
The Unix Style

• Build special-purpose tools to do one thing well.

>

The Unix Style

• Build special-purpose tools to do one thing well.

The ideal; over time most tools suffer from ‘‘feature creep’’. You should
look at all the features but expect to use only a few.

>

The Unix Style

• Build special-purpose tools to do one thing well.

The ideal; over time most tools suffer from ‘‘feature creep’’. You should
look at all the features but expect to use only a few.

• Make as few distinctions between file types as possible.

Then a file you can read can also be executable: this is the basis for
scr ipts .

>

The Unix Style

• Build special-purpose tools to do one thing well.

The ideal; over time most tools suffer from ‘‘feature creep’’. You should
look at all the features but expect to use only a few.

• Make as few distinctions between file types as possible.

Then a file you can read can also be executable: this is the basis for
scr ipts .

• Provide simple ways of connecting the tools together, as flexibly as
possible.

>

The Unix Style

• Build special-purpose tools to do one thing well.

The ideal; over time most tools suffer from ‘‘feature creep’’. You should
look at all the features but expect to use only a few.

• Make as few distinctions between file types as possible.

Then a file you can read can also be executable: this is the basis for
scr ipts .

• Provide simple ways of connecting the tools together, as flexibly as
possible.

It turns out that only a couple of connections will get you a long way.

>

The Unix Style

• Build special-purpose tools to do one thing well.

The ideal; over time most tools suffer from ‘‘feature creep’’. You should
look at all the features but expect to use only a few.

• Make as few distinctions between file types as possible.

Then a file you can read can also be executable: this is the basis for
scr ipts .

• Provide simple ways of connecting the tools together, as flexibly as
possible.

It turns out that only a couple of connections will get you a long way.

But, this means that there are only a few ways to communicate with
the programs , which makes for unmemorable options: hence the
complaints about Unix being hard to lear n.

>

The Paradigmatic Unix Tool

[standard input] program

error out

standard out

Program reads from stdin (w hich may not be present) and writes to
stdout and (perhaps) to error out.

< >

The Paradigmatic Unix Tool

[standard input] program

error out

standard out

Program reads from stdin (w hich may not be present) and writes to
stdout and (perhaps) to error out.

The default for stdin is what you type.

< >

The Paradigmatic Unix Tool

[standard input] program

error out

standard out

Program reads from stdin (w hich may not be present) and writes to
stdout and (perhaps) to error out.

The default for stdin is what you type.

The default for stdout is what you see; so is the default for error out.

< >

Connection Methods I

• | (‘‘pipe’’) connects the stdout of one program to the stdin of the
next.

< >

Connection Methods I

• | (‘‘pipe’’) connects the stdout of one program to the stdin of the
next.

For example

% pwd
/Users/agnew/courses/sio233/notes
% pwd | wc

1 1 34
%

The pwd command tells me where I am; if I ‘‘pipe this to wc’’, this string
is sent to wc, which reads it and sends (to stdout) the number of lines,
words, and character s (bytes).

< >

A Piping Example: Sorting Words
1. % cat tmp
2. % cat tmp | sort
3. % cat tmp | sort | uniq
4. % cat tmp | sort | uniq -c

1 2 3 4

O Absalom! Absalom! 1 Absalom!
my Absalom, Absalom, 2 Absalom,
son Absalom, God 1 God
Absalom, God I 1 I
my I O 2 O
son, O died 1 died
my O for 1 for
son died had 1 had
Absalom! for my 5 my
would had son 2 son
God my son! 1 son!
I my son, 2 son,
had my thee, 1 thee,
died my would 1 would
for my
thee, son
O son
Absalom, son!
my son,
son, son,
my thee,
son! would

< >

Connection Methods II

• > (‘‘redirect’’) connects the stdout of one program to a file.

< >

Connection Methods II

• > (‘‘redirect’’) connects the stdout of one program to a file.

For example

% cat tmp | sort | uniq -c > tmp1

would put the counted results of the phrase (option 4) into the file
tmp1.

Obviously, this is the end of the line (in all senses).

< >

Connection Methods II

• > (‘‘redirect’’) connects the stdout of one program to a file.

For example

% cat tmp | sort | uniq -c > tmp1

would put the counted results of the phrase (option 4) into the file
tmp1.

Obviously, this is the end of the line (in all senses).

If you try to do this to an existing file, you will (or should) get an error
message – one of the few things done to protect you. (If not, you
should set up your ‘‘environment’’ so this will be the case, by running
set noclobber).

< >

Connection Methods II

• > (‘‘redirect’’) connects the stdout of one program to a file.

For example

% cat tmp | sort | uniq -c > tmp1

would put the counted results of the phrase (option 4) into the file
tmp1.

Obviously, this is the end of the line (in all senses).

If you try to do this to an existing file, you will (or should) get an error
message – one of the few things done to protect you. (If not, you
should set up your ‘‘environment’’ so this will be the case, by running
set noclobber).

• >! connects the stdout of one program to a file, and overwr ites
wha t is there.

< >

Connection Methods II

• > (‘‘redirect’’) connects the stdout of one program to a file.

For example

% cat tmp | sort | uniq -c > tmp1

would put the counted results of the phrase (option 4) into the file
tmp1.

Obviously, this is the end of the line (in all senses).

If you try to do this to an existing file, you will (or should) get an error
message – one of the few things done to protect you. (If not, you
should set up your ‘‘environment’’ so this will be the case, by running
set noclobber).

• >! connects the stdout of one program to a file, and overwr ites
wha t is there.

• >> connects the stdout of one program to a file, and appends to
what is there.

< >

Error Output

If you send the output to a file (>, >>, or >!) or pipe it to another
program (|) the error out will still go to the screen. If you want it, also,
to go to a file, you need to use >&.

< >

Options Using Command-Line Flags
The usual way of setting var ious options is to add flags on the
command line; sometimes these have a - before them, sometimes a
--; usually the option setting can be combined.

< >

Options Using Command-Line Flags
The usual way of setting var ious options is to add flags on the
command line; sometimes these have a - before them, sometimes a
--; usually the option setting can be combined.

For example, ls has the options (of which I know a few):

< >

Options Using Command-Line Flags
The usual way of setting var ious options is to add flags on the
command line; sometimes these have a - before them, sometimes a
--; usually the option setting can be combined.

For example, ls has the options (of which I know a few):

-a --all
-A --almost-all -m
-b --escape -n --numeric-uid-gid

--block-size=SIZE -N --literal
-B --ignore-backups -o
-c -p --file-type
-C -q --hide-control-chars

--color[=WHEN] --show-control-chars
-d --directory -Q --quote-name
-D --dired --quoting-style=WORD
-f -r --reverse
-F --classify -R --recursive

--format=WORD -s --size
--full-time -S

-g --sort=WORD
-G --no-group --time=WORD
-h --human-readable -t

--si -T --tabsize=COLS
-H -u

--indicator-style=WORD -U
-i --inode -v
-I --ignore=PATTERN -w --width=COLS
-k --kilobytes -x
-l -X
-L --dereference -1

--help
--version

ls -altr gives a full listing of all files in reverse chronological order.

< >

Getting Help I: man

The command

% man name

will produce the manual page for the program called name, if there is
one.

< >

Getting Help I: man

The command

% man name

will produce the manual page for the program called name, if there is
one.

For example,

% man ls

produces

< >

LS(1) FSF LS(1)

NAME
ls - list director y contents

SYNOPSIS
ls [OPTION]... [FILE]...

DESCRIPTION
List infor mation about the FILE’s (the current director y by default).
Sor t entr ies alpha betically if none of -cftuSUX nor --sort.

-a, --all
do not hide entries starting with .

-A, --almost-all
do not list implied . and ..

etc.

< >

Getting Help II: apropos

The command

% apropos str ing

will produce all NAME lines from manual page that contain str ing:
usually too many.

<

Getting Help II: apropos

The command

% apropos str ing

will produce all NAME lines from manual page that contain str ing:
usually too many.

For example

% apropos list

produces , among other things:

cipher s(1ssl) - SSL cipher display and cipher list tool
column(1) - columnate lists
histor y(n) - Manipulate the history list
join(n) - Create a string by joining together list elements
list(n) - Create a list
ls(1) - list director y contents
lsor t(n) - Sor t the elements of a list
mkdep(1) - constr uct Makefile dependency list
user s(1) - list current users
vgr ind(1) - grind nice listings of programs

<

