SIO 223B-Problem Set 1

1.1 A simple way to compute the derivative of a function sampled at equal intervals Δ is to take first differences. Write down the formula for the frequency response of a first-differencer, assuming the samples are taken at times $t=n \Delta$, n from $-\infty$ to ∞. Compare this to the frequency response for ideal differentiation, in both amplitude and phase. What if the samples are taken at $t=\left(n+\frac{1}{2}\right) \Delta$?
1.2 The differential equation for the position q of the mass of a seismometer subject to an acceleration a is

$$
\ddot{q}+2 \gamma \omega_{0} \dot{q}+\omega_{0}^{2} q=a
$$

where γ is the fraction of critical damping and ω_{0} the natural frequency (in $\mathrm{rad} / \mathrm{s}$). Suppose that a varies sinusoidally with radian frequency ω (which is related to the frequency f by $\omega=2 \pi f$), solve this equation to get q. What is the frequency response of this system? Compute it and plot the response (in amplitude and phase) for γ equal to .0001 (nearly undamped), . 1 (underdamped), 1 (critically damped) and 10 (overdamped). (You will find this most instructive if you plot the amplitude and its log, and plot against both a linear and logarithmic frequency). Which of these would you expect to give the high-est-fidelity record of the acceleration, assuming that we can record q directly? Will the record a better representation of the acceleration at low or high frequencies? What does the frequency response look like (for $\gamma=1$) if the input is taken to be displacement? (Hint: how is acceleration related to displacement for sinusoidal variation?). In what frequency range does the motion of the mass best reflect the displacement?
1.3 The equation for a 1-D propagating wave in an attenuating medium is

$$
e^{i(\omega t-k x)} e^{-\frac{\pi x}{\lambda Q}}
$$

where λ is the wavelength, ω is the radian frequency, and k is the radian wavenumber; Q is a measure of the attenuation. How are ω and k related to λ and to the velocity of propagation c ? Considering this as a linear system (input at $x=0$, output at x, what are the amplitude and phase of the frequency response? Suppose c is $8 \mathrm{~km} / \mathrm{s}$ and Q is 100 ; plot the amplitude and phase of the frequency response for x equal to 1,100 , and $10,000 \mathrm{~km}$. Use dB for the amplitude, and a log frequency scale.
1.4 Suppose we feed a real sinusoidal input into a system that is

- Slightly nonlinear: $y=x+\varepsilon x^{2}$, with ε being small compared to typical values of x.
- Slightly time-varying: $y=x\left(1+\varepsilon \cos 2 \pi f_{0} t\right) ; \varepsilon$ is $\ll 1$. Describe the output in each case, as seen in the frequency domain. (A transform should not be needed-and you may find it better, for this problem, to use a cosine, not complex exponentials).
1.5 What is $\int_{-\infty}^{\infty} \frac{\sin (\pi m(x-y)) \sin (y)}{(x-y)} d y$, for arbitrary m ? (No integrals needed: use the Fourier theorems).
1.6 Using the Fourier theorems (no integrals if you can help it):
- Show that the Fourier transform of $\frac{\sin \pi t}{\pi(t-1)}$ is $-e^{-2 \pi i f} \Pi(f)$.
- Find the convolution of $e^{-a t^{2}}$ with $e^{-b t^{2}}$.
- If $X(f)=|\operatorname{sinc}(f)|$, what is the autocorrelation of $x(t)$? (Note that you do not need to find $x(t)$, which is not $\Pi(t)$.)
1.7 Let $E[x]$ and $O[x]$ be the even and odd parts of $x(t)$, and \mathbf{F} be the Fourier transform operation.
- Show that

$$
\mathbf{F}[x]=2 \int_{0} \infty E[x] \cos 2 \pi f t d t-2 i \int_{0} \infty O[x] \sin 2 \pi f t d t
$$

- How is $\mathbf{F}[\mathbf{F}[x]]$ related to x ?
- Show that $\mathbf{F}[\mathbf{F}[\mathbf{F}[\mathbf{F}[x]]]]=x$.
1.8 What is $\int_{-\infty}^{\infty} \delta(a t) d t$?
1.9 A seismic body-wave pulse in displacement is described by a half-cycle cosine:

$$
x(t)=\left\{\begin{array}{cl}
\cos (\pi t / \tau) & |t| \leq .5 \tau \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the transform of this pulse. Define the "corner frequency" to be the frequency at which the zero-frequency value of the transform crosses the high-frequency "asymptotic envelope" (this is the line [on a log-log plot] that successive maxima of the absolute value of the transform touch, as f becomes large). What is this frequency? (You may find it helpful to make a log-log plot, since then it will be clearer that we are fitting two aymptotes, the zero-frequency value being one; but the result can be found analytically).

