corresponding Fourier transform: the original transform (this is

actually a made-up function), and the replicated-and-summed version

that results from sampling. In the middle, the transform replicas are

separated; on the right, they are not. The right plot shows the replicas

(aliases) with dashed lines.

x̃(f) can be recovered from x̃s(f) and hence x(t) recovered from xs(t),

if and only if

x̃(f)= 0 for | f | >
1

2∆

def= fN (4.1)

where fN is called the Nyquist frequency.

This requirement for x̃(f) comes from its replicated nature. The replicas

are spaced 1/∆ apart; if the Nyquist criterion holds, each replica will remain

separate, as in the lower middle panel of Figure 4.3. However, if x̃(f) is

nonzero above fN , the replicas will overlap, and when summed will blend

together, as in the lower right panel of Figure 4.3. There is then no way of

disentangling them.

58 Chapter 4. Sampling Theory for Time-Series

If the Nyquist criterion holds, we also have a way of getting x̃(f) from

x̃s(f): we simply set all replicas but the center one to zero. by multiplying

x̃s(f) by a suitable boxcar function, scaled to be zero outside | f | < fN :

x̃(f)= x̃s(f)∆Π(f∆)

Taking inverse transforms we have

x(t)= xs(t)∗sinc(t/∆)= sinc(t/∆)∗
∞
∑

n=−∞
x(n∆)δ(t−n∆)

=
∞
∑

n=−∞
x(n∆)sinc

(

t−n∆

∆

) (4.2)

The final sum is the expression for getting x(t) from xn; note that if we put

t = m∆ the zeros of the sinc function fall on all the other values than the

one of interest, so we recover only one, x(m∆), as we should.

It is useful to look at a pure sinusoid to see how the Nyquist criterion

works. Suppose we have a sine (or cosine) with f = fN , so there are two

points per cycle. The cosine then seems to be recoverable, but the sine is

zero at all points sampled. Since

F [sin(2πt/T)]=
1

2i
[δ(f −1/T)−δ(f +1/T)]

we see that for ∆= T/2, the replicas just meet, causing the opposing delta-

functions to cancel, so that x̃s(f)= 0, consistant with the sampling. But for

a cosine

F [cos(2πt/T)]= 1/2[δ(f −1/T)+δ(f +1/T)]

and for ∆ = T/2, the two δ-functions meet and reinforce, so that x̃(f) and

thus x(t) can be recovered.

If x̃(f) = 0 for | f − fc| < fb, we say that x(t) is bandlimited, with a

bandwidth 2 fb and center frequency fc. A sine wave modulated in am-

plitude would be an example of such a function. For the Nyquist criterion

to hold, x(t) must be bandlimited about zero with a bandwidth 2 fN ; when

we sample data we ideally want ∆ to have a value that will make this true.

4.4 Aliasing

But what if x(t) is not bandlimited? And it never will be, since no transient

function is.2 The best way to understand the resulting errors is again to

2 The apparent paradox that no continuous function can be limited in both time and

frequency (which is what we expect of all signals we record) is discussed by Slepian (1976).

4.4. Aliasing 59

look at replication of the Fourier transform in the frequency domain.

To start with, we suppose that x(t) is nearly bandlimited and falls to

near zero at large frequency (otherwise we might as well give up), and that

fN is large enough that only the overlap with the two nearest neighbors

matters much:

x̃s(f)≈ x̃(f)+ x̃(f −1/∆)+ x̃(f +1/∆)

For frequencies near fN , the major overlap is with x̃(fN −1/∆)≈ x̃(− fN); the

other overlap is with x̃(3 fN) which we assume is smaller. Thus for “large”

positive frequency, the major contamination is from energy at “large” neg-

ative frequency.

We have used the term “replica” to emphasize what the convolution with

III does, but this is not the usual terminology – usually the replicas are

called aliases of the transform of the continuous-time function, the con-

taminating energy being termed aliased energy, and the whole process

aliasing. The expression (4.4) shows that for a complex-valued sequence

the effect of sampling is to alias energy below the negative Nyquist fre-

quency onto positive frequencies just below the positive Nyquist frequency.

In the more usual case that x(t) is real, you may remember that x̃(− f)=
x̃∗(f), so we can write the “nearest-neighbor” aliases as

x̃s(f)≈ x̃(f)+ x̃∗(2 fN − f)+ x̃(2 fN + f)

It is useful to just consider |x̃| and ignore the complex conjugates. Con-

sider the positive frequencies from 0 to fN , and consider what the aliased

frequencies are as f goes from 0 to fN (which we write as 0→ f → fN :

0 → f → fN (main)

2 fN → 2 fN − f → fN (first alias)

2 fN → 2 fN + f → 3 fN (second alias)

(4.3)

We could continue this on indefinitely, but it serves to show that, for x(t)

real, we can regard sampling as mapping the real line of positive frequen-

cies, from zero to infinity, into the finite interval 0 to fN ; if x(t) is complex,

sampling maps the entire real line into − fN to fN .

Another way of seeing this is to note that our result (4.2) for the re-

constructed x(t) is a sum of sinc functions, and hence will be, as they are,

bandlimited. Given a sequence of samples, we can construct an infinity

This paper is well worth reading for its commentary on the relationship between mathe-

matical idealizations and the real world.

60 Chapter 4. Sampling Theory for Time-Series

Figure 4.4: The left panel shows a made-up Fourier transform (ampli-

tude), with two possible locations for the Nyquist frequency. The next

two panels show what the transform would be for these two choices,

with the aliases dashed and their sum solid. Choice A gives a badly-

aliased result, choice B one that is probably acceptable, since the only

aliasing is near the Nyquist frequency.

of functions on the real line – but only one of these will be bandlimited.

For real functions and sequences, that bandlimited one has the transform

given by mapping [0,∞] into [0, fN] according to the rule (4.3), continued to

infinite frequency. One way to visualize this rule is as an accordion folding

of the frequency axis (a fold at fN brings 2 fN to 0; then another fold at 2 fN

brings 3 fN to fN , and so on). We can write a formula for this: for f > fN ,

let N be the integer part of f / fN; then f maps to

f ′ =







f −N fn N even

for

(N +1) fn − f N odd

In practice, we can do two things to minimize the effect of aliasing:

• Before we sample the data, shape its Fourier transform using an ana-

log filter (physical or electronic) to remove high frequencies: this is

the “antialias” filter in the block diagram at the start of the chapter.

• Choose ∆ so that what aliased energy there is will be much less than

the energy in the main transform in the frequency band of interest.

We do not want “significant” contamination, but what level is signifi-

cant depends on the problem in hand. Figure 4.4 shows an example;

while choice B allows some aliasing, the amount is small except near

fN , which is probably acceptable. Near fn, x̃(f) is always slightly

4.5. Decimation 61

aliased; our concern is usually with lower frequencies. In actual data

an indication of aliasing is successive values with alternating sign

(perhaps around a trend); this behavior means that there is substan-

tial energy near fN , most likely because of significant aliasing.

For a somewhat specialized example of what aliasing might do, consider

the effect of 60-Hz noise on data sampled less often (unless it is filtered out,

60-Hz hum is common on most electronic signals). If ∆ is 1 second, N (see

above) is 120 (fN = 1/2 Hz) and f ′ is 0. This would be acceptable, except that

“60-Hz” line noise is really 60 Hz ±700µ Hz, which maps into 0 to 700 µHz;

this would interfere with a signal with a period of 12 hours. We can avoid

this peblem by sampling at some different interval; if we sampled at 2048

times per hour, fN = 0.2844 Hz, N = 210, and f ′ = 0.2667 Hz, so that any

60-Hz energy aliases to near the Nyquist, out of the way of lower-frequency

signals.

4.5 Decimation

A very common activity in digital signal processing is decimation. We

say that we have decimated a discrete-time series by n if we take every

n-th value to create a new and shorter series with sample interval n∆.

(Another term for this is downsampling.) The new series is related to the

one it came from by exactly the same aliasing rules that apply to sampling

of a continuous-time series; the only difference is that the folding of the

frequency axis extends only up to the Nyquist frequency for the original

series, instead of to infinity.

For example, if we decimate by two, there is a single folding, so that

frequencies from the old Nyquist fN to the new one (1/2 fN) fold into the new

interval from 0 to 1/2 fN . Just as in the continuous case, the degree to which

the decimated series is aliased depends on the relative levels of the Fourier

transform above and below the new Nyquist frequency; before decimation

we may need to digitally filter the data, as we describe in the next chapter,

to avoid aliasing of the output.

The opposite of decimation is putting additional values between each

value in a sequence to give a series sampled more often; this is called either

interpolation, or, what else, upsampling. Although it seems counterintu-

tive, we can do this just by setting the new values to zero and then digitally

filtering the series to remove energy above the old Nyquist frequency. One

reason for doing such an interpolation would be to create a smooth series

62 Chapter 4. Sampling Theory for Time-Series

for conversion back into analog form: standard practice in digital music

players.

Decimation and interpolation can be combined to change sample rates;

we might, for example, decimate by 5 and then interpolate by 3 to get a new

rate that is 0.6 of the old. But whatever we do, we need to worry about, and

correct for, any possible aliasing.

4.6 Violating the Nyquist Criterion

We have discussed the importance of not aliasing data – but there are sit-

uations in which the data can violate the Nyquist criterion without loss

of information. We might, for example, have additional information at the

sample times, such as the values of both x(t) and its derivative ẋ(t)), though

this is rarely the case. More often, the signal has a special structure that

allows us to sample less often:

• A periodic signal can, under certain conditions, be measured ade-

quately while being sampled at random times: one practical area

where this occurs is in measurements of regularly variable stars,

since for the longest-period ones the observations may occur at ran-

dom times over many decades.

• If the signal can be described by a few parameters, these may be de-

termined even though there is aliasing. To take an example from

some work done here at IGPP, the signal produced by the interferom-

eter in an absolute gravimeter is what is called a chirp, has a time-

varying frequency:

x(t)= x0 + cos[((f0 + f1t)t+φ]

where the parameter f1 is related to the local acceleration of gravity.

The frequency rapidly increases to a value that cannot be sampled

fast enough to satisfy the Nyquist criterion, but it is still possible to

process the signal to determine its parameters (Parker et al., 1995).

• Another case is a real signal that is bandlimited between frequencies

f l and fh. To not lose information, we need to sample it so that the

sampling “folds” the frequency axis [0, ∞) into the interval [0, fn],

none of the folds fall within the frequency band f l to fh. This is

4.7. Quantization Error 63

equivalent to requiring that, for for some integer n (not initially de-

termined) the Nyquist frequency fn satisfies

(n−1) fn ≤ f l and nfn ≥ fh

which combine to give
fh

n
≤ fn ≤

f l

n−1

This in turn means that n must be such that fh/n ≤ f l /(n−1), equiva-

lent to requiring that

n ≤
fh

fh − f l

Taking n to be the largest integer that satisfies this inequality, we

then have that fn ≥ fh/n, which means that the sample frequency

fs = 2 fn must satisfy

fs > 2 fh/n

and, from the other inequality involving f l ,

fs <
2 f l

n−1

4.7 Quantization Error

We close this chapter by discussing briefly the effects of quantization of a

signal; we consider the simple (and common) case in which an A-to-D con-

verts a real-valued input voltage to an output integer. A-to-D’s are specified

by the number of bits in this integer: for example, a 16-bit system outputs

values from 32767 to 32768 (plus and minus 215). over the full range of

input voltage. So the more bits, the smaller the voltage corresponding to a

unit change in the output, and the larger the ratio of the maximum signal

to the smallest one that can be detected. This ratio is called the dynamic

range, for an N-bit A-to-D, it is 2N , though it is usually expressed in dB.

The voltage range and number of bits determine the size of the least

count in volts, which may be scaled by the instrument sensitivity to find

the least count in the units of whatever is being recorded; we denote this

value by ǫ. If (as is usual) the A-to-D rounds the real value to the near-

est integer, the maximum error is ǫ/2. Provided the signal moves by more

than ǫ between samples, it is easy to see that this error will be uniformly

distributed, provided that where the signal “lands”, relative to the integer

64 Chapter 4. Sampling Theory for Time-Series

boundaries, is reasonably random. The error thus has a uniform distribu-

tion from −ǫ/2 to ǫ/2, which has a variance of one-twelfth, equivalent to a

standard deviation of about 0.3 least counts.

This result suggests that quantization error will not be large, which in

fact is the case: in general, it is not difficult to make quantization error

small enough to ignore. You should however always estimate it and com-

pare it to the size of what signal you might wish to record. This is often best

done, again, in the frequency domain: though this comparison requires use

of the power spectral density – which we will get to.

CHAPTER 5

DIGITAL FILTERS I:

FREQUENCY-SELECTIVE

FILTERS

Engineering is the art of doing that thing well with one dollar,

which any bungler can do with two after a fashion.

Arthur M. Wellington, The Economic Theory of the Location of

Railways (1887).

5.1 Introduction: Digital Filters in General

Given a discrete-time sequence {xn} we often wish to perform some kind of

operation on it. The DFT is one such operation; many others go by the name

of filters. There are many different things that filters may be used to do;

and for each of these actions there are many different ways to design filters

that are “good”. You should remember that filter design is engineering, not

science; our aim is to get a good enough, and economical, answer, for the

situation we face.

The list of tasks that filters can be used for includes:

A. Select out certain frequencies. This is the most common operation in

the kind of analysis done in geophysics: especially removing high fre-

quencies, to allow decimation of a sequence to make it smaller; or low

frequencies, to reduce large low-frequency changes that hide smaller

fluctuations.

B. Differentiate or integrate, at least approximately; since these are continuous-

time operations, they only make sense for sequences properly sampled

from a continuous-time function. The design of filters for these opera-

tions is quite similar to the design of frequency-selective ones.

65

66 Chapter 5. Digital Filters I: Frequency-Selective Filters

C. Simulate what a continuous-time linear system would do to the series,

again supposing the sequence to have been sampled from a continuous-

time function. This goal leads to another way of designing filters, through

simulating a linear system represented by an ordinary differential equa-

tion. In the signal processing literature, these methods are used to de-

sign frequency-selective filters by simulating filter designs developed for

analog systems. For most geophysical data, such simulation filters are

more important for reproducing a synthetic instrument through which

one wants to pass synthetic data, for comparison with a real dataset

recorded by a real instrument.

D. Predict future values, which is an major subfield all by itself: it can be

economically very valuable, but it is also used a lot in such matters as

autopilots for airplanes, where knowledge of where the plane is about

to be is very important. Many methods exist, in part because prediction

depends on what model we take to characterize the sequence. Quite

a few methods model the sequence probabilistically: for example, the

Kalman filter operates in the time domain to infer future values from

past ones. A rapidly-growing part of this field connects to the burgeon-

ing subject of nonlinear dynamics, since if a time series that appears

to be random can actually be described as a deterministic but chaotic

system, better predictions may be possible.

E. Detect a signal, defined as some kind of anomalous behavior. This goal

is closely related to the previous one: if the series is not as predicted,

then there might be an anomaly. Anomaly detection can be described

using the methods of statistical hypothesis testing, and has developed a

large literature of its own, again because of its technological importance

in radar and sonar.

F. Assuming that the sequence has been produced as the result of a con-

volution of two other sequences wn and yn, determine something about

one or both of these other two. This is known as deconvolution, and

covers a wide variety of techniques, which depend on what we think

we know about the convolving sequence wn. One example would be the

reverse of (C): we have the result of a sequence (or a function) being

passed through a known linear system, and want to determine the orig-

inal. Two geophysical examples of this are correcting data for instru-

ment response, and downward continuation of magnetic or gravity data

measured above its source (the height acts as a filter). Another type

5.2. FIR Filters for Frequency Selection 67

Figure 5.1: Ideal frequency-selective filters: the four commonest

types. The parts of the frequency band for which the response is 1 are

called the passband(s); where the response is 0 is the stopband(s).

The dashed lines show the region in which (for most design methods)

the response goes from 1 to 0 (not necessarily linearly as shown here),

which is called the transition band. Another name for the bandstop

filter is notch filter.

of deconvolution (used in exploration geophysics and image processing)

occurs when we have only partial knowledge about the two sequences

(e.g., some of their statistical properties).

In this chapter we discuss filters for purpose (A): certainly the common-

est application in geophysics. In the next chapter we discuss (C), partly

so we can introduce some new ways of looking at digital filters. Purpose

(B), along with some other filtering topics, will be placed in a third chapter.

Purposes (D), (E), and (F), all of which combine filtering and statistics, will

not be covered in this course.

5.2 FIR Filters for Frequency Selection

Even just for purpose (A), we have many choices in how to design filters. We

start by introducing the ideal filter response Wd(f); for frequency-selective

filters Wd is either 1 or 0 over particular frequency bands. Figure 5.1 shows

some typical designs, and their names.

In this chapter we restrict ourselves to filters that consist of a finite

sequence {wn}, usually called the weights. These filters are used by con-

volving the weight sequence {wn} with the data sequence {xn} to produce a

filtered sequence {yn} = {wn}∗ {xn}. In the signal-processing literature this

type of filter is called a finite impulse response (FIR) filter; in the statis-

tics literature the usual name is moving average, usually abbreviated as

MA. Another term is nonrecursive filter.

68 Chapter 5. Digital Filters I: Frequency-Selective Filters

The frequency response of a FIR filter is just the Fourier transform of

the weight sequence:

W(f)=
N−1
∑

n=0

wne−2πi f n =
∞
∑

n=−∞
wne−2πi f n for 0≤ f ≤ 1 (or − 1/2 ≤ f ≤ 1/2)

(5.1)

where N is the number of weights. It is useful to consider the weights to be

an infinite sequence, though one that happens to be zero outside the finite

range from 0 to N −1.

We next impose three more restrictions:

• The weights are real.

• The number of weights, N, is odd.

• The weights are “symmetric”: that is, for N = 2M+1,

wM−k = wM+k k = 0, . . . M

The consequence of all this is that wn = w2M−n, making the frequency

response

W(f)=
2M
∑

n=0

wne−2πi f n =
M−1
∑

n=0

wn(e−2πi f n + e−2πi f (2M−n))+wM e−2πi f M

= e−2πi f M

[

wM +
M−1
∑

n=0

wn(e−2πi f (n−M) + e−2πi f (M−n))

]

= e−2πi f M

[

wM +2
M−1
∑

n=0

wn cos2π(M−n) f

]

(5.2)

The part in square brackets is purely real; like any real quantity viewed us-

ing the amplitude and phase form for complex numbers, its phase is zero.

The shift theorem shows that the initial exponential is equivalent to an

M point shift, which is to say a time delay. Ignoring this, a symmetric

FIR filter thus does not shift the phases of different frequencies: this min-

imizes distortion of the input, other than by removing energy at certain

frequencies. If the part in square brackets were one, we would have just

an M-term delay, which obviously creates no distortion at all. Because the

phase shift is linear in frequency, symmetric FIR filters are usually termed

linear phase.

5.2. FIR Filters for Frequency Selection 69

Figure 5.2: Frequency response (shown in both linear and log ampli-

tude) for lowpass filters designed by simple truncation of the sequence

of ideal weights. The ideal response Wd(f) has a passband (Wd = 1)

from 0 to 0.25, and a stopband (Wd = 0) from 0.25 to 0.5. The left-hand

pair of plots show the response for M = 49 (99 weights total), and the

right-hand pair for M = 99 (199 weights total).

If we do not mind having the filter be acausal (the output for a step

input precedes the step), we can make it symmetrical around n = 0, defining

wn = w−n for n =−M, . . . M. The frequency response is then

W(f)= w0 +2
M
∑

n=1

wn cos2πnf (5.3)

which has zero phase shift; in this form the FIR filter is often called a zero-

phase filter. Because such a filter is acausal it can be implemented only

after the data have been collected, but in digital systems this can always

be the case – if only because we are free to relabel the absolute time of the

terms in the series as we see fit. In general a lack of causality is not a

problem, though seismic data can be an exception to this: if our interest is

in the exact time of arrival of bursts of energy, we do not want the filtering

to put any energy before it actually arrives.1 In Chapter 7 we will see how

to make FIR filters that are better suited to this application.

Given all the restrictions so far applied, the filter design problem be-

comes how to choose the M +1 weights w0, w1, . . . wM+1, to best approx-

imate a given frequency response Wd(f). As we will see, the meaning of

“best” is not unique. Indeed it is characteristic of filter design that the best

answer is not always the same: what we want from a filter will depend on

what we are trying to do.

A naive approach would be to just take the inverse Fourier transform of

the ideal filter response: since Wd(f) is real and symmetric, it might appear

1 A good example of exactly this problem confounding the interpretation of the initial

rupture in earthquakes is given by Scherbaum and Bouin (1997).

70 Chapter 5. Digital Filters I: Frequency-Selective Filters

that we can use the inverse transform for sequences to get

wn =
∫1/2

−1/2

Wd(f)e2πi f nd f = 2

∫1/2

0
Wd(f)cos2π f n d f

However, this will not in general give a sequence of finite length – some-

thing we certainly need for a practical filter. We need to be more sophisti-

cated.

5.2.1 Designs Using Tapers

One method of filter design is to construct, from the ideal response, the

(infinite) sequence of ideal weights

wd
n = 2

∫1/2

0
Wd(f)cos2π f n d f

and then create a finite sequence from this by multiplying by a taper (or

window) sequence {an} to create the final weights

wn = anwd
n

The taper sequence must have two properties. The first is that an = 0 for

n > M, so that all but a finite section of {wn} is zero, to give a finite-length

filter. The second is that the taper must also be symmetric about n = 0, to

keep the final filter weights symmetric.

We might expect that this time-domain multiplication would be equiva-

lent to a convolution in the frequency domain; and so it is:

W(f)=
∞
∑

n=−∞
anwd

n e−2πi f n =
∞
∑

n=−∞
ane−2πi f n

∫1/2

−1/2

Wd(u)e2πi f nu du

=
∫1/2

−1/2

Wd(u)
∞
∑

n=−∞
ane−2πin(f−u) du =

∫1/2

−1/2

Wd(u)A(f −u) du

where in the final convolution integral both functions are assumed to be

periodic outside the range [−1/2,1/2].

This means that the closer A(f), the transform of the taper sequence, is

to a delta-function, the closer the filter response will be to the ideal Wd(f)

Of course, what we mean by “close to” will, again, depend on what we think

is important: in thinking about closeness to a delta-function, is it more

5.2. FIR Filters for Frequency Selection 71

Figure 5.3: The three Dirichlet kernels used in forming the response

of the von Hann taper (left, dashed), and that response itself (solid).

The right plot shows A(f) for the Dirichlet and von Hann kernels on

a log-log scale, for a larger value of M.

important that the peak of A(f) be narrow or the values away from the

peak be small? Our answer to this will depend on what we want the filter

to do, which is why there are no universal rules for filter designs.

The simplest taper is the rectangular taper, with an = 1 for |n| ≤ M; this

corresponds to simply truncating the sequence of ideal weights. We can see

that this is not a particularly good solution if we look at the corresponding

A(f):

A(f)=
M
∑

n=−M

e−2πi f n = (2M+1)D2M+1(f)

where DN (f) is the Dirichlet kernel discussed in Chapter 3. As described

there, successive maxima of |DN (f)| do decrease, but only as f −1: if what

we want is small values away from the peak, this A(f) is not a good approx-

imation to a delta-function. Convolving this A(f) with the ideal response

causes much of the passband response to “leak” into the stopband, and

vice-versa. Figure 5.2 shows this effect clearly, and also shows that simply

increasing the number of weights M does not diminish its importance.

If you are familiar with Fourier series theory, another way to view this

result is to realize that in taking the rectangular taper we are simply find-

ing partial sums of the Fourier series expression for Wd(f); such partial

sums always suffer from Gibbs’ phenomenon, with poor convergence near

72 Chapter 5. Digital Filters I: Frequency-Selective Filters

Figure 5.4: A collection of data tapers (top plots) and their Fourier

transforms A(f), for 2M + 1 = 52 (the transforms have been inter-

polated for plotting, and normalized to 1 at zero frequency). The

sinc taper is given by (πn/M)−1 sin(πn/M), and the Potter taper by
∑3

k=0
ak cos(πkn/(2M+1)) with a0 = 0.3557702, a1 = 0.4873966, a2 =

0.1442299, and a3 = 0.0126033.

the discontinuities in the frequency response.2

There is a taper that is almost as simple, but that has much smaller

values away from the central peak: this is the von Hann taper, also called

the hanning, cos2, or 1+cos taper:

an = 1/2[1+cos(πn/M)]= cos2(πn/2M) for n =−M, . . . M

which has the transform:

A(f)=
M
∑

n=−M

ane−2πi f n = 1/2

M
∑

n=−M

e−2πi f n + 1/4

M
∑

n=−M

[eπin/M + e−πin/M]e−2πi f n

= 1/2

M
∑

n=−M

e−2πi f n + 1/4

M
∑

n=−M

e−2πi(f−(M/2))n + 1/4

M
∑

n=−M

e−2πi(f+(M/2))n

= (2M+1)[1/2D2M+1(f)+ 1/4D2M+1(f − (M/2))+ 1/4D2M+1(f + (M/2))]

The three Dirichlet kernels and their sum are shown in Figure 5.3: it is

clear that, as f increases, the combination approaches zero much more

rapidly than does the original Dirichlet kernel, a point made even more

dramatically by a log-log plot.

2 For a good introduction, both historical and mathematical, to Gibbs’ phenomenon,

see Hewitt and Hewitt (1979).

5.2. FIR Filters for Frequency Selection 73

Figure 5.5: Frequency responses of lowpass filters for three data ta-

pers, and also for the minimax design procedure described in Section

5.2.2 For each, the error (departure from unity) is shown over part of

the passband (note the different scales), and the complete response is

shown in log form.

There are many taper sequences available;3 the frequency responses of

these can vary considerably, but inevitably have a tradeoff between width

of the central peak and smallness of the fluctuations (these are called the

sidelobes) away from it. Figure 5.4 gives a small selection of tapers, in-

cluding two with especially small sidelobes: the Potter taper (an empirically-

designed one) and the 4π prolate spheroidal taper. The last, as we will see

in Chapter ??, is the function for which A(f) is most concentrated within a

frequency band around zero, and is one of several that are important when

estimating a power spectrum.

The effect of using different tapers for filters is shown in Figure 5.5. As

expected, the use of a Hann taper gives much lower sidelobes than does a

rectangular taper; the 4π prolate spheroidal taper gives even lower ones,

with sidelobe amplitudes due in part to roundoff error in computing the

DFT. But filter design using tapers is somewhat inflexible: given a particu-

lar taper the tradeoff between sidelobe level and the width of the transition

between passband and stopband is fixed. A somewhat more flexible ap-

3 Harris (1976) is a kind of bestiary of every taper then thought of, with plots of the

time and frequency responses. Most of these tapers deserve to be forgotten, since much

better ones, notably the prolate spheroidal tapers, have been developed since. It is worth

noting that the ‘Kaiser-Bessel’ tapers described in this paper closely approximate the pro-

lates.

74 Chapter 5. Digital Filters I: Frequency-Selective Filters

proach has been developed by Kaiser and Reed (1977) and Kaiser and Reed

(1978), using an adjustable taper and some empirical rules for setting it

(and the filter length) to meet a given sidelobe level and transition width;

this method offers a convenient design that is adequate for many applica-

tions. However, even more flexibility is possible using different techniques,

one of which we now describe.

5.2.2 Design by Optimal Fitting of the Frequency

Response

A more powerful technique in designing filters is to look at the difference

between the ideal response Wd(f) and the actual response W(f), and choose

the filter weights to minimize this difference in some way. What seems

like the most obvious approach does not however work very well, this be-

ing to minimize the mean-square misfit. Minimizing this is just like the

least-squares criterion, though in this case expressed as an integral over

frequency: the quantity to minimize is

ǫ2 =
∫1/2

−1/2

|Wd(f)−W(f)|2d f

The difference between the ideal and actual responses, in terms of the

weights, is

Wd(f)−W(f)=
∞
∑

n=−∞
(wd

n −wn)e−2πi f n

where the actual weights wn are extended to infinity by adding zeroes at

both ends. But then we may apply Parseval’s theorem for infinite sequences

to get:

ǫ2 =
∞
∑

n=−∞
|wd

n −wn|2 =
−M−1
∑

n=−∞
|wd

n |
2 +

∞
∑

n=M+1

|wd
n |

2 +
M
∑

n=−M

|wd
n −wn|2

and since only the last term is adjustable, we minimize ǫ2 by setting wn =
wd

n . But this is no different from using a rectangular taper on the ideal

sequence – and we have already seen that this produces filters with large

sidelobes. Least squares, for all its merits, is not a panacea.

What is more useful is to minimize the maximum value that the misfit

|Wd(f)−W(f)| attains over a range of frequencies. This is computationally

more complicated than anything we have discussed so far, and we will not

5.2. FIR Filters for Frequency Selection 75

describe how it is done; suffice it to say that it is possible to find weights

that will do this. Specifically, given K non-overlapping frequency bands

fLk
< f ≤ fHk

, for k = 1, 2 . . . K , we can find the M weights which minimize

bk max
[fL ,fH]

|Wd(f)−W(f)|

over all the bands; bk is a weight applied to each band, which allows the

fit to the ideal response to be tighter or looser. The actual amount of misfit

is largely a function of the filter length M; what this misfit actually is, can

only be determined after the optimal weights are found. Usually some trial

and error is needed to decide on the appropriate tradeoff between length

and misfit. This approach applies the L∞ norm, whereas the mean-square-

error criterion applies the L2 norm; and in general gives very good designs,

with more flexibility than the tapering method. The resulting filters are

termed equiripple filters, because the frequency response shows a uni-

form level of departure from the ideal.

A filter designed using this method is shown in the fourth example in

Figure 5.5: by sacrificing low sidelobes at high frequency, the equiripple de-

sign can have a narrower transition band than any of the tapered designs.

The procedure for designing equiripple filters is called the Parks-McClellan

algorithm; it is included in and in MATLAB as routine firpm. The under-

lying algorithm is called the Remez exchange method.

There are many other variants in this method of filter design; we may,

for example, require, as well as a good fit to Wd, that the derivative dW /d f

be of one sign in the passband: this will completely eliminates ripple there.4

In general, most such refinements, and how to design filters where the word

length is short and roundoff a problem, are rarely important in geophysical

data analysis.

5.2.3 A Filtering Example

We close with an example that illustrates how frequency-selective filters

can be used, and also illustrates why there are no fixed rules for designing

them – what filter you choose depends on the problem you want to solve.

The data to be filtered are measurements of strain at Piñon Flat Observa-

tory, made at one-second intervals with a long-base laser strainmeter. For

4 Steiglitz et al. (1992) present a fairly general program for including different

kinds of constraints using linear programming: relatively slow, but very flexible. See

http://www.cs.princeton.edu/k̃en/meteor.html for source code and examples.

76 Chapter 5. Digital Filters I: Frequency-Selective Filters

Figure 5.6: Equiripple filter designs. The lower right shows a

schematic response, with the frequency parameters indicated. The

different designs (A through E), have different frequency settings or

lengths M. For each, the passband response is shown on a linear

scale, the overall response in decibels.

the time period shown, these strain data show the signal from the 1994

Northridge earthquake, 203 km away. This signal, though dominated by

the seismic waves from the earthquake, also contains the static change in

strain caused by the elastic rebound of the rocks, which is what drives the

faulting. The aim of the filtering will be to remove the “high-frequency”

seismic signal so as to show the static change more clearly.

For maximum flexibility we use the equiripple design; Figure 5.6 shows

some possible filter responses. The lower right corner of this figure shows

parameters which we can choose: the transition frequency fc and the width

of the transition band f t. Once we choose these parameters, we next pick

a length for the filter; the program will then find the best design possible,

with the smallest amount of ripple in both the passband and stopband. In

this case we choose these amounts to be the same; while they can be in any

proportion to each other, making one smaller makes the other larger.

5.2. FIR Filters for Frequency Selection 77

Figure 5.7: Strain variations from the Northridge earthquake

recorded on the NW-SE laser strainmeter at Piñon Flat Observatory

(PFO). The lower right plot is the original unfiltered data; this actu-

ally has a much larger range than is shown. Plots A through E show

the results of lowpassing the data with the filters whose response is

shown in Figure 5.6.

Our first design (A) has a narrow passband, and a narrow transition

band – and the consequence is that the ripple is large, nearly 10%. This

means that in the stopband any signal will be only 0.1 of what it was orig-

inally – we would say, 20 dB down, which is not a large reduction. To do

better, we can try two approaches: (B) make the transition band wider, and

(C) use more filter weights (199 instead of 101). Either one gives much

less ripple; for these two examples we are trading computation time (filter

length) against the width of the passband response. In (D) we try making

the passband much larger by increasing fc; in (E) we combine the larger f t

of (B) with the more numerous weights of (C) to get a response even closer

to the ideal.

78 Chapter 5. Digital Filters I: Frequency-Selective Filters

Figure 5.7 shows what these filters do to the data; without filtering

the static offset is well hidden in the seismic coda. Filter A reduces this

enough that the offset can be seen, but still leaves a lot of energy: looking

at this, you would (or should) want to say that the “true” signal would be

a smoothed version of this: a sure sign that the data need more filtering.

Filters B and C provide more filtering: since their stopband levels are the

same, the results look about the same as well; between the two, B is prob-

ably preferable because it is shorter. A much wider passband (D) turns out

to be a poor idea, at least for showing the static offset. Filter E is perhaps

“best” for this application.

CHAPTER 6

DIGITAL FILTERS II:

RECURSIVE FILTERS AND

SIMULATING LINEAR SYSTEMS

6.1 Introduction

We now turn to another kind of digital filter: one that will allow us to use

a computer to imitate what some physical system does. We might need

this when, for example, we want to model a seismogram. The first step

would be to have a way of computing the the ground motion input to the

seismometer. The next step would be to simulate what the output of the

seismometer (a physical system) is for this ground motion. The FIR filters

of the previous chapter are not well-suited for this, but other designs are,

and it is these we will now describe.

But, to discuss these filters and how to design them we need to first

spend some time introducing additional mathematics for the linear systems

we discussed in Chapter 2. We will then return to the problem of designing

digital filters, introducing what is known as a recursive filter; finally, we

will show how to make such a digital filter accurately simulate an analog

system.

6.2 Lumped-Parameter Systems

We saw in Chapter 2 that a linear time-invariant system could be charac-

terized in three different ways:

• By its frequency response g̃(f); this expresses the ratio (a complex

number) between output and input when the input is a pure sinusoid,

e2πi f t.

79

80

Chapter 6. Digital Filters II: Recursive Filters and Simulating Linear

Systems

Figure 6.1: Frequency response of an RC filter with τ = 1, shown as

log amplitude, and phase, plotted against log frequency.

.

• By its impulse response g(t): the time-domain behavior when the in-

put is a delta-function. This is also the inverse Fourier transform of

g̃(f): g f o(f)=F [g(t)].

• By the step response h(t), which is the integral of g(t).

We now look at these characterizations for a special class of linear time-

invariant systems – though one that includes many actual cases. This

class is systems that are described by constant-coefficient linear differential

equations; a common term, especially in electrical engineering, for these is

lumped-parameter systems. For such systems the relationship between

the input x and output y is

an

dn y

dtn
+an−1

dn−1 y

dtn−1
+ . . . +a1

d y

dt
+a0 y=

bm

dmx

dtm
+bm−1

dm−1x

dtm−1
+ . . . +b1

dx

dt
+b0x

(6.1)

The a’s and b’s are the parameters that describe the system.

There are standard procedures for solving such an equation to get ex-

plicit forms for y(t), especially for certain classes of inputs x(t); we shall

instead look at the frequency response of such systems. But first we pro-

vide a few examples.

6.2. Lumped-Parameter Systems 81

Figure 6.2: Frequency response of a seismometer to displacement.

The natural frequency is ω0 = 1. The response is shown for λ = 0

(dashed), λ= 0.8 (dotted), and λ= 1 (solid).

• The first example is the simplest analog electronic filter: the RC low-

pass filter, which consists of a resistor and capacitor in series, with

input and output voltages as shown. The input voltage x(t) = Vin is

just the output voltage y(t) = Vout plus the voltage drop across the

resistor, which is given by RI(t), where I(t) is the current flowing

through the capacitor. This current is given by I(t) = C ẏ(t), making

the differential equation

y(t)+RC
d y

dt
(t)= x(t) (6.2)

To get the frequency response, we assume, as usual, a sinusoidal in-

put x(t) = e2πi f t; by definition of g̃, y(t) = g̃(f)e2πi f t. Substituting

these expressions into (6.2), we get

g̃(f)=
1

1+2πi f τ
(6.3)

where τ= RC is the time constant of the filter. The two plots in Fig-

ure 6.1 show the amplitude and phase of g̃(f) for τ equal to 1, plotted

against the logarithm of the frequency (and with the amplitude plot-

ted in dB); these are called Bode plots. Clearly this is a lowpass

filter: high frequencies are attenuated.

82

Chapter 6. Digital Filters II: Recursive Filters and Simulating Linear

Systems

Figure 6.3: Response of the Earth’s polar motion to excitation; note

that since we represent the input and output (both 2-vectors) as com-

plex numbers. we need to show both positive and negative frequency.

The response is given for a Q of 100; the Chandler resonance is at

0.849 cycles/year. The rapid change of phase at this frequency makes

it difficult to compare polar motion with excitations.

• A seismometer (Figure 6.2). The simplest form (a mass on a spring,

or a pendulum) obeys the well-known equation for a simple harmonic

oscillator:

ÿ+2λω0 ẏ+ω2
0 y= ẍ

where y is the displacement of the mass with respect to the frame,

and x the displacement of the frame with respect to inertial space.

The system parameters are the natural frequency ω0, and the damp-

ing λ. Again, we substitute e2πi f t for x(t) and g̃(f)e2πi f t for y(t), and

find

g̃(f)=
−4π2 f 2

−4π2 f 2 +4iπλω0 f +ω2
0

whose phase and amplitude response are shown in Bode plots (Figure

6.2) for several values of λ: λ = 0 is undamped, λ = 0.8 gives the

flattest response, and λ= 1 is critically damped.

• The Earth’s polar motion. The position of the rotation pole of the

solid earth changes because of variations in the angular momentum

and mass distribution of the fluid parts. The pole position can be

described by two coordinates, p1 and p2, giving the (dimensionless)

6.2. Lumped-Parameter Systems 83

angular displacement of (say) the North rotation pole in directions

toward the Greenwich meridian and at 90◦ to it. If these changes are

small, it can be shown that the relationship between the pole position

and the motions of the fluid parts is

1

ωc

dp1(t)

dt
+ p2(t)=ψ2(t)

1

ωc

dp2(t)

dt
+ p1(t)=ψ1(t) (6.4)

where ψ1 and ψ2 are integrals over the mass distribution and velocity

of the fluid parts of the earth (usually termed the “excitation”).1 The

frequency ωc is determined by the properties of the solid earth; for

a rigid ellipsoidal body ωc = [(C − A)/A]Ω, where C and A are the

polar and equatorial moments of inertia, and Ω is the frequency of

the Earth’s spin (once per day). The values of C and A for the Earth

give a value for ωc that corresponds to a period of 305 days; various

corrections, too complicated to discuss here, make the actual period

equal to 430 days. We can write this pair of equations as a single

equation by forming the complex variables p = p1 + ip2 and ψ=ψ1 +
iψ2; then we can combine the two equations in (6.4) to get:

i

ωc

ṗ(t)+p(t) =ψ(t) (6.5)

If we make the input e f t, and the output g̃e f t, we find

g̃(f)=
1

1− (2π f /ωc)

which has the response shown in Figure 6.3, in this case plotted

against both positive and negative frequency, since the response is

different for these: a common attribute of gyroscopic systems. (Re-

member that, with this trial function, negative frequency corresponds

to clockwise [deasil] rotation, and positive to counterclockwise [wid-

dershins].)

We will use these examples in the discussion below, both to illustrate

concepts about systems, and also as examples for filter design.

1 For a derivation of this equation, see Munk and McDonald (1960); the version given

here has been revised to match the newer and more accurate result of Gross (1992).

84

Chapter 6. Digital Filters II: Recursive Filters and Simulating Linear

Systems

6.3 The Laplace Transform: System Poles

and Zeros

Yet another way of looking at the response of a system comes if we look at

another integral transform: the Laplace transform. The Laplace trans-

form of a function x(t) is defined as

x̃(s)=
∫∞

−∞
x(t)e−st dt

for s a complex number: x̃(s) is defined on the complex plane. The Fourier

transform is x̃(f) is just x̃(s) evaluated along the imaginary axis of the com-

plex plane; that is, x̃(f)= x̃(s) for s= 2πi f . The Laplace transform can thus

be thought of as a generalization of the Fourier transform; but, viewed as

a transform, it is nowhere near as useful. And, mostly because x̃(s) is a

complex-valued function over the complex plane, the Laplace transform is

much more difficult to visualize than the Fourier transform. The inverse

Laplace transform is

x(t)=
1

2pi

∫c+i∞

c−i∞
x̃(s)est ds

where the integral is evaluated over a line parallel to the imaginary axis,

the value of the real part depending on the nature of x̃(s). The Laplace

transform and its inverse are thus much less symmetrical than the Fourier

transform pair.

The utility of the Laplace transform for us comes through applying it

to the lumped-parameter systems described by equation (6.1). The value of

the Laplace transform is that it enables us to get significant understanding

of such a system without solving the differential equation at all.2

Taking the Fourier transform of both sides of equation (6.1) gives us the

same result as we would get (and did get for the examples of the previous

section) by substituting e2πi f t as the input. What we mean by “taking the

Fourier transform” of the system is to find the equation that describes the

connection between the Fourier transforms of the input and output: that

is, between x̃(f) and ỹ(f). We get this result by applying the theorem for

the Fourier transform of the derivative of a function to equation (6.1); this

gives us a polynomial in f :

[an(2πi f)n+an −1(2πi f)n −1+ . . . +a1(2πi f)+a0] ỹ=
[bm(2πi f)m+bm −1(2πi f)m−1+ . . . +b1(2πi f)+ +b0]x̃

2 Deakin (1992) describes how this approach grew to dominance.

6.3. The Laplace Transform: System Poles and Zeros 85

where ỹ and x̃ are the Fourier transforms of y and x. Therefore, the fre-

quency response of the system is

g̃(f)=
ỹ(f)

x̃(f)
=

∑m
j=0

b j(2πi f) j

∑n
k=0

ak(2πi f)k
(6.6)

We can follow a similar route if we take the Laplace transform of both

sides of (6.1). While this might seem like an unnecessary generalization

(who needs the system response at a complex frequency?) it actually leads

to some very useful insights into how the system will behave. We need the

derivative theorem for the Laplace transform, with we simply state without

proof: if x̃(s) is the Laplace transform of x(t), the Laplace transform of ẋ is

sx̃(s).

Applying this rule to the differential equation shows that the ratio of the

Laplace transforms of the input and output, which is called the transfer

function, is

ỹ(s)

x̃(s)
=

∑m
j=0

b js
j

∑n
k=0

aksk
(6.7)

Comparing this with equation (6.6), we see that the frequency response is

a special case of the transfer function: the frequency response g̃(f) is just

the transfer function g̃(s) evaluated on the imaginary axis.

The additional insight to be gotten from looking at the transfer function

comes if, instead of expressing the polynomials in (6.7) in terms of their

coefficients, we instead write them as products of their roots:

ỹ(s)

x̃(s)
= C

∏m
j=1

(s− r j)
∏n

k=1
(s− pk)

The roots of these polynomials in s come in two forms, the zeros r j of

the numerator, and the poles pk of the denominator. At the zeros the

transfer function is zero; and at the poles it is infinite. The scaling value,

C, is needed to make the description complete. Looking at the locations of

the poles and zeros, and particularly how close they are to the imaginary

axis, will show where the frequency response will be large and where it

will be small. Finding the locations for either set of roots has to be done

numerically if m or n exceeds five, but our three examples can all be done

analytically:

• The RC filter has a transfer function

g̃(s)= (1+τs)−1 (6.8)

86

Chapter 6. Digital Filters II: Recursive Filters and Simulating Linear

Systems

which has a single pole on the negative real axis at s = τ−1. This is

shown in the left-hand plot of Figure 6.4; as is conventional, we use a

cross to show the location of a pole.

• The seismometer transfer function is

g̃(s)=
s2

s2 +λω0s+ω2
0

which has a pair of zeros at the origin of the s-plane. The poles lie

at ω0[−1±
p
λ2 −1]. For λ= 0, the poles are on the imaginary axis, at

±iω0. Since this axis corresponds to the frequency axis for the Fourier

transform, these on-axis poles make g̃(±ω0 infinite. As λ increases

from zero, the two poles leave the imaginary s-axis and follow a cir-

cular path about the origin: because the coefficients of the polynomial

are real, its roots (these poles) must be complex conjugates. The case

of λ = 0.8, which gives the flattest response, would be termed a two-

pole Butterworth filter. At λ= 1 the poles meet; for larger values they

lie on the negative real axis, one approaching and the other receding

from the origin.

• The transfer function for polar motion is

g̃(s)=
P(s)

Ψ(s)
=

1
1+is

ωc

=
ωc

ωc + is

which has a single pole, on the imaginary axis, at s = iωc. Again,

this gives an infinite response for f =ωc: in the Earth this resonance

gives rise to the Chandler wobble, hence the subscript c on ω. In

reality dissipation keeps the response from being infinite; we can add

this effect to the equations by moving the pole of the transfer function

away from the imaginary axis. We make this pole complex, rather

than imaginary, by defining ωc as

ωc =
2π

Tc

(

1+
i

2πQc

)

where Tc is now the period of the resonance, and Qc a measure of the

amount of dissipation.3

3 It is certain that dissipation occurs in the Chandler wobble, but what causes it re-

mains unclear. Smith and Dahlen (1981) provide an exhaustive discussion of the theoret-

ical values for these two parameters for a given Earth model.

6.4. The z-transform for Digital Filters 87

Figure 6.4: Pole-zero plots, showing the locations of these on the com-

plex s-plane for some analog systems. Poles are crosses, zeros circles;

multiple roots have numbers next to them.

For all our examples, including the last one with finite Qc, the poles are

left of the imaginary axis. This is good, because for any lumped-parameter

system, stability requires that all the poles of the transfer function have

negative real parts, lying in the left half-plane. And for an unstable system,

any nonzero input leads to an infinite output. Whether or not a system is

stable is not obvious from looking at the differential equation; but finding

the poles shows this immediately. Likewise, looking at the poles we can

easily see what at what frequencies the response is large: it will be those

that are near poles that are close to the imaginary axis. Conversely, zeros

close to the imaginary axis will produce dips in the amplitude response.

6.4 The z-transform for Digital Filters

In Chapter 3 we examined the Fourier transform for sequences. We have

just seen that the Laplace transform can be regarded as the generalization

of the Fourier transform; the equivalent generalization for sequences is

called the z-transform. An infinite sequence xn, has a z-transform ζ[xn]

88

Chapter 6. Digital Filters II: Recursive Filters and Simulating Linear

Systems

that is a function of the complex variable z:

ζ[x(n)]= x̃(z)=
∞
∑

n=−∞
xnz−n

It is important to note that this is not a definition that is universally fol-

lowed. In particular, the geophysical exploration industry (which does a

lot of signal processing) defines the z-transform as a sum over xnzn, Our

usage is that found in electrical engineering; if we call our z-variable zEE,

and the exploration one zoil, zEE = z−1
oil

. Since z is a complex variable, this

usage is equivalent to an inversion of the complex plane on the unit circle:

the outside of the circle becomes the inside, and vice-versa, with the origin

and infinity mapping into each other. Either convention is consistent, but

in looking at results (and software) you need to know which one is being

used.

We have seen that the Fourier transform can be viewed as the Laplace

transform evaluated on the imaginary axis of the s-plane. In just the

same way, the Fourier transform of a sequence is a special case of the z-

transform. Remember that the Fourier transform of a sequence is

x̃(f)=
∞
∑

n=−∞
xne−2πi f n (6.9)

This is equivalent to the z-transform for z = e2πi f ; in words,

The Fourier transform of a sequence is the z-transform evaluated

on the unit circle in the complex z-plane.

There are other ways of looking at the z-transform. We can, for example,

regard z−1 as a unit delay. This may sound peculiar, but is easily derived.

Suppose y is the same series as x, but delayed by m terms: yn = xn−m; then

the z-transform of y is just

ỹ(z)=
∞
∑

n=−∞
xn−m z−n =

∞
∑

l=−∞
xl z

−(l+m) = x̃(z)z−m = x̃(z)(z−1)m (6.10)

so that the effect of delaying x is to multiply the z-transform by z−1 a total

of m times: z−1 “represents” a delay. (That is, z−1
EE

does; in the usage of the

exploration industry, zoil does.)

6.4. The z-transform for Digital Filters 89

Figure 6.5: Mapping between the s-plane and the z-plane if we get

our sequence in discrete time by sampling in continuous time. The

right-hand side of the s-plane maps outside the unit circle in the z-

plane, and the left-hand side to the inside of the unit circle, but in

both cases the mapping is not one-to-one. The bottom plot shows how

the continuous-time frequency fa maps into discrete-time frequency

fd.

Another way to look at the z-transform comes from taking the Laplace

transform of the function which is equivalent to the sequence xn, namely
∑∞

n=−∞ x(n)δ(t− n), which we used in Chapter 4 to discuss sampling of a

function given in continuous time. The Laplace transform of this infinite

sum of delta-functions is
∫∞

−∞

∞
∑

n=−∞
xnδ(t−n)e−st dt =

∞
∑

n=−∞
xn

∫∞

−∞
e−stδ(t−n) dt =

∞
∑

n=−∞
xne−sn

which becomes equivalent to the z-transform if we set

z = es (6.11)

which for any s gives a value z. This derivation of the z-transform thus

introduces a mapping from the s-plane to the z-plane; as we will see below,

90

Chapter 6. Digital Filters II: Recursive Filters and Simulating Linear

Systems

such mappings are important in devising digital (discrete-time) models of

continuous-time systems. The particular mapping given by equation (6.11)

has an important feature, namely that it is nonunique: different points in

the s-plane all map to the same point in the z-plane.

If we consider the strip for which |ℑ(s)| ≤π, we can see that the region of

the strip with negative real part maps inside the unit circle, the region with

positive real part maps to outside the unit circle, and the segment of the

imaginary axis that lies in the strip maps onto the unit circle.4 But exactly

the same mapping occurs for each strip defined by m−π≤ℑ(s)≤ m+π, for

any integer m. This is yet another example of aliasing: when we form a

sequence by sampling a function, one frequency in the sequence can come

from many different frequencies in the function; with the mapping (6.11)

we have generalized this to complex frequencies.

It is possible to use complex-variable theory to find the inverse of the

z-transform, and also to derive extensions to the convolution theorems in

order to show, for example, how to convolve two z-transforms to get the

z-transform of the product of two sequences. Since these results are not

needed to design filters for system simulation, we do not discuss them fur-

ther; see Oppenheim and Schafer (1989) for the details.

6.5 Recursive Digital Filters

In a FIR filter, the output is just a weighted combination of input values.

This kind of filter is inadequate for simulating an analog system, for which

purpose we introduce a more general form: the recursive filter, where

the output value depends on previous values of the output, as well as on

the input values. The equation for such a digital filter is

N−1
∑

k=0

ak yn−k =
L−1
∑

l=0

bl xn−l (6.12)

where xn is the input sequence and yn is the output. Because the sums are

one-sided, we can compute the “current” value of y, yn, without needing

any values of y except for the “past” ones that we have already computed.

Using only past values of x is not necessary except in real-time processing;

but is conventional and not restrictive in practice.

4 In geophysical-exploration usage, the mappings to the inside and outside of the circle

would be reversed.

6.5. Recursive Digital Filters 91

Filters of this type, like the nonrecursive filters of the previous chapter,

go by several different names: electrical engineers call them Infinite Im-

pulse Response (IIR) filters, and statisticians call them auto-regressive

moving-average (ARMA) systems. If L = 1, so that only the current value

of the input is used, the statisticians’ term is that the system is autore-

gressive (AR).

Just as we used the Laplace transform to find the transfer function of

a differential equation, we may use the z-transform to find a transfer func-

tion for a discrete-time filter. If we take the z-transforms of both sides of

equation (6.12), equation, and use the result (6.10) that the z-transform of

a delayed sequence is z−m times the transform of the original sequence, the

two sides of (6.12) become polynomials in z. The transfer function becomes

the ratio of these polynomials:

ỹ(z)

x̃(z)
=

∑L−1
l=0

bl z
l

∑N−1
k=0

akzk
(6.13)

This is actually a general equation for any type of digital filter, recursive

or nonrecursive; note that for zero phase shift FIR filters the range of sum-

mation will include negative as well as positive values of l.

The parallel between (6.12) and (6.13) on the one hand, and the dif-

ferential equation (6.1) and its transfer function (6.7) is quite intentional:

this parallelism shows how to reach our goal of simulating a system with a

digital filter. The simulation problem now becomes how to find the coeffi-

cients of the filter (6.12), with z-transform (6.13), that will best imitate the

behavior described by the differential equation (6.1) with transfer function

(6.7).

We start with our simplest example, the lowpass RC filter, and begin

with the step response. If x is constant and equal to x0, the solution to the

differential equation (6.2) is y = x0. If at time t = 0, x then becomes zero,

the solution for y for t > 0 is y= x0e−t/τ. An FIR filter cannot reproduce the

infinitely long response to a step that this system shows; even approximat-

ing it would require a large number of weights. But a very simple recursive

filter can give a similar response. This is

yn −ayn−1 = xn(1−a)

For x constant this gives a constant y equal to x. If xn is 0 for n ≤ 0, and 1

for n ≥ 1, it is easy to compute y:

y0 = 1 y1 = a y2 = a2 ym = am = em lna

92

Chapter 6. Digital Filters II: Recursive Filters and Simulating Linear

Systems

giving the same exponential falloff as in the analog filter. The transfer

function of this digital filter is

ỹ(z)(1−az−1)= x̃(z)(1−a) or
ỹ(z)

x̃(z)
=

1−a

1−az−1

which has the frequency response (using z = e2πi f)

1−a

1−ae−2πi f
(6.14)

where f is now the digital frequency, running over the range from −1/2 to 1/2
(the range between the Nyquist frequencies). Clearly the analog response

(6.3) and the digital response (6.14), though similar, are not the same; the

problem we will now address is to devise a recursive filter that will be closer.

However, before doing so, we need to discuss the stability criterion for

digital filters: what makes them stable or not. If we look at the output of

the discrete-time filter for the case given above (equation (6.13), we see that

for a less than 1, the output decays when x goes to zero (from one); but if

a were greater than 1, the output would increase exponentially. The value

of a thus determines if the filter is stable or unstable, the boundary being

a = 1, for which the filter is metastable. In the z-plane, the one filter pole

is at z = a, so the condition for stability is that the pole is inside the unit

circle. This can be shown to be true in general. Just as a continuous-time

system, to be stable, must have all poles on the negative real half of the s-

plane, for a discrete-time filter, all its poles must fall within the unit circle.

These criteria matter because we want any mapping from the s-plane to

the z-plane to preserve stability: the “stable” part of each plane should

map only into the stable part of the other. The mapping given by equation

(6.11), corresponding to sampling, fulfills this criterion; some others do not.

For example, creating discrete-time systems by replacing derivatives by

forward differences does not; if we perform this substitution on a stable

differential equation, the resulting discrete-time filter may not be stable.

A better mapping than (6.11) for system simulation is called the bilin-

ear transformation. To motivate it, we again construct a discrete-time

system from the differential equation, but instead of using numerical dif-

ferences to approximate derivatives, we use numerical approximations to

integrals.

For example, we can re-express the differential equation for an RC low-

pass filter in integral form as:

y(t)=
∫t

t0

ẏ(u)du+ y(t0)

6.5. Recursive Digital Filters 93

Figure 6.6: Mapping between the s-plane and the z-plane if the bilin-

ear transformation is used. The right-hand side of the s-plane maps

outside the unit circle in the z-plane, and the left-hand side to the in-

side of the unit circle; in both cases the mapping is one-to-one. The

bottom plot shows how the continuous-time frequency fa maps into

discrete-time frequency fd: the mapping is one-to-one, but nonlinear,

though approximately linear for fa ≪ fn.

For equispaced intervals, which we set equal to 1, this becomes

y(n)=
∫n

n−1
ẏ(u)du+ y(n−1)

We now use the trapezoidal rule for this integral to write

y(n)= 1/2[ẏ(n)+ ẏ(n−1)]+ y(n−1)

The differential equation itself gives an expression for ẏ: ẏ(t) = τ−1[x(t)−
y(t)]. We may then write the above expression for y(n) as

y(n)=
1

2τ
[x(n)+ x(n−1)− y(n)− y(n−1)]+ y(n−1)

94

Chapter 6. Digital Filters II: Recursive Filters and Simulating Linear

Systems

which we may, finally, write in the form (6.12) of a recursive filter; using

subscripts rather than arguments since we are now working with a se-

quence, we get

yn

(

1+
1

2τ

)

− yn−1

(

1+
1

2τ

)

=
1

2τ
(xn + xn−1)

The transfer function in the z-plane of this discrete-time filter is found

in the usual way; we take z-transforms to get

ỹ(z)

[(

1+
1

2τ

)

− z−1

]

= x̃(z)[1+ z−1]

whence the transfer function is

1

1+2τ

(

1− z−1

1+ z−1

)

We can equate this with the transfer function for the continuous-time case,

equation (6.8), if we make the relationship between s and z

s= 2

(

1− z−1

1+ z−1

)

(6.15)

which is the bilinear transformation.

In the more general case where the sampling interval is ∆, the same

derivation may be used to give the same result, with the leading 2 replaced

by 2/∆. The inverse mapping from s to z has a similar form, namely

z =
1+ 1/2s∆

1− 1/2s∆
(6.16)

While our derivation used a particular differential equation, using mul-

tiple integrals for any constant-coefficient linear differential equation will

produce the same mapping. This mapping takes the imaginary axis of the

s-plane onto the unit circle in the z-plane; since it maps the entire left half

of the s-plane into the inside of the unit circle on the z-plane, it maintains

stability.

The bilinear transformation thus gives us a design procedure for getting

discrete-time filters from continuous-time ones. The steps are:

1. Find the transfer function in the s-plane from the differential equa-

tion of the system; this will be a ratio of polynomials in s.

6.5. Recursive Digital Filters 95

2. Perform the bilinear mapping (6.16) to produce a transfer function in

the z-plane; reduce this to a ratio of polynomials in z.

3. Get the filter weights from the coefficients of the polynomials, as in

the relation between (6.12) and (6.13).

There is often a step before step 1: we may have to modify the differ-

ential equation to minimize a distortion from the bilinear mapping. Let

the frequency of the discrete-time system be fd, so that (equation (6.9))

z = e2πi fd , and of the analog system be fa, so that s= 2πi fa. Then

1− z−1

1+ z−1
= i tan(π fd)

so that the bilinear transformation of the frequencies is

fd =
1

π
arctan(π fa∆)

which maps the entire analog frequency axis, from −∞ to ∞, onto the digi-

tal frequencies from −1/2 to 1/2: that is, from the lower to the upper Nyquist

frequencies. This warping of the frequency axis, though it avoids aliasing

of the filter response, means that we must adjust the time constants of

the differential equation so that after applying the bilinear transformation

these have the correct frequency, an adjustment known as prewarping.

To show how to do this, we design a filter to simulate the polar-motion

equation (6.4). If we apply the bilinear transformation (6.15) to the transfer

function (6.5), and compute the frequency response of the resulting digital

filter, we find that it is

ω′
c

ω′
c − (2/∆) tan(π fd)

where we have used ω′
c to denote that this parameter is not necessarily

the same one as in the actual continuous-time system. For ωc real, the

frequency of the resonance in the continuous-time system is at fa =ωc/2π;

when the series is sampled at an interval ∆, this becomes the (nondimen-

sional) frequency ωc∆/2π, providing it is not aliased. In the discrete-time

system the resonance will be at

fd =
1

π
arctan

(

ω′
c∆

2

)

96

Chapter 6. Digital Filters II: Recursive Filters and Simulating Linear

Systems

Equating these two digital frequencies gives us the relationship

ω′
c =

2

∆
tan

(

∆

2
ωc

)

for the time constant (in this case a frequency) used in the discrete-time

filter as a function of the one actually present in the system. If ωc∆≪ 1,

the two are nearly equal; but as this product approaches π more and more

correction is needed. In this particular example, the usual sample interval

∆ for p and ψ is 30 days; for ωc = 0.01461rad/day, ω′
c = 0.01485, only a 2%

change.

Having made this correction, we can compute the actual filter weights

by the procedure just described. We find that the polynomial in z is

ω′
c∆+ω′

c∆z−1

(ω′
c∆+2i)+ (ω′

c∆−2i)z−1

which gives a recursive filter

pn(ω′
c∆+2i) =−pn−1(ω′

c∆−2i)+ω′
c∆(ψn +ψn−1)

for producing simulated polar motion from a possible excitation.

CHAPTER 7

DIGITAL FILTERS III:

DIFFERENTIATORS,

LEAST-SQUARES, AND

MINIMUM-PHASE FILTERS

7.1 FIR Filters: Other Applications

In this chapter we look at some other uses for FIR filters than removing

bands of frequencies: differentiation, Hilbert transforms, and linear re-

gression. We also describe the most important class of non-symmetric FIR

filters for frequency selection, the minimum-phase filters; these are some-

times important for use in seismology.

7.2 Differentiators and Digital Hilbert

Transformers

We have mentioned before (Section 2.8) that differentiation can be thought

of as a linear system; this makes it appropriate for digital filtering. Equa-

tion (2.5)

F [ẋ(t)]= 2πi f F [x(t)]

shows that differentiation is a filter with frequency response 2πi f : that is,

a constant phase shift of π/2 (the i part of the coefficient) and an amplitude

response that is proportional to frequency.

To imitate this digitally, we make the number of weights odd, with N =
2M+1, and also make them antisymmetric:

w−n =−wn for n = 0, . . . M

97

98

Chapter 7. Digital Filters III: Differentiators, Least-Squares, and

Minimum-Phase Filters

Figure 7.1: The amplitude response, and weights, for a differentiating

filter, constructed by tapering the weights for an ideal response with

a Kaiser-Bessel taper so that the response at the Nyquist is −40dB.

where we have centered the filter about 0 rather than term M; this asym-

metry means that w0 = 0. Substituting these weights into the general ex-

pression (equation (5.1)) for the frequency response of a FIR filter, we find

W(f)=−2i
M
∑

n=1

wn sin2πnf

which we may compare with equation (5.3) for a symmetric acausal FIR

filter.

An antisymmetric filter thus will have exactly the same phase response

as differentiation: purely imaginary. To get an amplitude response that

approximates differentiation, we take the ideal response to be W(F)= 2πi f

– but, to avoid over-amplifying the energy close to the Nyquist, only up

to some cutoff frequency α. That is, we want the filter to have an ampli-

tude response that is zero at zero frequency, increases linearly to the cutoff

frequency, and then falls to zero.

As with the frequency-selective filters, we can get the filter weights cor-

responding to this ideal response by taking the inverse Fourier transform

of it:

wn =
∫1/2α

−1/2α
W(f)e2πi f nd f = 4πi

∫1/2α

0
f isin2π f n d f =−4π

∫1/2α

0
f sin2πnf d f

=
1

πn2

∫1/2α

0
2πnf sin2πnf d(2πnf)=

1

πn2

∫πnα

0
xsin x dx=

αcos(πn)

n
−

sinπnα

πn2

7.2. Differentiators and Digital Hilbert Transformers 99

Figure 7.2: On the left, half of the weights for a (windowed) Hilbert

transform filter with total length of 97. On the right, a time varying

series (x3e−x sin(1.5x2), where x = n/10), shown as the black solid line,

its Hilbert transform (gray solid line) and the instantaneous ampli-

tude (dashed line).

where we have made use of the antisymmetry of f around zero frequency.

As with the ideal lowpass filter, this series of weights goes on forever; and,

as in that case, we can approximate the ideal response better if we taper

the series of weights instead of simply truncating it. Figure 7.1 shows an

example. It is also possible to adapt the Parks-McClellan procedure to this

design task.

Antisymmetric filters may have other amplitude responses. An impor-

tant case is when there is no frequency dependence at all: an amplitude

response equal to one from zero frequency to the Nyquist. This is the digi-

tal Hilbert transform filter, whose ideal response is

W(f)=







i f < 0

for

−i f > 0

Note that this has the opposite phase shift from differentiation. The ideal

weights are

wn =
2sin2(nπ/2)

nπ

100

Chapter 7. Digital Filters III: Differentiators, Least-Squares, and

Minimum-Phase Filters

Again, actual filters can be designed by using tapers (as was done for the fil-

ter in Figure 7.2) or using the Parks-McClellan algorithm. Either of these

methods will produce a filter whose amplitude response is only approxi-

mately flat over the full frequency band, but whose phase response is, like

that of the differentiator, exact, thanks to the antisymmetry of the filter,

and its having an odd number of weights.

If a Hilbert-transform filter, is convolved with a series it converts all the

cosine components into sines and vice versa. This can be useful for a series

that is approximately sinusoidal, since then we can create what is called a

complex-valued analytic series

{xa}= {x}+ i{xh}

where {xh} is the digital Hilbert transform of the original sequence {x}.

From this, we can find the instantaneous amplitude (also called the en-

velope function) and instantaneous phase; these are the amplitude

and phase of each term of {xa}; differentiating the phase gives the in-

stantaneous frequency. Figure 7.2 shows an example for a gradually-

changing sinusoid.

7.3 Least-squares Fits as Filters

Next we show that parameters estimated through least-squares can be

found by filtering the data – and that sometimes, thinking of least-squares

fitting as a filter can help us understand what the fit is doing. The basis of

this is that the solution to any least-squares problem gives the parameters

in terms of a linear combination of the data; but any linear combination of

the data is a linear time-invariant system, and hence a filtering operation.

More formally, suppose we have a data vector x, which we aim to fit

parameters y to by least squares. The equations for y are the normal equa-

tions:

y= (AT A)−1 AT x

where A is the design matrix.1 Now suppose we want to find a particular

linear combination of the parameters, z = bT y; z is a scalar (and might just

be one of the parameters). Then the solution is

z = bT (AT A)−1 AT x
def= wT x

1 We have assumed that the errors are identical and independent; if they are not the

equations are slightly more complicated but we get an equivalent end result.

7.3. Least-squares Fits as Filters 101

Figure 7.3: An example of the frequency response of a least-squares

fit: in this case, for the slope of daily data fit over a two-year span.

where the weights w are given by bT(AT A)−1 AT , which can be seen to be

an N-term vector, N being the number of data. But this is just a digital

convolution (albeit with only one output value) – so we may regard the

weights as filter weights, and compute the frequency response by taking

their Fourier transform.

A simple, and common, example is fitting a straight line to data; assume

we have 2M +1 values, centered about 0. Then if y1 is the value of the fit

at n = 0 and y2 is the slope, the design matrix is

AT =
[

1 1 . . . 1 1 1 . . . 1 1

−M −M+1 . . . −1 0 1 . . . M−1 M

]

which, conveniently, means that the matrix for the normal equations is

diagonal:

AT A =
[

2M+1 0

0 M(M+1)(2M+1)

]

102

Chapter 7. Digital Filters III: Differentiators, Least-Squares, and

Minimum-Phase Filters

which in turn makes the weights for finding the slope

wn =
3n

M(M+1)(2M+1)
for n =−M, . . . M

Note that this is quite different from the weights for finding the derivative,

which is a local measure of slope: the weights for the fitted slope are largest

far from the center, something that is often stated by saying that such parts

of the series have more influence. The frequency response, which then is

W(f)=
6

M(M+1)(2M+1)

M
∑

n=1

nsin(2πnf)

so that the frequency response depends on M, the length over which the fit

is made. Figure 7.3 shows the frequency response for N = 730: this might

be, for example, 2 years of daily geodetic data. What is interesting is that

the response actually peaks at a frequency of about 0.3 cycles/year. This

is lower than the lowest frequency that is usually resolvable from data,

namely one cycle over the record, which would be 0.5 cycles/year. The lo-

cation of this peak in the response becomes more obvious if we think about

what kind of sinusoid “looks like” a straight line: namely, one with about a

quarter of a cycle over the range of data. Much lower frequencies look more

and more like a constant.

7.4 Minimum-Phase Filters

Next, we turn to what are called minimum-phase filters. As mentioned in

Section 5.2, sometimes we do not want to use zero-phase filters because

they lack causality: if the data have sudden changes (notably from earth-

quakes) we may not want leakage of energy into times earlier than the time

at which the change occurs. But, also, we usually want the filter to be as

compact as possible: that is, we would like the filter to spread any impulses

or steps over the minimum possible time span. Making the filter compact,

but still causal, turns out to be equivalent to minimizing the phase shift.

The design of such filters depends on the locations of the roots of the

z-transform polynomial; these are, for weights w0, w1, . . . wN ,

W(z)=
N−1
∑

k=0

wk z−k

7.4. Minimum-Phase Filters 103

where z is complex. This polynomial has N −1 roots, r1, r2, . . . rN−1; given

these roots, the z-transform can alternatively be written as a product of

degree-one polynomials:

W(z)= w0

N−1
∏

k=1

(1− rkz−k)

with the w0 providing appropriate scaling.

For common choices of the weights wn, there are a number of “symme-

try” relationships that apply to the roots rk. If the weights are real, the

roots rk must either be real, or occur as complex conjugate pairs. If the

filter is symmetric, with an odd number N = 2M+1 of weights, then if rk is

a root, so is rl = 1/rk: the roots occur as reciprocal pairs unless they are on

the unit circle. To see this, write the z-transform as

W(z)=
2M
∑

k=0

wk z−k = z−M

[

wM +
M−1
∑

k=0

wk(zM−k + zk−M)

]

= z−2MW(z−1)

so that if W(rk)= 0, then W(1/rk)= 0 as well.

Combining these results, we have that for real and symmetric weights

(the commonest case), the roots of W(z) occur in reciprocal pairs plus single

roots on the unit circle, and all pairs (or singlets) not purely real occur as

complex conjugate pairs.

If the weights are real and symmetric, the response on the unit circle is

W(f)= e−2π f M

[

wM +2
M−1
∑

k=0

wk cos2πk f

]

= e−2π f MWa(f)

where Wa(f) is the amplitude response, which is purely real. If there are

single roots of W(z) on the unit circle, there must be values of f for which

Wa(f) ≤ 0. Conversely, if Wa(f) > 0 for all f , there can be no roots on the

unit circle: all roots occur as reciprocal pairs. Quite commonly, Wa(f) is

nonnegative, but equal to zero for particular values of f ; these values of f

then correspond to double roots of W(z), for which the root and its reciprocal

are equal.

We have discussed the locations of the roots in such detail because of

some less obvious results that relate to the goal of obtaining a compact

filter. Suppose some sequence wn, with z-transform W(z), has a root within

the unit circle; without loss of generality we can take this to be the “last”

104

Chapter 7. Digital Filters III: Differentiators, Least-Squares, and

Minimum-Phase Filters

root rN−1. Now consider another z-transform polynomial

W ′(z)=W(z)
z−1 − r∗

N−1

1− rN−1z−1

def= W(z)A(z) (7.1)

The form of the term A(z) means that for the polynomial W ′ the root at

rN−1 has been divided out of the polynomial for W(f) and replaced by its

reciprocal complex conjugate, which will be outside the unit circle. For

z = e−2iπ f ,

|A(Z)|2 =
∣

∣

∣

∣

z−1
1− r∗

N−1
z

1− rnz−1

∣

∣

∣

∣

2

= 1

which means that the amplitude responses |W(f)|2 and |W ′(f)|2 are iden-

tical. For this reason filter expressed by the A(z) polynomial is termed an

allpass filter; note that this is a recursive filter.

We can use the factorization (7.1) to get a relationship between the two

sets of weights, wk and w′
k
, that have the responses W(z) and W ′(z). Let

V (z) be a polynomial of degree N−2, obtained by factoring out the last root

(this is called deflation of the polynomial). Then we can rearrange equation

(7.1), to get

W(z)=V (z)(1− rN−1z−1) and W ′(z)=V (z)(z−1− r∗N−1)

But these polynomial relationships imply the following expressions for the

coefficients of W and W ′:

wk = vn ∗ (1, −rn)= vk − rN−1vk−1

w′
k = vn ∗ (−r∗n, 1)=−rN−1vk +vk−1

Next, we compute the difference of the sums of squares of the weights

up to the penultimate term. Most of the terms in the sum cancel, giving

N−2
∑

k=0

|wk|2 −|w′
k|

2 = (1−|rN−1|2)|vN−2|2

Because |rN−1| < 1 (by assumption, we chose a root with this property), this

sum has to be positive. This means that the sequence wk has more energy

(measured by the sum of squared amplitudes) concentrated before the last

point than the sequence w′
k

does.

This result can be extended to show that, among all FIR filters with the

same amplitude response |W(f)|2, the one whose z-transform has all its

7.4. Minimum-Phase Filters 105

roots on or inside the unit circle will have the most concentration of energy

towards the early terms of the sequence; that is,

m
∑

k=0

|wk|2

will be maximized for all m < N −1. (For m = N −1 the sum is the same,

being the filter response at f = 0.) This choice of roots thus makes the filter

as compact as possible.

Additional results follow if we express W(f) as amplitude and phase:

W(f) = Wa(f)e−φ(f). The phase of W and W ′ are related, by equation (7.1),

though the phase of the allpass term in equation (7.1). If we write the root

in polar form as rN−1 = ρe2πiθ, we find that its phase is the phase of

e−2πi f

(

1−ρe2πi(f−θ)

1−ρe−2πi(f−θ)

)

which gives a phase

φ(f)=−2π f −2arctan

[

ρ sin2π(f −θ)

1−ρ cos2π(f −θ)

]

(7.2)

A more interesting quantity is the group delay D(f), which defines

the delay energy in a signal with frequency f (exactly analogous to group

velocity in wave propagation), which is given by the derivative of the phase.

If the phase is given by

φ(f)= arctan

(

S(f)

C(f)

)

the group delay is given by

D(f)=
1

2π

dφ

d f
=

1

2π

S′(f)C(f)−C′(f)S(f)

S2(f)+C2(f)

which when applied to (7.2) gives

D(f)=
−1−ρ2

1+ρ2 −2ρ cos2π(f −θ)

which is negative for ρ < 0 (the root inside the unit circle) so that W ′(f)

has a greater delay, and a larger (more negative) phase than W(f). The

sequence with all the roots inside the unit circle is thus not only the most

106

Chapter 7. Digital Filters III: Differentiators, Least-Squares, and

Minimum-Phase Filters

Figure 7.4: Weights for two filters with the same (lowpass) frequency

response: on the left, a symmetric filter, on the right, its minimum-

phase equivalent. Both are shown as being applied causally.

compact; of all the filters with a given amplitude response, it minimizes

group delay, and makes the phase lag as small as possible. Such sequences

are therefore usually referred to as providing minimum-phase FIR filters.

To design such filters requires, besides approximating the desired fre-

quency response, that the roots of the z-transform all fall inside of or on the

unit circle in the complex plane. There are two different ways to accomplish

this.

One, suggested by equation (7.1), is to replace all roots outside the unit

circle with their reciprocal complex conjugates, leaving roots on the unit

circle in place. This procedure is called the allpass decomposition, be-

cause of the allpass term in equation (7.1). This equation, generalized to

contain as many such factors as there are roots outside the unit circle, be-

comes the result that any FIR filter can be expressed as the convolution

of a minimum-phase FIR filter and an allpass filter. Note that the allpass

filter itself is not a FIR filter, but would need to be computed recursively;

this is acceptable for correcting for the previous application of a non-causal

FIR filter to data (Scherbaum and Bouin, 1997).

A second approach, called spectral factorization, depends on the re-

sult that, for symmetric filters, if Wa(f) ≥ 0 on the unit circle, then all the

roots can be paired into reciprocals, with double roots on the unit circle.

The factorization consists of taking all the roots inside the unit circle and

half of the roots on it, and constructing the corresponding sequence.2 The

2 A good description of the procedure, and some pitfalls, is given in Orchard and Will-

son (2003) – though there have been difficulties with the Newton’s method procedure given

7.4. Minimum-Phase Filters 107

resulting filter will have an amplitude response |W(f)| =
√

Wa(f), which

therefore requires that the initial filter have a nonnegative amplitude re-

sponse, W(f) ≥ 0. Such a filter can be created using the Parks-McClellan

algorithm if we constrain the stopband response to oscillate around the er-

ror level ǫ, rather than (as is more usual) zero.

Figure 7.4 shows an example of filter weights for a zero-phase and

minimum-phase filter with the same amplitude response.3 It is obvious

that the symmetric (linear-phase) filter, applied as a causal filter. is less

compact than the minimum-phase filter applied the same way.

there.
3 This is one of several filters combined to produce 5-minute data from 1-Hz data

recorded with the strainmeters installed by the Plate Boundary Observatory. For more

details, see Agnew and Hodgkinson (2007),

CHAPTER 8

STOCHASTIC PROCESSES

8.1 Introducing Ordered Random Data

We now turn to sequences of random data: that is, data in which (1) the

order of the values is important, and (2) the data are random. The first

attribute is the same kind of specification that we have been dealing with

in signal processing: we have a sequence of data x1, x2, x3, . . . xn, which we

will often call, as statisticians do, a time series. As before, we assume that

the index n denotes a time t = n∆ at which the observation was made: we

are again sampling uniformly in time at an interval ∆. Obviously we could

equally well be treating a data set sampled in space or, much more rarely,

some other variable. For theoretical purposes it is sometimes useful to be

able to treat time as a continuous variable, and to work with functions x(t);

but as we will see, if we do this for a random variable things can become

mathematically extremely difficult without some further quite severe sim-

plifications. We will, as before, often want to consider infinite sequences,

maybe infinite in both directions.

The time series of data {xn} is modeled by a stochastic process {Xn}

or {X (t)}. Such a process is a family of random variables indexed by the

integer n (when it is a discrete process) or by the real number t (when it is

a continuous process).1

What do we mean when we say “random variable”? The conventional

variables we have been dealing with up to now (and which we did not, up

to now, need a special name for) were a particular kind of mathematical

entity that obeyed certain rules. Random variables are also mathematical

entities, with different rules.

A. A conventional variable is assumed to have a definite value, although

we may not know it: it might, for example, be integer-valued, real-

1 Notation alert: random variables or functions will normally be denoted by upper-

case letters, but not all uppercase letters denote random variables.

108

8.1. Introducing Ordered Random Data 109

valued, complex, or a vector. A random variable does not have a definite

value; rather, it is described by its probability distribution function

(pdf), giving the probability density over some range. The range, and

any parameters of the function used for the pdf, are however conven-

tional variables.

B. Conventional variables obey the rules of algebra (arithmetic): we can

add, subtract, multiply, or (for real-valued ones) divide them. Formally,

we can perform the same operations on random variables, but what

happens when we do is described by a new set of rules. For example,

the sum of two random variables is another one: but the pdf of this sum

is not the sum of the pdf ’s of the two variables that have been added.

Conventional variables are appropriate models for things we want to

represent as having a definite value: for example, data values that we have

measured or otherwise acquired. This makes them appropriate for signal

processing: we assume the signal has some definite value. The terms of

a sequence may not be equal to a known number (that is why they are

variables, after all), but we treat them as though at some point they will.

In contrast, random variables are appropriate models for things that are

somehow uncertain. We might be using a random variable to model the

outcome of some experiment, in which case we can think of it as one of an

infinite collection of values from which the experiment will extract a single

one. Or it might be used to model something about which we are simply

uncertain.

A key point is that the choice to model something by a random variable

is just that: a choice of what mathematical entity we decide is appropriate

to what we are studying. There are no absolute rules for this, and it may

well be that, depending on what different models are for, we might treat

the same thing as a conventional variable in one, and as a random variable

in the other.

One way to think about a given series of random variables is as being

the result of an experiment that could be repeated as many times as we

like. We say that each repetition produces one realization, drawn from an

ensemble of series that would be produced if we made many repetitions;

in that sense the ensemble is generated by the underlying random process.

So we can think of such operations as finding the expected value at a

particular n or t, as the average, over an infinite number of realizations,

of the variable for that n or t. Figure 8.1 shows realizations of a several

stochastic processes.

110 Chapter 8. Stochastic Processes

Figure 8.1: Five realizations of four different stochastic processes:

from left to right, lowpassed white noise, a random walk, a randomly

modulated sinusoid, and f −1, or “flicker” noise.

Even in discrete time the general stochastic process is horribly complex.

A single random variable is specified by a single pdf; but a set of them is

specified completely only if we have the joint pdf of every element Xn with

every other element. Suppose all the elements have a Gaussian distribu-

tion. Then for a sequence of length N the joint pdf is a function φ of an

N-vector X= (X1, X2, . . . XN)T

φ(X)=
1

(2π)N/2
det(C)exp[−1/2(X− x̄)T C−1(X− x̄)] (8.1)

This expression contains N parameters x̄ ∈ |ℜN |, the vector of mean val-

ues, and C ∈ |ℜN×N |, the covariance matrix. This is a symmetric, positive

definite matrix that describes the correlations among the random variables

Xn, and has 1/2N(N +1) values. So, to describe completely these N random

variables, we need a total of 1/2N(N +3) parameters, far more than we are

likely to have observations: even a short time series of 50 numbers would

need 1325 parameters to be fully specified, and for a reasonably long data

series of 2000 terms, we would need more than 2 million parameters. If

we instead consider continuous time the problem is almost completely in-

tractable, and such a general treatment has no practical value because it

would be impossible to make estimates of the necessary parameters, even

if the mathematics were possible – and this turns out to be very hard for

the general case (see Priestley (1981), Chapter 3).

8.2. Stationary Processes and Autocovariance 111

8.2 Stationary Processes and

Autocovariance

Since the perfectly general stochastic process is much too general to be

useful, we follow the conventional approach of limiting ourselves to a much

more restricted class of random processes: those called stationary pro-

cesses. These have the property that, while the actual observables vary

over time, the underlying statistical description is time invariant. This re-

striction can be weakened a bit, but we will consider only these so-called

completely stationary processes. Assuming stationarity (as this re-

striction is called) has the gratifying effect of reducing the number of pa-

rameters needed to a manageable number. For example, the mean value of

a stationary process is

E [Xn]= x̄

where E stands for “the expectation of”; we could call this the expectation

operator, which converts a random variable into a conventional one. For a

stationary process the mean is one number: a constant independent of n,

or of time t if the process is continuous. It is often assumed the mean is

zero, since it is a trivial operation to remove or add the mean value into a

time series, if necessary. Of course, many observational series do not look

as if the mean is constant – there may be a secular trend, as there was in

the first example we gave in Chapter 1. Stationarity is such a powerful and

useful property that one often attempts to convert an evidently nonstation-

ary series into a stationary process, for example, by fitting and removing a

straight line trend, or forming a new stationary sequence by differencing:

Yn = Xn+1 − Xn

The variance of a single random variable is defined as

σ2
X = V [Xn]= E [(Xn − x̄)2]

which defines the variance operator V ; again, this converts from a random

to a conventional variable. With stationarity σ2
X

must also be independent

of n (or t). But most importantly, the covariance between any two random

variables in the sequence cannot depend on where we are in the series; it

must look like

C [Xm, Xn]= E [(Xm− x̄)(Xn − x̄)]
def= RX (m−n) (8.2)

112 Chapter 8. Stochastic Processes

which is to say that the covariance can be expressed by a function RX ,

whose argument is the interval between the two points. (Note that though

we use a capital letter for this it is not itself random). The function RX

is called the autocovariance. For continuous processes equation (8.2) is

usually written

C [X (t), X (t+τ)] = RX (τ) (8.3)

and τ is called the lag. Observe that by definition

RX (0)=σ2
X

Also notice that, because of stationarity, one can set s= t−τ in (8.3) and the

result will be the same, since the answer is independent of which time was

selected. This yields:

RX (−τ)= RX (τ)

which shows that the autocovariance function is an even function of the

lag. A stationary process does not contain information on which way time

is flowing – it is the same if time is reversed.

For a stochastic process with a Gaussian pdf as in (8.1), we see that in

place of the vector x̄ of mean values we have a single number. How about

the covariance matrix? You may recall that the j-kth entry of C is

C jk =C [X j, Xk]
def= RX (j−k)

and so, for a stationary process, the covariance matrix has the same values

on all its diagonals:

C =















RX (0) RX (1) RX (2) RX (3) . . . RX (N)

RX (1) RX (0) RX (1) RX (2) . . . RX (N −1)

RX (2) RX (1) RX (0) RX (1) . . . RX (N −2)

.

RX (N) RX (N −1) RX (N −2) RX (N −3) . . . RX (0)















This type of matrix is called a Toeplitz matrix. So we only need N + 1

parameters, instead of 1/2N(N + 3) parameters, to describe the pdf of the

process.

You should note that just because a stochastic process is composed of

random variables, this does not mean it is completely unpredictable. Recall

the correlation coefficient of two random variables:

ρXY =
C [X , Y]

p
V [X]V [Y]

(8.4)

8.3. White Noises and their Relatives 113

From (8.3) we find the correlation coefficient between any two points in a

sequence in continuous time:

ρ(τ)=
RX (τ)

σ2
X

with a similar result for discrete processes. The function ρ is called the

autocorrelation function; it has the advantage over the autocovariance

that the variance has been removed from the definition, so that for any

process −1 ≤ ρ ≤ 1. Unless the autocovariance function is zero for the lag

τ, there is some correlation between the value X (t), and the later value

X (t+τ); we can predict something about one given the other.

So far we have considered the average of the variables, and also aver-

ages of the products of variables, (X (t1)− x̄)(X (t2)− x̄). Such averages are

examples of moments of the process. The second-order moments are the

ones involving products, and provide the variance and the autocorrelation

function (or the autocovariance, which includes both), nothing else. We can

define higher order moments, for example the third-order moments that

come from the product of three X ’s. But if the process is based on a Gaus-

sian pdf, we have seen that the complete pdf is specified by the second-order

moments alone: all the higher-order moments, if we wanted them, can be

found from these second-order moments. And even if the pdf is not Gaus-

sian, a great deal can be learned about a process from its second-order

moments; the higher order moments are rarely studied–and we will not do

so.

8.3 White Noises and their Relatives

Let us look a few concrete examples of stationary stochastic processes. The

simplest one is what is called white noise. This is defined as a stationary

process in which the random variable at any time (or sequence number) is

independent of the variable at any other time.2 It is commonly assumed

that the mean value is zero. In the discrete case we have

RW (n)=σ2
0δn0

where δ jk is the Kronecker delta symbol. In this case the random process

2 More precisely, that the correlation is zero; for non-Gaussian variables this can be

true even if the variables have some dependence. But this gets into the matters of higher

moments that we just promised to ignore.

114 Chapter 8. Stochastic Processes

Figure 8.2: Three noises and their pdf’s. All have the same variance

σ2. The top two are white noises; the random telegraph turns out to

be slightly nonwhite.

really is unpredictable: we learn nothing about the value at one time from

knowing the value at another. However, the values are still not completely

unpredictable; we can say something about the range of values to be ex-

pected based on the known variance, σ2
0
. For continuous processes, it turns

out that a white noise is singular because the variance at any point must

be infinite:

RW (τ)=σ2
0δ(τ) (8.5)

But these definitions do not completely specify the stochastic process.

At any particular time t (or index n) X is a random variable with a pdf;

that pdf will be the same for every t, but so far we have not specified it. Of

course, the most common choice is the Gaussian, for which

φ(X)=
1

σ0

p
2π

e−
1/2(X /σ0)2

Because of the statistical independence, the joint pdf is

φ(X1, X2, X3, . . .)=φ(X1)φ(X2)φ(X3) . . . (8.6)

This is Gaussian white noise which is shown in Figure 8.2.

We could allow any other pdf for Xn; suppose we choose a uniform dis-

tribution:

φ(X)= b−1
Π(X /b)

so that V [X] = b2/12. This is a different kind of white noise, as is easily

seen by comparing the top two panels in Figure 8.2. The joint pdf is given

8.3. White Noises and their Relatives 115

by (8.6) again, with the appropriate choice of φ. We have actually encoun-

tered this kind of white noise already, since it is what quantization noise

(Section 4.7) looks like. If the series varies by much more than ±1 between

samples, the value recorded is the true value of the measurement plus an

unpredictable (that is, random) amount that is distributed uniformly over

the interval (−1/2, 1/2). Since the consecutive values of the rounding error

are uncorrelated, the recorded series appears to be the true signal with a

white noise added. The noise is zero mean and its variance is 1/12. If the

last digit doesn’t change very often in the series, then the round-off noise

added is no longer uncorrelated; but then the signal is most likely not being

recorded with enough accuracy.

Another white series with a limited range is the random telegraph

signal: this one switches discontinuously between two values, say 0 and 1,

at random times:

φ(X)= 1/2[δ(X)+δ(X −1)]

Here the mean value is not zero but 1/2, and the variance is a 1/4. The ran-

dom telegraph signal is used as a calibration signal for seismometers or

other instruments since it is easy to generate electronically. A zero mean

version of it has sometimes been suggested as a model for the Earth’s dipole

moment over time scales of 105 to 106 years, but this is actually very im-

plausible because the moment is far from constant between reversals. The

bottom panel of Figure 8.2 shows a sample.

These three examples of white noise are clearly different to the eye.

Somewhat remarkably, if they are normalized to the same variance and

converted into a sound track, they sound identical – the ear doesn’t have a

very good density-function discriminator.

These three sequences were not observational; they were made with

a random number generator. We can obtain other kinds of stochastic se-

quences by filtering white noise in various ways; the series in Figure 8.1

were generated that way. Note that as consequence of the Central Limit

Theorem. filtered white noise tends to have a Gaussian distribution. Many

physical processes can be thought of as resulting from filtering applied to

some stochastic process, so Gaussian distributions are often assumed in

a signal, and are quite often. though not always, observed too. A com-

mon exception, an example of which we will see later, is marine magnetic

anomalies; these are usually heavy in the tails compared with a Gaussian

distribution.

Suppose we apply a FIR filter, of any type, to white noise; that is, we

116 Chapter 8. Stochastic Processes

convolve the white noise sequence Wj with a finite number of weights wk:

Yn =
K
∑

k=1

wkWn−k

Assume for simplicity that the mean of the white noise is zero. Then we

can calculate the autocovariance of the new sequence using the definition

(8.2):

RY (l)=C [Yn + l, Yn]= E [Yn+lYn]

= E

[

K
∑

j=1

w jWn+l− j

K
∑

k=1

wkWn−k

]

=
K
∑

j=1

K
∑

k=1

w jwkE [Wn+l− jWn−k]

=
K
∑

j=1

K
∑

k=1

w jwkσ
2
0δl− j+k,0

The delta symbol vanishes except when l− j+k = 0 or j = l+k; so

RY (l)=σ2
0

K
∑

k=1

wkwk+l =σ2
0wk ∗w−k

And so we see that the previously uncorrelated (zero covariance) white

noise Wk has become correlated. Notice that RY is zero for |l| > K .

You are invited to verify that the same result is obtained for the contin-

uous time version: if

Y = w∗W

then

RY =σ2w(t)∗w(−t)

It is possible to produce an even wider range of stochastic processes if

we use recursive filters. For example, suppose our recursive filter is

yn = yn−1 + xn

which is about as simple as you could ask for. If we apply this to a white-

noise sequence Xn, the resulting Y is a process known as a random walk

8.4. Examples from the Real World 117

Figure 8.3: On the left, a time series of water height on the shore of

the Salton Sea, showing a seiche. The right plot shows the correlation

between data at two times eight minutes apart.

or a Brownian process.3 This process is actually nonstationary, with a

variance that grows with time.

A great deal of the statistical literature on time series is devoted to

processes defined by filters; in Chapter 7 we introduced the terms autore-

gressive (AR) and autoregressive/moving-average (ARMA) as names for dif-

ferent kinds of recursive filters; and from these come the names AR and

ARMA processes. The utility of this approach for geophysical data, outside

some special cases, seems to be limited, and we shall not speak of it again.

8.4 Examples from the Real World

Instead, we look at some examples of actual observations which a station-

ary process might be an appropriate model for. Our first example is the

water height at the edge of a lake4 over several hours. The water rises and

falls in response to the wind, and because of standing waves in the basin,

there are well-defined oscillations, known as seiches. Figure 8.3 shows

nearly 10 hours of data. Note that the mean is not zero; on the other hand,

the zero level is purely arbitrary. and there is no reason not to make the

3 The “Brownian” name comes from the applicability of this process to explaining the

motion of small particles that are moved about by the kinetic motions of (much smaller)

molecules, something known as Brownian motion because it was first observed. in pollen,

by the microscopist Robert Brown.
4 A very large, shallow one: the Salton Sea

118 Chapter 8. Stochastic Processes

Figure 8.4: Magnetic anomaly profile over the eastern Pacific Ocean.

A standard geomagnetic model has been removed, so that the mean

values are nearly zero. The sample interval (in space) is 0.35 km.

mean zero. Next notice the oscillations, which are not completely regular,

but nonetheless suggest periodicity. This definitely looks like a stochastic

process, but one might be skeptical that it is stationary, given the ampli-

tude increase at about 210 minutes. However, we will stick with that model

because it is so much more mathematically tractable than the alternative.

Do these data look like a good approximation to a white noise? If they

did, values at one time would not be related, to values at other times. That

looks improbable to the eye. If we draw a scatter plot (Figure 8.3) where the

observed height at one time is plotted against the height 8 minutes later, we

see what looks like a very clear correlation; and indeed, the correlation co-

efficient estimated using (8.4) is 0.626. We used 1293 data values in finding

this; the probability that ρ would be this big in an uncorrelated Gaussian

sample5 is less than 10−180. Perhaps surprisingly, the distribution of the

data is almost perfectly Gaussian.

Our second example of a geophysical data sequence is a series of values

in space: the magnetic field measured on an aircraft flying 7 km above

the south-eastern Pacific Ocean. Figure 8.4 shows the vertical component

Z, and the horizontal components X , which is along the flight path. As

with the lake-level data, we see an irregular line with a certain amount

of order. A stochastic process seems like a good model, but there seems

to be little evidence of a regular oscillation, or even an irregular one. A

feature to notice here is that the two components appear to be related,

varying together in some fashion: there is a lag and perhaps a suggestion

of differentiation of Z to obtain X . We will discuss later how to look at pairs

of time series for evidence of this kind of relationship.

5 Found using the t test; tN−2 = 28.8.

8.4. Examples from the Real World 119

Figure 8.5: Left: estimated autocorrelation function for magnetic com-

ponent Z. Right: pdf of Z data (gray) and of a Gaussian distribution

with the same mean and variance (black).

Concentrating for the moment on the Z component, let us look at an

estimate of the autocorrelation function, shown in Figure 8.5. We do not

describe yet how that estimate was made; that will be the subject of a later

lecture. For now notice how the RZ dies away monotonically from one. This

means that neighboring values are likely to be very similar indeed, but as

one separates two samples in space, their correlation fades away so that

by a lag of 30 samples (about 100 km), they are uncorrelated. It is easy to

believe this series could be generated by applying a suitable filter to white

noise.

The histogram of the data shows something mentioned earlier: the mag-

netic anomaly data is somewhat non-Gaussian, being asymmetric, with a

large positive tail and a compressed lower tail. A test for Gaussian behavior

shows that Gaussian variables would depart this much from a true Gaus-

sian about 18% of the time: not a resounding rejection of the Gaussian

model, but a reason to be suspicious of it. The reason for this commonly

observed behavior is not understood.

The final example (Figure 8.6) is a bathymetry profile across one side

of the East Pacific Rise: another example of a spatial series, though this

would be a true time series if we used the age of seafloor rather than dis-

tance. Here the data are very obviously not stationary, because the seafloor

becomes deeper with age: as a realization of a stationary process, this is

a miserable failure. But if we remove a average trend, (the line shown),

we get a much more satisfactory-looking approximation to a stationary se-

ries, as we see from the gray line in Figure 8.6. Now in fact we should

120 Chapter 8. Stochastic Processes

Figure 8.6: The upper plot shows bathymetry along a profile perpen-

dicular to the East Pacific rise, along with a linear trend and a func-

tion where depth increases as
p

t. The bottom plot shows the “depth

anomaly” found by removing these nonstationary features.

have removed, not a straight line but a parabola, because of the famousp
t approximation to depth changes caused by the cooling of the plate as

it ages. The least-squares best-fitting parabolic curve is also shown; it fits

the observations slightly better than the straight line does, and produces a

residual that is the black curve in Figure 8.6.

Here we have done something very common (we saw another example

in the sea-level data in Chapter 1), which is to model the observations as

a steadily evolving part, plus a random, stationary part. Unusually in this

example, we have a good model for the evolving piece of the model; nor-

mally we would just take a straight-line trend to represent that. The pdf of

the depth anomaly is again not quite Gaussian – the distribution is heavy

tailed, but not enough for a test to reject it as not being Gaussian.

APPENDIX A

COMPUTING THE DISCRETE

FOURIER TRANSFORM

A.1 Introduction

As we noted in Chapter 3, the nominal form of the Discrete Fourier Trans-

form (equation 3.8), which is

x̃k =
N−1
∑

n=0

xne2πink/N for k = 0, . . . N −1

does not well express how to actually perform the computation. First of

all, as noted in that chapter, we would first compute the exponents using

e2πink/N = e−2πi(nk)modN /N ; then the formula above would imply doing N “op-

erations” (additions and multiplications) to get a single x̃k – and we would

then do this N times to get all the DFT values, for a total of N2 operations.

The Fast Fourier Transform gives us the same result with many fewer op-

erations.

A.2 The Basis of the Fast Fourier Transform

The first discovery of an FFT algorithm was by Gauss in 1805 Heideman

et al. (1985); like all the others before Cooley and Tukey’s, it was not no-

ticed. In fact, these algorithms are the same, at least if Gauss’ procedure is

updated to use complex exponentials. We now outline how it works.

The key to the whole procedure lies in assuming that N, the series

length, be a composite integer, so that we can write N = N1N2, where N1

and N2 are both integers. We will show how to compute the DFT in fewer

operations for this case; and then we will assume that N1 is also composite,

apply the same procedure, and continue until we run out of factors. The

simplest algorithm is for all the composite factors of N to be the same size,

121

122 Appendix A. Computing the Discrete Fourier Transform

and as small as possible – which amounts to requiring that N be a power

of two.

We divide the N-length sequence of data xn into N2 sequences of length

N1, and the N-length sequence of DFT values x̃k into N1 sequences of

length N2. Then we re-index the subscripts for the two sequences as

n = N2n1+n2 and k = k1 +N1k2

wheren1, k1 = 0, . . . N1 −1 and n2, k2 = 0, . . . N2 −1

We apply this indexing to the e2πink/N in the DFT expression:

e−2πi(k1n1N2+k1n2)/N e−2πiN1k2n2/N e−2πik2n1

and note that the last exponential is always one. Then the full DFT expres-

sion becomes

x̃k1+N1k2
=

N2−1
∑

n2=0

[

N1−1
∑

n1=0

xne−2πi(k1n1 N2+k1n2)/N

]

e−2πiN1k2n2/N

which we can write more compactly as

x̃k1+N1k2
=

N2−1
∑

n2=0

Sk1n2
e−2πiN1k2n2/N

where Sk1n2
is the sum in brackets: we can view this as an N1 by N2 ma-

trix, each of whose terms takes N1 operations to compute.1 Each of the

columns of this matrix is just the result of performing a DFT on a sequence

of length N −1 to get N−1 coefficients; So the total operations count to get

all the elements of S is N1(N1N2) = N2
1

N2. Then to get the final result re-

quires the second (outer) sum, multiplying the S matrix into the N2-length

vector represented by the final exponential to get a second vector of length

N1 – which we have to do for N2 values of k2. The operations count for

each matrix multiplication is N1N2; doing it N2 times makes the total op-

erations count for this step N1N2
2
. The total number of operations is the

sum: N2
1

N2 +N2
2

N1 and remembering that N = N1N2, this is

N2

N2

+N ·N2

1 Actually 2N1 operations if we count both additions and multiplications as operations;

but here and in the rest of the derivation we ignore expressions that do not depend on N.

A.3. Computing DFT’s of Real Series 123

which for N large and N2 small would be less than N2; for N2 = 2 it would

be 1/2N2 +2N.

But now suppose that N1 is composite, with N1 = N2N3, which means

that N = N3N2
2 . then we can decompose each of the N1-length sequences

in the same way, and use the same decomposition to compute each of the

DFT’s in S more efficiently. The total number of operations then becomes,

replacing the N2
1

term in the above,

N2(N2
3 N2 +N2

2 N3)+N2
2 N1 =

N2

N2
2

+2N2N

And finally, if N = N
q

2
we can do this decomposition q times, so that the

total operations count is

N2

N
q

2

+ qN2N = N(1+ qN2)

Since q = logN2
N, the operations count scales as N logN2

, or for N2 = 2,

N log2 N: a much smaller number than N2, even for N as small as 1024,

100 times smaller.

A.3 Computing DFT’s of Real Series

If we are computing the DFT of a real-valued series, we can always re-

duce the computation time, and storage requirements, by a factor of two.

The standard definition of the DFT, which is followed by almost all FFT

programs, assumes that the sequence xn is complex. Transforming N real

numbers then means transforming N complex numbers, all with imaginary

parts equal to zero – and then half the output will be redundant, because

the x̃n’s will be Hermitian. While we could replace the DFT with a purely

real transform, (such as the Hartley transform), this is not necessary. In-

stead, we represent our N real numbers as N/2 complex numbers, take an

N/2-length complex DFT, and rearrange the output to give the N/2 complex

x̃k ’s that we want.

To do this, we combine adjacent pairs of real xn’s to form our complex-

valued sequence; we may not even have to do this explicitly, because in

many computer languages (certainly FORTRAN), passing a real-valued se-

quence to a subroutine that expects complex numbers will automatically

124 Appendix A. Computing the Discrete Fourier Transform

cause this reassignment to occur. The DFT is then

Ck =
N/2−1
∑

n=0

(x2n + ix2n+1)e−2πkn/M for k = 0, . . . M−1

where M = N/2. To see what to do with the Ck’s, construct two complex-

valued sequences A and B, defined by the sums

Ak =
M−1
∑

n=0

x2ne−2πink/M Bk =
M−1
∑

n=0

x2n+1e−2πink/M

which means that Ck = Ak + iBk, If we could find the A and B sequences,

we can compute the Xk that we actually want, since

Xk =
2M−1
∑

n=0

xne−2πink/2M =
M−1
∑

n=0

x2ne−2πi2nk/2M +
M−1
∑

n=0

x2ne−2πi(2n+1)k/2M

= Ak + e−πik/N Bk for k = 0, . . . N/2−1

To get the A’s and B’s from the C’s that we have computed with out

DFT, consider

CN−k +Ck = An−k + Ak + i(BN−k +Bk)

Sine A and B are both derived from real sequences, both are Hermitian,

with AN−k = A∗
k

and BN−k = B∗
k
. Therefore,

CN−k +Ck = 2R[Ak]+2iR[Bk]

which means that

R[Ak]= 1/2R[CN−k +Ck] R[Bk]= 1/2I [CN−k +Ck]

and similarly,

I [Ak]= 1/2I [Ck −CN−k] I [Bk]=−1/2R[Ck −CN−k]

So, by computing first C then A and B, and finally X , we have achieved our

aim. We can get slightly greater efficiency using DFT algorithms specifi-

cally designed to handle real sequences (or, for the inverse transform, Her-

mitian ones), though the improvements are not large enough to be impor-

tant unless you plan to do a lot of transforms; Sorensen et al. (1987) give

both algorithms and comparisons.

A.4. Computing the Fourier Transform for a Few Frequencies 125

A.4 Computing the Fourier Transform for a

Few Frequencies

Finally, suppose we want to compute, instead of the DFT coefficients, the

transform x̃(f) for arbitrary f :

x̃(f)=
N−1
∑

n=0

xne−2πi f n (A.1)

Certainly you might imagine (correctly) that even for the DFT case, where

f = k/N, that the FFT will not be the most efficient procedure if we only

want a few values of f . But again, we do not need to do the sum as written;

by using a recursive method known as the Goertzel algorithm we need

to compute only one trigonometric function for each frequency.

We define a series of sums:

Uk(f)=
1

sin2π f

N−1
∑

N−k

xn sin2π f [n− (N−k)+1] for k = 1, . . . N

and set U0 = U−1 = 0. Then the difference between the final sum and the

penultimate one, multiplied by e2πi f turns out to be the Fourier transform

we seek:

UN (f)− e2πi f UN−1(f)

=
1

sin2π f

[

N−1
∑

n=0

xn sin2π(n+1) f −cos2π f
N−1
∑

n=1

xn sin2πnf

]

− i
N−1
∑

n=1

xn sin2πnf

= x0 +
1

sin2π f

[

N−1
∑

n=1

xn(sin2πnf cos2π f +cos2πnf sin2π f −cos2π f sin2πnf)

]

− i
N−1
∑

n=1

xn sin2πnf

= x0 +
N−1
∑

n=1

xn(cos2πnf − isin2πnf)=
N−1
∑

n=1

xne−2πinf

The point of all this is that the we can compute the Uk’s recursively, and

need to compute only one cosine, once, to do so. As above, we start with the

126 Appendix A. Computing the Discrete Fourier Transform

answer and show that it gives the result we wish. Take

xN−k +2Uk−1 cos[2π f −Uk−2]

=xN−k +
1

sin2π f

N−1
∑

N−k+1

xn[2cos[2π f sin2π(n−N +k) f]

−sin[2π(n−N +k−1) f]]

A general expression for the trigonometric functions is

2cos usin[(m−1)u]−sin[(m−2)u]= sinm u

which, applied to the sum in A.4, gives

xN−k +2Uk−1 cos[2π f −Uk−2]

=xN−k +
1

sin2π f

N−1
∑

N−k+1

xn sin[2π(n−N +k+1)]

=
1

sin2π f

N−1
∑

N−k

xn sin[2π(n− (N−k)+1)]

=Uk

a recursion that allows us to find U1,U2 . . . UN in N real multiplications

and 2N real additions; and once we have the UN−1 and UN , we can find

x̃(f).

One difficulty with this approach is that, for values of f near 0 or 1/2, it

can be inaccurate because of roundoff (Gentleman, 1969). For example, for

f = 0, the recursion becomes

U1 = xN−1

U2 = xN−2 +2xN−1

U3 = xN−3 +2xN−2 +3xN−1

. . .

Finally, we would compute x̃(0) = UN −UN−1 by differencing two numbers

that are potentially very large: this is a sure invitation to roundoff error.

There is however a simple solution to this: define ∆Uk = Uk −Uk−1. Then

the recursion in terms of ∆U is

∆Uk =Uk −Uk−1 = xN−k +2(cos2π f −1)Uk−1 −Uk−2 +Uk−1

= xN−k +2(cos2π f −1)Uk−1 +∆Uk−1

A.4. Computing the Fourier Transform for a Few Frequencies 127

and the expression for x̃(f) is

X (f)=∆UN − (cos2π f −1)UN−1 − i(sin2π f)UN−1

Now, for f small, cos2π f −1 becomes small, and the recursion and its final

processing become numerically stable.

There is a similar problem with the original recursion for f close to 1/2;

for f = 1/2 the original recursion is for which the original recursion gives

U1 = xN−1

U2 = xN−2 −2xN−1

U3 = xN−3 −2xN−2 −3xN−1

. . .

which again means (potentially) differencing large numbers. The cure is

again to define a new quantity (for which we use the same notation):

∆Uk =Uk +Uk−1

in terms of which the recursion becomes

∆Uk = xN−k +2(cos2π f +1)Uk−1−∆Uk−1

and the final step becomes

X (f)=∆UN − (cos2π f +1)UN−1− (−i(sin2π f)UN−1)

The need for three recursions complicates the process somewhat, but not

so much so as to render this method unattractive for special purposes.

APPENDIX B

OTHER READING

B.1 Introduction

There are a many books that cover different aspects of this course, but none

that provide the mix we think most useful. Most books tend to either fo-

cus on the statistical viewpoint, without much discussion either of Fourier

theory or of actual algorithms; or else focus on the signal-processing topics

with little discussion of randomness. The list here is certainly not com-

plete, but includes some of our own favorites, both textbooks and reference

monographs.

B.2 Linear Systems and Fourier Analysis

Pippard (1978) gives a particularly detailed and readable discussion of one

class of linear system: the damped oscillator (or sets of oscillators), includ-

ing a number of interesting ways of looking at the Fourier transform. Books

on the Fourier transform differ substantially in their level of mathemati-

cal rigor. The two least rigorous are James (1995), which is at about the

level of these notes, and Bracewell (1986), which is much more complete,

and is probably the best book on Fourier theory for non-mathematicians.

It emphasizes getting a “feel” for transforms, being able to visualize the

connection between the time and frequency domains, and the ubiquity of

Fourier transforms, as shown by a wide range of examples (most from elec-

trical engineering). Editions after the first one are basically unchanged,

except for a discussion of the Hartley transform, about which the author is,

in our view, overenthusiastic.

Moving up the scale of rigor, Champeney (1987) covers the Fourier theo-

rems rigorously, with due attention to what kinds of functions they apply to

and what the integrals really mean, though results are given rather than

proved. Korner (1988) is a collection of anecdotes, theorems and applica-

128

B.3. Digital Signal Processing 129

tions, mostly to do with Fourier analysis; many of the essays can be read

in isolation from the rest of the book. It provides an entertaining look at

some mathematical culture. Lighthill (1958) is a brief, elegant, readable,

and rigorous exposition of Fourier analysis and its connection with gener-

alized functions; if you want to see the proofs done right, but readably, this

is the place to look to fill in many of the details we have skipped. It is not,

however, complete: there is no discussion of convolution. Finally, for the

mathematically inclined Dym and McKean (1972) treats the subject with

modern notation, and full rigor but in a lively style. They show lots and lots

of unexpected applications ranging from differential equations to the Prime

Number Theorem. They do not make any use of generalized functions.

B.3 Digital Signal Processing

Because digital signal processing is, now, used inside devices ranging from

cell phones to satellites to DVD players and washing machines, it has a

huge literature on it; and because this subject is a standard course for elec-

trical engineers, many authors have tried their hands at textbooks. Perusal

of the relevant classification number (TK5102.9) in the library catalog will

reveal dozens of books, all with similar content, though with levels vary-

ing from introductions for computer musicians whose mathematical back-

ground may be quite modest, to detailed treatments for graduate-level en-

gineers. Many of these books address issues of finite word length and com-

putational efficiency that, while of considerable engineering importance,

are rarely relevant to data analysis. Many books also include a section

on spectrum analysis, but usually without doing justice to the statistical

questions involved.

Given this abundance, we can only offer a selection. Two basic introduc-

tions are Scherbaum (2001), which is oriented towards seismology but not

very complete, and Steiglitz (1996), which is oriented towards people doing

computer music – and thus avoids the assumption of many of these books,

which is that you are an electrical engineer. Another in this class is Ham-

ming (1983), which is very readable, and pays lots of attention to common

stumbling blocks. It is however somewhat idiosyncratic in its methods and

its coverage. One particular strong point is the especially good treatment

of what some common operations (e.g. numerical integration) look like if

viewed as filters.

Oppenheim and Schafer (1989) is a standard introductory textbook,

130 Appendix B. Other Reading

with probably all the information that you are likely to ever need, pre-

sented in a way that shows the authors’ command of the subject and how

to teach it. It is much more detailed than the books just mentioned; and it

does assume some familiarity with continuous-time theory and (in places)

an electrical-engineering background. The notation will be familiar, since

the notation in our class notes comes from an earlier version of this text.

Signal processing as done in exploration geophysics, has very different

goals and standards from the rest of the field. Robinson and Treitel (1980),

by two of the founders of the subject, begins at a very basic level, but can be

quite advanced in the later chapters, which tend to focus on special topics

the authors happen to be interested in.

B.4 Time Series and Spectral Estimation

Jenkins and Watts (1968) was long the standard text in the field, but it

is now showing its age in terms of estimation methods (the theory is still

perfectly correct). It is probably still one of the best discussions of multi-

variate methods. Chapter Four, on statistical inference, is still well worth

reading. Priestley (1981) provides a careful but readable treatment of all

the standard material with a nice balance between proof, discussion and

illustration. This book focuses on the statistical issues, and includes some

discussion of time-domain estimation. Bendat and Piersol (1986) has a

strong emphasis on estimation, particularly of response functions for lin-

ear systems. The orientation is towards engineering, not statistics.

Percival and Walden (1993) introduces univariate spectral analysis at

a reasonably high level. They cover stochastic processes, filtering, Fourier

theory, and spectral estimation, with special emphasis on direct multita-

per estimation techniques. They also cover parametric spectral estimation

and harmonic analysis. A promised volume on cross spectra has not yet

appeared. This is probably the best single book on univariate spectral es-

timation, though it is not always easy going; the authors have emulated

the inventor of multitaper methods, Dave Thomson, in the lavish use of

subscripts and superscripts, which tends to obscure the discussion.

Bibliography

Agnew, D. C., and K. M. Hodgkinson (2007), Designing compact causal dig-

ital filters for low-frequency strainmeter data, Bull. Seismol. Soc. Amer.,

97, 91–99.

Alsop, L. E., and A. A. Nowroozi (1966), Faster Fourier analysis, J. Geophys.

Res., 71, 5482–5483, doi:10.1029/JZ071i022p05482.

Ardhuin, F., B. Chapron, and F. Collard (2009), Observation of swell

dissipation across oceans, Geophys. Res. Lett., 36, L06,607, doi:

10.1029/2008GL037030.

Bendat, J. S., and A. G. Piersol (1986), Random Data: Analysis and Mea-

surement Procedures, John Wiley, New York.

Bracewell, R. (1986), The Fourier Transform and its Applications, McGraw-

Hill, New York.

Champeney, D. C. (1987), A Handbook of Fourier Theorems, Cambridge

University Press), New York.

Cooley, J. W., and J. W. Tukey (1965), An algorithm for the machine

computation of complex Fourier series, Math, Comp., 19, 297–301, doi:

10.2307/2003354.

Deakin, M. A. B. (1992), The ascendancy of the Laplace Transform and how

it came about, Arch. Hist. Exact Sci, 44, 265–286.

Dym, H., and H. P. McKean (1972), Fourier Series and Integrals, Academic

Press, New York.

Gentleman, W. M. (1969), An error analysis of Goertzel’s (Watt’s) algo-

rithm, Computer J., 12, 160–165.

Gross, R. (1992), Correspondence between theory and observations of polar

motion, Geophys. J. Internat., 109, 162–170.

Hamming, R. W. (1983), Digital Filters, Prentice-Hall, Englewood Cliffs.

131

132 Bibliography

Harris, F. J. (1976), On the use of windows for harmonic analysis with the

discrete Fourier transform, IEEE Proc., 66, 51–83.

Heideman, M. T., D. H. Johnson, and C. S. Burrus (1985), Gauss and the

history of the Fast Fourier Transform, Arch. Hist. Exact. Sci., 34, 265–

277.

Hewitt, E., and R. Hewitt (1979), The Gibbs-Wilbraham phenomenon: an

episode in Fourier analysis, Arch. Hist. Exact Sci., 21, 129–169.

James, J. F. (1995), A Student’s Guide to Fourier Transforms: With Appli-

cations in Physics and Engineering, Cambridge University Press), New

York.

Jenkins, G. M., and D. G. Watts (1968), Spectral Analysis and its Applica-

tions, 525 pp., Holden-Day, San Francisco.

Kaiser, J. F., and W. A. Reed (1977), Data smoothing using low-pass digital

filters, Rev. Sci. Instrum., 48, 1447–1454.

Kaiser, J. F., and W. A. Reed (1978), Bandpass (bandstop) digital filter de-

sign routine„ Rev. Sci. Instrum., 49, 1103–1106.

Korner, T. W. (1988), Fourier Analysis, Cambridge University Press, Cam-

bridge.

Lighthill, M. J. (1958), Fourier Analysis and Generalized Functions, Cam-

bridge University Press, Cambridge.

Munk, W. H., and G. McDonald (1960), The Rotation of the Earth: a Geo-

physical Discussion, Cambridge University Press, Cambridge.

Oppenheim, A. V., and R. W. Schafer (1989), Discrete-time Signal Process-

ing, Prentice Hall, Englewood Cliffs, N.J.

Orchard, H. J., and A. N. Willson (2003), On the computation of a minimum-

phase spectral factor, IEEE Trans. Circuits Systems I, 50, 365–375.

Parker, P. R., M. A. Zumberge, and R. L. Parker (1995), A new method of

fringe-signal processing in absolute gravity meters, Manuscrip. Geodet.,

20, 173–181.

Bibliography 133

Percival, D. B., and A. T. Walden (1993), Spectral Analysis for Physical

Applications: Multitaper and Conventional Univariate Techniques, Cam-

bridge University Press, Cambridge.

Pippard, A. B. (1978), The Physics of Vibration, Cambridge University

Press, New York.

Priestley, M. B. (1981), Spectral Analysis and Time Series, 890 pp., Aca-

demic, Orlando, Fla.

Robinson, E. A., and S. Treitel (1980), Geophysical Signal Analysis, Pren-

tice Hall, Englewood Cliffs, N.J.

Scherbaum, F. (2001), Of Poles and Zeros: Fundamentals of Digital Seis-

mology, Kluwer Academic Publishers, Boston.

Scherbaum, F., and M.-P. Bouin (1997), FIR filter effects and nucleation

phases, Geophys. J. Internat., 130, 661–668.

Singleton, R. C. (1969), An algorithm for computing the mixed radix fast

Fourier transform, IEEE Trans. Audio Electroacous., AU-17, 93–103.

Slepian, D. (1976), On bandwidth, Proc. IEEE, 6, 292–300.

Smith, M. L., and F. A. Dahlen (1981), The period and Q of the Chandler

wobble, Geophys. J. R. Astron. Soc., 64, 223–281.

Snodgrass, F. E., G. W. Groves, K. F. Hasselmann, G. R. Miller, W. H. Munk,

and W. H. Powers (1966), Propagation of ocean swell across the Pacific,

Phil. Trans. Roy. Soc., Ser. A, 259, 431–497.

Sorensen, H., D. L. Jones, M. T. Heideman, and C. S. Burrus (1987),

Real-valued Fast Fourier Transform algorithms, IEEE Trans. Acoustics

Speech Sign. Proc., 35, 849–863.

Steiglitz, K. (1996), A DSP Primer: with Applications to Digital Audio and

Computer Music, Addison-Wesley, Menlo Park.

Steiglitz, K., T. W. Parks, and J. F. Kaiser (1992), METEOR: A constraint-

based FIR filter design program, IEEE Trans. Signal Proc., 40, 1901–

1909.

Index

Amplitude of complex number, see Com-

plex numbers

Argand diagram, see Phasor diagram

Complex numbers

amplitude, 11

phase, 11

Decibels, 5

Fechner’s law, 5

Fourier series, 34

Fourier transform

symmetry relations, 22

Linear systems, 9

definition, 9

time-invariant, 9

Phase

of complex number, see Complex

numbers

sign convention for, 12

Phasor diagram, 11

Quadrature, defined, 11

Sea level

at SIO pier, 1

steric effect, 1

swell, 2

Swell, propagation, 3

Symmetry relations of Fourier trans-

form, see Fourier transform

Systems, see Linear systems

Time invariance, see Linear systems,

time-invariant

Vibration diagram, see Phasor diagram

134

