Filenames, globbing., greping,
and regexp

In these notes we deal with scane [(2lightly] interrelated matiers: conventional
filenames in Unix; how the =hell can handle multiple filenames by using gpecial
characters [globhing); and the family of grep programs for extracting lines
fromm files, which also nee gpecial characters to represent ranges of poesible
combinations. The Unix term for such a uze of gpecial characters iz regqulor
cepreasions, oflen shortened to regerp. These can be compact and powerful

and ag a conesgquence very obecure,

File Names

We start with file names. By degign, there are not many restrictions on this,
but there are same:

l. Mames {(on the Mac) can include spaces, but this iz etill something to avoid,
gsinee most Unix routines assume thal a space endz a name.

2. Likewise, names should not contain any characters that have special mean-
ing to the shell, for example T#-C) | [1. The safest approach is to stick to
letters and numbers, and use . or _ for eeparators,

A The Mae OF has a very sbrange approach to upper and lower cage: it shows
case differences, but does not believe in them. That is, if you creale a file
called tmp, it will dizplay that way; likewize i, in another directory |sayv the
one above] you create a file called Top, it will display that way, However,
if yon attempt to create files with these bwo names in the same directory,
vou will get;

% cat filel » tmp

% 1s -1 top

B A s 1 agnew adnin 71 Oct 1 23:57 togp
% cat filel » Tmp

tegh: Tmp: File exista.

% 1s -1 Top
B A s 1 agnew adnin 71 Oct 1 23:57 Tng
% 1s -1 tnp
-ra¥-r—-Tr—— 1 agnew adnin 71 Oct 1 23:E5T7 tnp
% 1s -1 Top top
“rW-r=—-T-— 1 agnew adnin 71 Oct. 1 23:57 Tngp
B A e s et 1 agnew adnin 71 Oct 1 23:E57 tnp
¥ 1=

filel tmp
%

and just running 1z shows only the file tmp. Soeven il two files are displayed
there is really cnly one,

1. There are a very large number of standard suilives for files, None are
reqquires] — wvou can name any file anything — but often the =yztem uses
these to decide what a file iz, Table 1 gives =ome examples,

globbing: Character Expansion by the Shell

When vou run a program such asrn orls, you can control which files it can
act upon; aside from the special caze that a =inglels will list all the files, what
files are acted on will depend on which ones you list after the program. Bul
you need nob explicitly name each one; given certain characters in the name
vou type' the shell will perform what iz called filenome erpansion; before the
line ie executed, the shell will process it and replace what you typed with all
the filenames that match it, allowing for the “inexplicit™ characters. This is
alzo callex] glabding, presumably because vou can specily a whole glob of files
wvery aasily.

An example will help; for thi= one we use the? character, which has the
meaning “match any =ingle character”

s

aa am.Xx a&aa.y ab ab.x ac ac.x ba ba.y bbb bb.y

1 o
he=ss are callksd melacharacierns

gif
Jpeg
Jpg
kml
kmz
pedf
pNg

ps
VI

o
(el
html
rtf
tex
wpd

¥ols Ta

aa ba
¥ilsa?

Graphics/Display
GIF (raster)
JPEG [raster)
IPEG [raster)
Cloorle larth uncompressed
CGooprle Farth compressed
Portable Document [vector)
Portahle Mebwork Craphics
{hoth)
Postzcript (vector)
Portable Document [vector)

Documernts

MES Word
IS Waord, new format
hypertext markup (Wah)
rich text format
Tex,/ LaTex souree
Wiord Perlect

aa ab ac

¥ lsaa?

4a.xX aa.y

tar

Zip

xls

Sonrees Code
Coeouroe code
O+ zource code
Fartran 77 souree code
Fartran 90 souree code
Matlab eeripl
MatLah 777
abject file
perl

oI pression
compreessd with bxip2
compreessd with geip
compresssd with adaptive Lempel-
div

Storage

archive of files and directories
tar archive, compressed with geip
archived [compressed with zip

Mizoellaneous
bixeel epreadehect

The ather globbing character that is frequently used (in fact, the one that
etz almest all of the use] iz *, which means “any character string, except an

initial .

hls*

a8 aa.x &a.y ab ab.x ac
% lsa*

" To continue with our example

a8 aa.xX &a.y ab ab.x ac ac.x

Nols *x

an.x ab.x ac.x

Wols aty

48 .Y

gc.x ba ba.y bBb bb.y

!

The initial . is not incloded in this expangion ig to protect files that hegin
with a . [rom being removed by mistake, This tvpe of file name is used [or
files that might be nesded but which are in some way nob scmething the user
nesds to know aboub — for which reason they are invisible to 18 unless the —a
flag is veed. I you run ro #* in a directory and then eannot remove it with

rmdir, uenally there turn outb to be =cme of these invigible fles =till in the
directary.

The grep Family of Programs

Belfore furning to the other use of special characters, we look at the textitprep
family of programs, since one of these, textitgrep, is the best way to illustrate
these uees, There are two programes (actually there i a thind, bt it is not
much used now), which could be run as=

% cat file | grep expression
% cat file | fgrep string

The program fgrep reade in lines from etandard input, and writes any fo
standard cutput that contain a given, Axed, character string. 5o, for example,
taking thees notes (up to here) ag input:

% cat notes.glob.tex | fgrep something

ranges of posaible combineticns, scmething that, for these and cther
Nanes (on the Mac) can include spaces, but this iz still something to
% cat notes.glob.tex | fgrep z

% fzrep z notes.glob.tex

!

where the last two lines show two possible forms (and that there are no letter
#'k in theee notes, at least before this eentence).

This i= a very uselul way to extract =cmething from a file. For a fixed
string, fgrap is the fastest way to extract lines; grep, however, iz more general,
becanege it can look for repular expressionz, which we now turn to.

RHegular Expressions

Regular expregsions rive special meaning to certain characters in looking for
a match to a part of a character string, just as the shell does when trying to

match filenamez. Unfortunately, the meanings as=igned to particular charac-
ters are not all the same,

First of all, ., which haz no special meaning to the shell, has the meaning
“any character” ina regular expresgion. For example, to find the string: “a £,
followed by anv character, followed by an " the regular expression would be
t.e; we would search for this string in these notes using grep by typing:

Y%cat notes.glob.tex | grep 't.e’
In these notes we deal with some (=lightly) interrelated
matters: conventional filenanes in Unix;

%

where we have shown only the first couple of lines matehed). The first line
matches hecauze of thesza, and the second one, less obviowely, bhecauze of
matters: hoth contain a €, some character, and an 8. We can have more than
ane such metacharacter:

Y%cat notes.glob.tex | grep 't
cahl cat notes.glob.tex | grep "t..e’
avoid, =ince most Unix routines assume that a space ends a nane.

!

where the matching word is rontines: not (at least to me] immediately oh-
vious,

The character # means “pero or more of the previous character”, =o x*
makbches anything, xx# matches one or more x's, ¥xx® matches two or more
%"5, and so on

Y%cat notes.glob.tex | grep oc®

matters: conventiocnal filenanes in Unix;

and the fanily of grep programs for extracting lines
Ycat notes.glob.tex | grep oo

%

(there are no strings xx).

These two metacharacters have referred to tyvpes of characters; there are
obthers than refer to positions in the line. Thes=e are ™, for “before the et
character on the line”, and &, for “after the last character on the line™ We
can combing these with the both characters and obher metacharacters; [or
example, “a retummns all lines starting with a; ad returns all lines ending with
a; tt*E returns all lines ending with one or mare t's.

% cat notes.glob tex | grep 7a’

and the fanily of grep programs for extracting lines

avoid, =ince most Unix routines assume that a space ends & nane.
% cat notes.glob.tex | grep 'ad’

meaning to certain characters in looking for a match to a

% cat notes.glob tex | grep "t1*§

from files. These also use special characters to represent
azide from the szpecial case that a single 18 will list

!

Finally, the symbols [and] form a pair: if they are zeparated by any other
characters, the expression [chars] i= faken to mean “any of the characiers
hetween the square brackets”. For example, [ABC] means any of these three
chiaracters:

Ycat notes.glob.tex | grep '[ABC]'
But you peed not explicitly name each cne;
in exanple will help; for this one we use theT character,

!

Ome character is iteelf special within the brackets {unless it i= the firet one):
the dash, —. When =urrounded by characters, it fills in the ones between them.
Here “between™ refers to the order of the characters in the ASCI encoding,
which is:

IEEYRT O+, - /0123456700 ; ; <=7
ABCDEFCHIJKLMNOPQRETUVWIYZ [\]~ ¢
abedefghi jklnnopgratuvwryzd |-

g0 that, for example, [0-3] means all numerals, [A-Z] means all uppercase
letters, [a-z] means all lowercaze lebters, and [A-Za-z] means all letters; in
the last case, we do not write [A-z] because this would mateh =ome other
characters a= well. For example,

Ycat notes.glob.tex | grep "[V-Z]'
When you run a progran such as rm or ls,
You can =ee thiz iz a very useful way to extract szomething from a file.

!

We can combing all af these features to pet epecific, but flexible, matehing,
For example, to match a line that haz zero or more initial blanks followed by
a number, we would write = *[0-2]. [f the initial number had two digits,

no leading zeros, and a decimal point, we would write ™ #[1-9] [0-2]%.; the
backelash in front of the period is said to escope this character, so that it is
interpreted as what it i=, rather than in itz metacharacter form. Without this,
~ #[1-3] [0-3] . would match any line that started with zero or more blanks,
followed by & numeral from 1 throogh 9, followed by a numeral from O through
9, followed by any character at all.

