Basics of the awk Programming Language

Introduction

We now turn to another Unix toal, the ek procramming languape 1 have cho-
gen this languape as the firet cne we will digcuss because it has few feabures but
enough to be useful: 1 certainly uee it for lobe of the “=mall taske" that often
turn up. Also auk is quicker to learn becanse it iz an “interpreted” language;
the awk proces=or reads what you write and execules it as it reads. The eyele
of writling a program and fixing errors thue iz relatively quick; =ince learning a
programming language, and developing code, i= largely about finding errors,
this learning gocs quickly.

T digrees briefly, many other languages are not interpreted: first, they
are converted [room what youn write to what the computer execules by by a
campiler, In the 2implest case, the compiler produces odjeef code that can be
executed by the computer directly; more often, this code i= first linked with
object code for other programe to produce the final execafalble. The ohject
code, being directly interpretable by the computer, is very fast; but the step
of firet compiling the object code itself takes time. Interpreted languages are
mnch #lower Lo run, but iine for small tazke where the computational time will
be much legs than the time spent on development.

These notes, like the obthers 1 have prepared, are nol complete; auk has
many features I will not discuss. The goal is to provide encough that vou can
do useful thinge with auk programs — and more importantly, enough for vou
to et the feal of what it is like to write programs. Section describes 2ome of
the things that [do not cover and that you might want to learn about,

A First Example

Meost introdoctions to ek sbart with itz ability to mateh and print patterns,
which makes it a more powerful version of aed. 1 will instead start with a
numerical example, as it is easier to =ee what is being done. Por historical

reazans!

angles are often writken in sexapoeeimal notation, in degreess, min-
utes, and seconds, with the last being decimalized: for example, 23°41718",
But most trigonometric functions take arguments in either decimal degrees or

radianzs. The conversiom is just arithmetic, which we can program in ek as;

BEGIN{dr=3.14158285/180.}

! Mamey, that the Pabylonians vsesd base-80 notation, and ako wers the firsdk as
Eronomers, who uses] angks to describe where Ehings were.

{
d=§1+($2+33/60) /60
print d,dr#d

t

(we use thizs font for program code). If we put this in a file called hal:-:,rz we
could then run it as follows:

% awk -f baby
2341 18

23.8882 0.413424
12 34 kA

12 5822 0.219801
G0 G0 G0

a6l .01y 1.054594
100

1 0.0174533
oon

a0

1300

1.5 0.0281799
-100

-1 -0.0174E33

-1 300

-0.5 =0, 008TF26EL

!

What is poing on here? The shell invokes the ek interpreter, for which
a —f fag means “what followsz is the name of a file of awlk commands to be
interpreted”. The first thing the interpreter sees i= a BEGINL, which means “run
the following commands until you =ee & }7. There i= only the one command,
which setz the variable dr, used for conversion from degrees to radians,® The
gocond pair of braces mean “read in a line from standard input, perform the
commands between the braces, and repeat thiz until there are no more lines"
Typing at the terminal, we signal “no more lines” by hitting the Cnbrl-1D key.

For each line, awk assigns each field (anything surrounded by white space,
the etart of the line, or the end of the line) to a variable; the nm-th field is
referenced] in the program by the variable $n. These variables can be character

% The name is decivesd From the history just menbionesd.,
* The: = sign means “assign what is cn the rght to the sriable on Ehe lei ™,

sbringz or numbers; auk decides what thev are depending on what yon do with
them. So, when our first line i= typed in, £1 i= 23, $2 i= 1, and =0 on. The
next commands do the arithmetic, asgigning values to d and dr+d, and then
printing these valuee out a= 23,6883 0.413439, Subzequent lines are handled
the same way. Mole that we write the expression a= §1 + (32+83/80) /0,
using what is called a nested arrangement, with parentheses to set the proper
arder of operations.

Control Flow

Looking at the various inputs and outputs, we see one oddity and one error.
The oddity ie that the program is perfectly happy to accepl expressions =uch
a= B0 80 80, which in proper notation would be 61701007, But since we
geb the right answer we can ignore this as harmless, However, the program
doee not handle negative values properly. An angle of —1°30°00% should be
interpreted with the minutes and seconds having the =ame sign as the degrees;
the computer, as it does all too often, hag done what we asked [or, not what

we wanted, Thiz ie not difficult to fix, and introduces an example of corfrol
o

REEGIN{dr=3.14153285,/180 .}

{
if (%1==0)1 d=51+{E2+3§3,/60) /80
ifiF1<0) d=F1-{E2+33/80) /80
priot d,dr#d

I3

which gives:

% awk -f baby
-100

-1 -0.0174E33
-100

=-1.5 -0, 0261795
p

The =tatement
if (romelifing)

causes what follows it to be execubed if semetfing is agsigned the value of TROE.
“What follows™ can be a single statement, as shown above, or a number of

statements held together by braces; the awk program could as well be writben
as

BECIN{dr=5.14153285,/130.}
{
if (f1==0) {
d=81+{E2+33/60) /60
1
if (%1<0) {
d=51-(82+53/680) /80
1
priot d,dr+d
}

The indentation in front of each line i=2 meaningles= o the computer — butb it
is well worth your while to use it to make the program more obvious o wvou,
for example by indenting groups of statements, a=s shown above, rather than
by writing {for example)

EECINA{dr=3.14158285/180 . Mif ($1>=0) d=%1+(F2+$3/80) /&80
if(f1<0y |

d=§1-(32+§3/80) /860

t

print. d, drsd}

which is the same to the computer, but harder to read.

Truth and Falsity

[t iz worthwhile to go & little deeper into the part between the parentheses
in the if () statement. Again, what happens here iz that the auk interpreter
looks ab what ie there and evaluates it; we can think of the material between
the parentheses as an expression, just like an expression in arithmetic, but
whoee value is either TAUE or FALSE: such an expresgion is called a logical
variable. A statement =uch a= 1f{d>0) 4 i= equivalent to

yo = (d»0)
if (yo){

We need to first consider what form the expression must have to e accept-
able to awk. arithmetic expressions are acceptable (that is, can be understood
by awk) if they make genge algebraically:

(3. 1dsatbssdlfcd + d - nfw

makes sense’ bt 4y does not,

B0, whal are acceptable forms for truth-valued statement=? The penearal
form is variables connected by logical operators. The available logical op-
erators are listed in Table | and deseribed in terms of what makes the averall
expression true, given the logical values (Lruth ar falzity], or relative numerical
or abher values of the variablez on either side of the expression. The first four
operators in Table are basically the same as the algebraic ones, Mote that
these can, in principle, be applied to other kinds of variables than numerical
values, though unless vou know what you are doing this is not a good idea;
for example, iz Lhe character slring finagle greater than flange?

The next two operators evaluate if the wvariables are the =ame or nol.
This might mean “have the same numerical value™, bul extends beyond this
ta, Tor example, pairs of character strings. Remember that “the same ss”
includes non-printing characters; * and " [with blanks] i& not the same as
“and” (without).

Motice that ==, meaning “has the =ame value ag™ i not at all the same
az = which means “assign the valoe on the right to the variahle an the laft.

1 Hemembering that xeen is whal is writben as ©7 in algebic notation,

Oiperabor Mame Mleaning

= greater than True if previous variahle excesds fol-
lowing cne

< le=s than True it following wvariable excesds
previons one

= reater than or equal to Tre il previows variable exceads or
aquals following cne

<= legs than or equal to True if following variable excesds or
aiquals previous one

== ciqual to True il previous variable equals fol-
lowing cne

I= not equal fo True if previous wvariable does not
aqual following one

i anc True if both flanking variahles are
frue

I or True il either anking variable is true

Table 1: Logrical operators in awk

In mv experience, confeion between these i= eapy when lyping, and can lead
to quite mysterions behavior, Suppose you wanted if (x==1), which means
“cdo the fallowing if x is 17, but type if (x=1) by mistake. Thiz will cause
very different behavior, because 1f (x=1) evaluates the statement x=1 in bwo
way#: it as=ipns © the value 1, and as=ipns the statement the value TRUE - s
whatever the if controls, always happens, with x given a new, fixed value into
the bargain, The stubborn refusal of the program to ereate different values
can he very puzzling.

The last two operators are for logical variables; while we do not usno-
allv =tart with the such variables, they often ocour a= intermediate values
in a compound statement. For example, x»1 and y<=0 both evaluate as
logical variables, from which we could form a compound statement such as
(xx1) | | (y<=0), which would be true if either substatement (the first or the
la=t) wag true, or (x»1)&& (y<=0), which would be true only if both (the fimst
and the la=t] were true.

Including awk in Scripts

S0 far we have assuwmed that the instructions For auk will be placed in a
separate file, and that we will tell awf to read these instrections using awk —f
file. Bul in fact we can include the instructions with the invoecation of ausk,
cither at the terminal or in a seripk; unless you are doing =amething simple,
or never make typing errors, you should use a =oript. As an example, il we
rewrite our baby seript to include the invocation of auwd, the file baby would
e

awk 'BEGIN{dr=2.14158265/180.}
{
if (§1»=0) d=%1+($2+33,/60) /60
if (#1200 {
d=81-($2+33/E0) /B0
i}
print d,dr+d
}e

and we would run it by ficst making it executakble with chmod and then running
it:

% chmod +x baby
% baby

-1o0

-1 -0.0174533
-1o00

-1.5 -0.02E1793
%

[neluding the invocation and the commeands in the game file is best: vou don't
lcee anvihing by including the invocation of awk in the file. Since you will
need to do so if there is more than one invocation of awk in the seript, it is
just as well to make a habit of writing awf into any script that use= it. In
these notes T will penerally not do this, but that i= only to save space.

Cine gqueetion that is best addressed here iz how to put a shell variakle
(from the command line of the script) into awk: to do so, equate a variable
name in awk to a shell variable just after the ewk invocation. For example,
we can modify the abowve geripl to work in some obther baze than 60 by writing
it as

awk ‘BESIN{dr=3.141592EL/180.}
{
if (F1»=0)1 d=81+{%2+33/base) /base
if ($1<0) {
d=%1-({$2+33/base) /ba=a
1
print d,dr#d
}' baze=%1

which will put whatever you type as the firsl command-line argument into
the variable base. With this modification, we could accomplish the totally
pointless tazk of poing from decimal to decimal:

% baby 10

123 4 §

123.45 2. 15461
%

Mote that the variable cannot be used in the part of the ewk program just
alter the BEGIN; it i= only vizible in the main loop and alter. [There is a way
arcunid this, bub yvou'll have to laok it up).

Variables

U'p to now | may seem to have been vague about what kinds of variables
there are. This iz becausze, though ewk has two bypes of variables, it is very
permissive about assigning them. You can pretty much use any name for any
type of variable. The main types of interest ara:

A

Mumeric: these are just like variables in algebra; they are assumed to be
real numbers, though with finite precision,

. Btring: theee are =tringe of characters, The string 9 is distinet from the

numeric value 9 writing x = 9 as=ignz a numeric value to x, while writing
% ="8" azsirns Lhe =ingle character 9 to x.

. Logical: we talked about these eatlier, but [should now reveal, for the

gake of accuracy, that awk does not actually have such a variable bvpe;
instead TRUE iz represented by any non-zero numeric value, or any non-
empty etring value; FALSE is represented by zero (numeric) or the empty
sbring "".

Oibwiously, there iz plenty of opportunity to get into trouble if you try to

mix numeric and =tring variables — which you can do. And awk will decide
what type a wvariable iz depending on what you doowith it. For example,
consider the following program fragment:

x="g310"

y=233

E=THY

print x,¥,=
y="233"

E=X+Y

print x,y,=
z=rt+l+y+l

print x+1,y+1, =

which produces the oubput

SI0 233 233
SI0 2332 233
1 234 235

showing that the =tring “233" is convertad to the numeric value 233 when it
i& included in an addition.

Ho Tar | have discussed variahlez that wvou, the programmer, are free to
make up and assign. Bulb amk also has preset variables that relate to the
lines it reads in. Mlost of these are strings, but again could be interpreted as
numeric if appropriate. As noted in Section |, the variable 3o means “the n-th
ficld on the input line™; the variable 30 means “the entire input line™. A field
is a string surrounded by feld separators; by default these are blanke and
tabe (plue the start and end of the line). The variable NF i the number of
fields cn & line; the variable NR (the “record number™) ie the number of the line
read in, starting with one. 5o an awk program to print out lines 25 through 44
would be {if (NE>=258&NR<=44) print $0}. The final named variable vou
are likely to need is F8, which contains the value of the field separator. I, for
cuample, you wanted to treat ss geparate fialde 2tringe that contained bhlanks,
but were =eparated by tabs, vou would writke FS="TEE" at the =tart of the
program (in the part done by the BEGIN statement).”

Numeric Operations and Functions

Though awk was originally intendex] more for dealing with character strings
than with numbers, it has acquired encugh mathematical capakility to be
useful for simple caleulations. In addition to the nsual arithmetic operators,
+, -, *, and /, we have already encountered exponentiation ##, Another
arithmetic operator is %, which meanzs “produce the remainder after dividing
the previous variable by the following one™ 3o, for example, 162 i= 1, 2%1 is
0, 99%9 0= 0,997 i= 1, 2.1%1 i 0.1, 2.2%2 s 1.2, 10.3%2 i= 1.3, 10, 2¥5 i= 0.3,
122345678955 is 0, 10.3%.1 i= 135778 = 1015, and 122456T88TEL432165E
i 1. The last two cases show that the internal arithmetic is nob infinitely
precise: the answers should both he wera.

A function related to the above i= int{x), which returns the integer part of
%, an operation usually called truncation. The truncation is always bowards
wero, B0 int (1,23 i8 1, int (0.5) is 0, int (0. 998) i= 0, int{100.33 i= 100,
int(-1.2) is-1, int{-2.999) iz -3, and int{-0.1) i= 0.

Built-in functionz in auk inclode the vsaal elementary ones: the equare
oot 2qrt, the exponential exp, the natural log log, the sine and cosine ain
and cog, and the two argument arctangent atan?. The last one, if called as
[say] atan2(y,x), evaluates the arctangent of g/, but keeping the signz to
geb the correct angle between 0 and 27, So, for example, atan2 (0.0,1.0) is
07, atan2i0.5,1.0) is 26.6565°, atan2(1.0,1.0) is 457, atan2(1.0,0.5) is

® 0F course, you woukd pres the TABR kev, not fype bhe lebbers TAR,

10

G3.435°, atan2(1.0,0.0) i= 90", atan2(-1.0,0.0) = -90°, atan2{0.0,-1.0)
5 1807, aten2(-1.0,-1.0) is -135°, atan2(1.0,-1.0) is 135°. [Actually,
the vahies are returned in radians, but 1 have converted them to degress [or
clarity. |

Finally, awk includez a random-number penerator, or more correctly a
paeundorandom number generator, or PANG. This is a function that, every
time it is called, returns a numerical value betwesn zero and one, computed
g0 that sueceesive values are unrelated to each other, and a latge number of
values will be unifocrmly distributed over their possible range, The reason for
the “peeudo™ is that these numbers are in fact completely determiniztic: they
are compubed using arithmetic in such a way as to produce the properties just
griven. This means that if we had an ewk program called random

{
for(i=1;ie=81;i++) {
x=randf)
Frint x
}
I3

every Lime we ran the line echo 10 | awk -f random we would get the same
10 numbers." The way around thizs is to know that the =equence cutput by the
PANG is conbrolled by an initial value, called a seed. Setting different values
aof the seed will produce completely different sequences. The sead is =2t within
gk nsing a function erand. Calling srand (x) will set the =esd value to x;
calling srand{} will set the seed to a value that depends on the current date
and time, and thuz will be different every time vou run the program.

Looping

We now return to control How, to discuss the other main form of it, which is
looping: that is, repetition of the same =2t of commands, over a specified range
of some variable. Suppose (to take a very simple example) that we wanted to
print aut the first o powers aof & given number. We asgome that we will bvpe
in the number, and the number of powers; then the auk script [call it power)
wonld he

{

“1 get 0.2377E&, 0201066, 065814, 0152208, 0585527, 0196475, 0A10G22, 0172521,
O.dEd%83, and 0151563,

11

for(i=1;i<=$2;i++) {
print EHls*i
1
I3

% awk -f power
24

2

4

2

16

a8

3

4

27

a1

243

729
2187
=1=120|
255
2.5
.26
15.625
39,0825
a7 .6LhEZ2

!

here the forf{i=1;i<=32;i++) { statement iz the start of the loop, which is
closed by the b The for statement has three parts, which set the =tarting
value of the looping variable, the range of values for which the loop will he
repeated, and the increment to the looping wvariable each time the loop is
execulbed. The expression i++ is equivalent to i=i+1. So the loop is executbed
until i is inerementedd to a value for which the middle statement is no longer
true; then amk exit= from the loop, and reads the next line of input: this
reading of lines i an implicit loop, al=o called the outer loop of the procran.
[t may be appropriate, when using awk for numerical purpoees, nol to u=e
this cuter loop at all — or rather, to use it onee, just to get the program to
execute. Here, for example, i= a script to write 1000 random numberns;

echo = |

12

awk ‘BECIN{srand()}
{

for{i=1;i<=1000;i++) print rand()
b

Input and Output

Our examples up to now have uzed the print statement for output. But ewk
can algo print in a variety of specified formats, using the printf =tatement.
[T vou know O this will be familiar; if not, it won't.

The bagic eyntax of this statement is

printi” formalting information” variable , variable, . ..

whare whal iz betwesn the ""s is material that will be printed aut literally, anid
format specifications for how the variables are to be printed. Everyihing
that iz not a format specifier will be printed as given. this literalness extends
to the newline character; if vou want this string at the end of a line, vou
must specify it by including a o at the end of the formatting information. In
fact, you can include Ao anywhere in the formatting information; one priontf
statement can print more than one line,

The format specifiers all start with a %. The simplest is ¥=, which means
“print as a string”. So printf"keh\nis\nisi\n",8l,82,82 would print the
three =tring variables on three lines. (The number of format specifiere must
match the mumber of variables). [f the 8 i= preceded by a number, the string
will print out using at leazst that many epaces; if 81 i less than 20 characters
long, printf"¥{20s%n", 81 would print 21, after enough epaces to make up a
total of 20, (If 81 i more than 20 characters long, this specification would
print it in full, with no additional spaces]. Preceding the number by - (for
example §-202) makes the string left-justified instead.

There are a large number of ways to format numbers, The specifier §d will
output the integer part of the variable; again, a number will give the number
of spaces, and a — will cause left justification. So il you are writing integers of
logs than (say) 9 fgures, a ¥9f will print them in a nicely justified column. IF
vou precede the number with a zero, the value will be written oul with leading
weros; for example, ¥02d would write the value 22 as 022,

The specifier £ will output the variable a= a decimal value, with the number
of decimal places being set by a number following a period. For example, % .4
means “print a value with four decimal places”. In this case, any number before
the period =ete the total number of characters to print, and a -before that sets

13

the justification: ¥-10.8f will use cutput 10 characters at least, lefi-justified,
and with G decimal places,

This iz all probakbly better shown than outlined, so here i= a program that
uses a range of formats, followed by ke oolbpot.

echo 3.141582653589748 |4

awk *{pi=§1
g="pi and pi*+40 are "
FL40=Fpi%+40
Friot =,pi,pid0
printf"fa Xf %f\n",s,pi,pid0
priotf"fa %.4f ¥.4f'\n",s8,pi,pid0
priotf"40= Y.4f %.0f'n",=,pi,pid0
priotf"}{-40s ¥ . 4f ¥ 4f\n",s,pi,pid0
printf"fs X.6f ¥d\n",=,pi,pid0
priotf"fa ¥%.13f ¥.4f\n",=,pi,pidd
printf"pi is %.4f and pi*+40 is ¥.4e'\n",pi,pid0

]..l
pi and pi*dD are 3.141605E3EESTE T.ER1I1e+19
pi and pirdl ee 30141603 TELII1422051EZAN4E] D COOI00
pi and pi*4d0 are 3.1415 TEPI1214330E152084.512. 0000
pi and piasdD scm 3. 1416 TS50121432061EZ0S4ELD
pi and pi*440 ara 2. 141E TER1ZI4230E1ESEESELR O000
pi and pi*dD are 3.141503 T.60101e+19
pi and pi¥40 are 3. 14150DEEIEENTICOOT TSOLZI1422061EZSSELR Q000

pi im 3.1415 and pi®edD is T.EQ1Za+l9

String Operations and Functions

Section deseribed a eet of operations [arithmetic, mostly) and functione for
numeric variables, Bub awh has similar capabilities for string-values variables.
The only operation involving string variables ie concatenation, which is done
with no symhbal at all; if we write

a = "Colorless green ideas
b = "zleep furicusly.”
c=ab

a wolld he have the (string) value Colorless green ideas =leep furiously.

This has cne unexpected consequence in using print =tatements; if vou
write priot 1 F2 these two variables will appear without a =pace between
them; you must write priont £1,%52 to get a space,

14

More interesting are the various functione that take string-valued wvari-
ables as arguments, The simplest are toupper (siring) and tolower (siring),
which return the string value with all the letters =et to uppercase or lowercase
respeckively.

In my experience one string function that sees a lob of uze is substr, which
has the syntax

a = sgubstrisiring, nafert, niake)

where afring i a string-valued variable, and m&farf and sfale are numeric ones
(which may of course just be numbere]. Thie function returne {pasees to a
in the example] a total of mfeke characters from afrimg, starting at the one
numbersd] pafart, Bo, extending our example above

= "Colorless green ideas
"gleep furicusly.”
=ah

= gubstric,1,11)

= substric,15,15)

[T PR i T = o <
|

would make d equal to Coleorleas g and e equal fon ideas sleap f.
Using the substr function on the awk variable $0 (which represents the
entire line read in) i a great way to get parts of a seriee of lines that appear

in different columneg, if the blanks cannot he used as geparatomns. For example,
lines 4 through 10 below come from the southern California earthoguake catalog

1 2 3 4 5] T 8
LZ34EETEICL RIAEETEROL 234657 B 22456 TER0 1 234 5ETHA 0L 23AEST 001 224ES TER L S245E TS0
Tear Ma Dy Hr Hn Sas Lat Lang 0 Hag Cap N Err CID
1590 10 16 D9 4E 44.1F =4 3E.54-115 15.26 & 7.1 0.02 EE .15 DLOBSEZ
LSd0 10 16 D@ 47 43.T6 =2 13.92-116 39.50 0 4.7 6.00 11 0,53 3EITIER
1590 10 16 D@ 50 4d.16 34 13.35-115 Z1.96 € 3.0 §.33 10 0,35 3EITIES
1590 10 16 D@ 51 48.3% =4 26€.71-115 16.82 & 4.3 0.25 E1 .10 3EPISI6
1gd0 10 16 D@ 52 15.BD 34 36.B4-115 LT.16 € 4.3 .00 13 0.5 3EITOED
1§90 10 16 D@ 52 B3.07 =4 30.13-115 12.1B € E.Q §.00 2 0.3 3EI0EAT
Lgd0 10 16 0@ 53 B4.0F B4 37.02-115 L7.34 ¢ 4.3 2.71 20 0.5 3EITATO

[hawve used the first three lines to show the numbering along the line, and the
labele.” Unfortunately, there is no space between the minutes of latitude and

the degrees of longitude; 80 to convert these coordinates to decimal we would
nead

latd=%7

" That the number of charmcters goes bo 80 is o vestige of a much older technology,
namely the #ioalumn punch curd i rodoced by THR in 1928,

15

latm=substr{$d, 239 ,5]
lond=substri$0, 24 ,4)
lonm=%2
lat=latd+latm/E0
lon=1cnd-1onm/ B0

But what if you want to get all the characters from [(sav] number 13
to the end of the string? Then you need the length function, which is
length (atring), and returns the number of characters in the string, With
this, getting all the characters from 13 on, regardless of the string length,
wonld be done with subetr(string, 13,length (afring)-12). You need the
=12 because the lemgth is counted inclusively: if it were 13 characters long,
yvou wankt one character, not wera.

The next two functions we congider are index, and match., The firsl one
haz the syntax

n = indexfstringi , siring2)

which returnzs the character number for which sfring2 matches stringl, or zero
if it does not, For example

"Colorless green ideas
= "gleep furicusly.”

ahb

= index{c,a)

= index{c,bl

= index{c,"green ideax"
= index{c," (Noam Chomsky)")

o B H O o @

would eet & to one, o to 23, and m and o to zera. The second hag the syntax
n = matchistringi , regerp)

which meturns the character number for which the regular expression finds a
makeh to the skring.

Arrays

We fini=h with a discuzeion of arrays: that is, set= of variables, each of which is
asgociated] with an index, The most familiar example of this i probably that
aof a vector, which iz a callection of & numbers 24, e, .2, each associatbed
with an integer from 1 to N, As vou might imagine, awk allows both nuwmeric

I

and string variables to be indexed, with the syntax being var[indez]. So, for
example, we can refer to variables in an array in statements such as

al[l] = 3.14%%8
alz] =2
b = ali1]lfal2]

where the sige of the array is set by how many indexed variables we want to
refer to, with awk kecping track of this as it goes,

As an example, here is an awk procram that reads in lines, each of which
haz some number of numbers on it, and returnz the exponentialz of these
numbers, with no mare than three on a line

awlk *q{

for(i=1;i<=NF;i++) {
out [i] =expi$i)

t

forii=1;i<=NF;i++) {
priontf"%20.3f ",out[i]
if (i¥%3==0) printf"\n"

t

if (iYNFL=00 priotf"\n"

]..l

The first for loop loads the array;, the next one printz it out. The priotf
statements are arranged to produce a space, with a newline only every three
values; the last priontf adds a newline at the end if one was not just printed
cut. If we wuge this seript to read from a file that containz

1234558785910
0.1 0202040506 0.70.80.09
".l.'l."p;l."l
2.718 T.388 20,086
L4 B8 145.413 403, 420
1088, B33 2980, 958 41032, 084
22025 . 4668
1.105 1.221 1. 360
1.482 1.644 1.822

2,014 2,225 2,480

17

There is a string function aplit than can be useful in filling an array; this
has the syntax

n —
splitistring, armuy, separator)

which returns the number of element= in the string separated by the separador
string, and puts those elementz into ermy. Suppose, [or example, that we
have datee given (as in the earthquake catalog above) in the form of year,
month, and day, and want to convert these to year and day of year. An awk
geript for doing this would he

awk "EEQIN {zplit("o 31 58 30 120 151 1E1 212 243 273 204 334" .mth)}
1

yr=f1

day=mth [£2]+423

if (yTia==0kimth [$2] >=E3) day=day+1

Frint yr. day
}r
The part execuled hefore reading setz up an array of the number of the cumu-
lative number of davs hefore each month. The main loop computes the day
of the year u=ing this and the day of the month, with a correction for leap
vears,”

You might wonder if the indicez in an array have to be numerie — and they
do not. An array that uses strings for indexes is called an associative array,
and can be very useful indes]. Here i= a simple example, for converting dates
af the form 13 May 2008 into a year and day of vear:

awlk EESIN {

month["Jan"] = 0
menth["Feb"] = 31
month["Mar"] = 59
month["Apr"] = 80
month["May"] = 120
month["Jun"] = 151
month["Jul"] = 181
month["Aug"] = 212
month["Bep"] = 243
month["Oct"] = 273
month["Hovw"] = 304

® It = convenient Ehat, according bo Ehe Gregarian calendar, all vears from 1801 through
A9 and divisible by A are leap years.

1=

month["Dec"] = 3534

I3

{
yr=33
day=month [$Z] +§1
if(yrid==0kfmonth [$2] »=52) day=day+l
Friot yr, day

3

which is very much the same a= the previous example, but shows how we may
incese by =2tringes.

You may now be wondering how, if the index is not a number, it iz possible
to step through it as we can with numeric indices — it i=sn't, but awk provides
a syntax that amountzs to doing thie, First of all, there is a logical expreseion

ifem 1o armagy

which i TRUE il ffem iz one of the indices of armay, and FALEE obher-
wise., For example, in the last example, "Jul" in month would be THRUE: (&0

if ("Iul"™ in month) would cause something to happen], whereas 181 in month

would be FALSE.
Secondly, we can say

for(wariable in array)

which will canse the variable 1o cyele through all the indices of the arrav. We
could, for example, get the weather for each menth™

awlk EESIN {
month["Jan"] = "Ice and snow"
month["Feb"] = "Hail and sleat"
month["Mar"] = "Wintry wind"
month["Apr"] = "Endleszs showers"
month["May"] = "Froet and hail"
month["Jun"] = "Aains and never stops”
month["Jul"] = "Dccasional bright intervals"
month["Aug"] = "Cold and dank and wet"
month["Bep"] = "Mist and mud®
month["0ct"] = "Wind and slush and rain and hail®

® Modified fram a song about Ehe English weather, by Michasl Flanders and Donakd
Zwann, and the BEC weather forecasts.

1%

month["Nov"] = "Fog and dark"

month["Dec"] = "Freezing wet®
3
{

for{$2? in month) {

print month[§2]

F

b

Things Undiscussed

[have left out a great many things in this discussion. Here are a few that
might be worth looking inta:

l. Control Flow. There are a number of other kinds of loops, such as the
do-while, that can ke useful.

2, Imput and Output. The getline statement provides a uzeful way o
read information in from a file other than the one vou are piping to the

Ak PTOETAITL .

