Computing at SIO

or

Learning to Talk Instead of Point

Duncan Agnew

MWF 3-4
but we need to reschedule MW

Doing Science (Instead of Taking Classes)

- Time scale is years, not weeks: your memory is not that good.

Doing Science (Instead of Taking Classes)

- Time scale is years, not weeks: your memory is not that good.
- You will, eventually, not know what you are doing - that's why we call it research.

Doing Science (Instead of Taking Classes)

- Time scale is years, not weeks: your memory is not that good.
- You will, eventually, not know what you are doing - that's why we call it research.
- And so, anything you do, you will probably do many times - and there are very few things you won't do more than once.

Doing Science (Instead of Taking Classes)

- Time scale is years, not weeks: your memory is not that good.
- You will, eventually, not know what you are doing - that's why we call it research.
- And so, anything you do, you will probably do many times - and there are very few things you won't do more than once.
- And part of science is being able to reproduce your results.

Doing Science (Instead of Taking Classes)

- Time scale is years, not weeks: your memory is not that good.
- You will, eventually, not know what you are doing - that's why we call it research.
- And so, anything you do, you will probably do many times - and there are very few things you won't do more than once.
- And part of science is being able to reproduce your results.
- For all these reasons you will benefit enormously from having all your computation procedures written down so that you can redo them.

A Research Ideal

What is the best computational approach to achieve this?
Options are GUI (Graphical User Interface) or a (actually many) computer language.

Advantages of GUl's (Pointing)

- Easy to learn (until they get complicated)

Advantages of GUI's (Pointing)

- Easy to learn (until they get complicated)
- Well-suited to nonverbal activities, for example, graphical editing, as in Photoshop.

Advantages of GUl's (Pointing)

- Easy to learn (until they get complicated)
- Well-suited to nonverbal activities, for example, graphical editing, as in Photoshop.

But

- Do not (usually) keep a record.

Advantages of GUI's (Pointing)

- Easy to learn (until they get complicated)
- Well-suited to nonverbal activities, for example, graphical editing, as in Photoshop.

But

- Do not (usually) keep a record.
- Become unworkable as complexity of task increases - how would you like to use one for searching in Google?

Using a Language ("Talking")
 Advantages

- Language capability limited only by the skill of the developer.

Using a Language ("Talking")

Advantages

- Language capability limited only by the skill of the developer.
- Unless you use speech-recognition (don't), gives a permanent record.

Using a Language ("Talking")

Advantages

- Language capability limited only by the skill of the developer.
- Unless you use speech-recognition (don’t), gives a permanent record.

Disadvantages

- You will need to learn an editor just to talk to the computer.

Using a Language ("Talking")

Advantages

- Language capability limited only by the skill of the developer.
- Unless you use speech-recognition (don’t), gives a permanent record.

Disadvantages

- You will need to learn an editor just to talk to the computer.
- Language complexity limited only by the skill of the developer.

Using a Language ("Talking")

Advantages

- Language capability limited only by the skill of the developer.
- Unless you use speech-recognition (don’t), gives a permanent record.

Disadvantages

- You will need to learn an editor just to talk to the computer.
- Language complexity limited only by the skill of the developer.

Like any new language, difficult to learn - though these are all "designed" languages, which can help.

Using a Language ("Talking")

Advantages

- Language capability limited only by the skill of the developer.
- Unless you use speech-recognition (don’t), gives a permanent record.

Disadvantages

- You will need to learn an editor just to talk to the computer.
- Language complexity limited only by the skill of the developer.

Like any new language, difficult to learn - though these are all "designed" languages, which can help.

Using a Language ("Talking")

Advantages

- Language capability limited only by the skill of the developer.
- Unless you use speech-recognition (don’t), gives a permanent record.

Disadvantages

- You will need to learn an editor just to talk to the computer.
- Language complexity limited only by the skill of the developer.

Like any new language, difficult to learn - though these are all "designed" languages, which can help.

Language I: Unix (aka shell)

We will start with this, as it is the most basic, and you can actually do
quite a lot with existing Unix tools.

Language II: awk

```
echo X |awk '{pi=3.14159265
    for(i=0;i<=1000;i++) {
        t1=2*pi*i/1000
        t2=t1*n
        x=cos(t1)+a* cos(t2)
        y=sin(t1)+a*sin(t2)
        printf"%.4f %.4f0,x,y
        }
}' n=$1 a=$2 > tmp
```

This is a very simple programming language.

Language III: Matlab

```
function vector_xyz=xform_neu_to_xyz(xyz,vector_neu)
vector_neu=vector_neu(:);
vector_neu_cov=diag(vector_neu(4:6).^2);
vector_neu=vector_neu(1:3);
a=6378137;
f_inv=298.257223563;
f=1/f_inv;
e2=2*f-f^2;
p=sqrt(xyz(1)^2+xyz(2)^2);
r=sqrt(p^2+xyz(3)^2);
mu=atan(xyz(3)/p*((1-f)+e2*a/r));
long=atan2(xyz(2),xyz(1));
lat=atan2(xyz(3)*(1-f)+e2*a*sin(mu)^3,(1-f)*(p-e2*a*cos(mu)^3));
rot=[-sin(lat)*cos(long) -sin(long) cos(lat)*cos(long)
    -sin(lat)*sin(long) cos(long) cos(lat)*sin(long)
    cos(lat) 0 sin(lat)];
vector_xyz=rot*vector_neu;
vector_xyz_cov=rot*vector_neu_cov*rot';
vector_xyz_std=diag(vector_xyz_cov).^(.5);
vector_xyz=[vector_xyz;vector_xyz_std];
```

A tool of choice for mathematical programming - except for speed.

Language IV: Fortran

```
        function juldat(it)
        dimension it(*)
c
c Julian Date from Gregorian date, Algorithm from p. 604, Explanatory
c Supplement Amer Ephemeris & Nautical Almanac (cf Comm CACM, 11, 657 (1968)
c and 15, 918 (1972)) Valid for all positive values of Julian Date
c
```

```
juldat=(1461*(it(1)+4800+(it(2)-14)/12))/4
```

juldat=(1461*(it(1)+4800+(it(2)-14)/12))/4
1+(367*(it(2)-2-12*((it (2)-14)/12)))/12
1+(367*(it(2)-2-12*((it (2)-14)/12)))/12
2 - (3*((it (1)+4900+(it(2)-14)/12)/100))/4+it(3)-32075
2 - (3*((it (1)+4900+(it(2)-14)/12)/100))/4+it(3)-32075
return
return
end

```
    end
```

You will need to know this for dealing with "legacy code" or writing your own.

Language V: Plotxy

```
frame grid solid
char . }1
weight 12
titl A Sample Function
char .1
weight 10
xlab Time
ylab Function
file tmp
read
plot
stop
```

A very simple, but powerful, plot program, which makes much better graphics than Matlab does.

Language VI: GMT

```
gmtset GRID_CROSS_SIZE O ANNOT_FONT_SIZE_PRIMARY 10
gmtset PAGE_ORIENTATION portrait
pscoast -Rg -JN0/3i -Bg30 -Dc -Ggray -W -K > tmp1.ps
cat tmp2 | psxy -G255/255/255 -R -J -Sc.04i -O >> tmp1.ps
```

A very powerful, and complicated, plot program, which is excellent for geophysical and oceanOographic data.

Language VII: Latex

```
The \textbf{magnitude} of the vector is its length,
for which the notation and definition are
\begin{equation}
\label{eq-mag}
| \bv | = \sqrt{ v_1 ^ 2 + v_2 ^ 2 + v_3 ^ 2}
\end{equation}
%
A \textbf{unit vector} is one whose magnitude is 1;
we usually designate a unit vector in the direction of $\bv$ by $\hat{\bv}$,
and designate unit vectors that are orthogonal
(at right angles) by the letter $\be$.
```

This is (many of us think) how you should write your papers. For scientific writing, MS Word is a poor substitute (though lots of people use it).

