The Unix Style

¢ Build special-purpose tools to do one thing well.

The Unix Style

¢ Build special-purpose tools to do one thing well.

The ideal; over fime most tools suffer from “feature creep”. You should
look at all the features but expect to use only a few.

The Unix Style

¢ Build special-purpose tools to do one thing well.

The ideal; over fime most tools suffer from “feature creep”. You should
look at all the features but expect to use only a few.

e Make as few distinctions between file types as possible.

Then a file you can read can also be executable: this is the basis for
scripts.

The Unix Style

¢ Build special-purpose tools to do one thing well.

The ideal; over fime most tools suffer from “feature creep”. You should
look at all the features but expect to use only a few.

e Make as few distinctions between file types as possible.

Then a file you can read can also be executable: this is the basis for
scripts.

e Provide simple ways of connecting the tools together, as flexibly as
possible.

The Unix Style

¢ Build special-purpose tools to do one thing well.

The ideal; over fime most tools suffer from “feature creep”. You should
look at all the features but expect to use only a few.

e Make as few distinctions between file types as possible.

Then a file you can read can also be executable: this is the basis for
scripfs.

e Provide simple ways of connecting the tools together, as flexibly as
possible.

It turns out that only a couple of connections will get you a long way.

The Unix Style

¢ Build special-purpose tools to do one thing well.

The ideal; over fime most tools suffer from “feature creep”. You should
look at all the features but expect to use only a few.

e Make as few distinctions between file types as possible.

Then a file you can read can also be executable: this is the basis for
scripts.

e Provide simple ways of connecting the tools together, as flexibly as
possible.

It turns out that only a couple of connections will get you a long way.

But, this means that there are only a few ways fo communicate with
the programs, which makes for unmemorable options: hence the
complaints about Unix being hard to learn.

The Paradigmatic Unix Tool

error out

(standard input)——| program <

standard out

Program reads from sfdin (which may not be present) and writes 1o
stdout and (perhaps) to error out.

The Paradigmatic Unix Tool

error out

(standard input)——| program <

standard out

Program reads from sfdin (which may not be present) and writes 1o
stdout and (perhaps) to error out.

The default for stdin is what you type.

The Paradigmatic Unix Tool

error out

(standard input)——| program <

standard out

Program reads from sfdin (which may not be present) and writes 1o
stdout and (perhaps) to error out.

The default for stdin is what you type.

The default for stdouf is what you see; so is the default for error out.

Connection Methods |

e | ("pipe”) connects the sfdouf of one program to the sfdin of the
next.

Connection Methods |

e | ("pipe”) connects the sfdouf of one program to the sfdin of the

next.
For example
% pwd
/ User s/ agnew cour ses/ si 0233/ not es
% pwd | wc
1 1 34

%

The pwd command tells me where | am; if | “pipe this to we“, this string
IS sent tTo wc, which reads it and sends (fo stdouf) the number of lines,

words, and characters (bytes).

1. % cat
2. % cat
3. % cat
4. % cat
]
O
my
0

A Piping Example: Sorting Words

son,

np
np | sort

np | sort | uniq

np | sort | uniqg -c

3

Absal om
Absal om
CGod

di ed
f or
had

son
son!
son,
t hee,
woul d

RPRPNRPNURRRNRRNRE S N

Absal om
Absal om
CGod

di ed
f or
had

son
son!
son,
t hee,
woul d

Connection Methods Il

e > ("redirect”) connects the sfdout of one program to a file.

Connection Methods |l

e > (“redirect”) connects the sfdout of one program o a file.
For example
%cat tnp | sort | uniqg -c > tnpl

would put the counted results of the phrase (option 4) intfo the file
fmp .

Obviously, this is the end of the line (in all senses).

Connection Methods |l

e > (“redirect”) connects the sfdout of one program o a file.

For example

%cat tnp | sort | uniqg -c > tnpl

would put the counted results of the phrase (option 4) intfo the file
fmp .

Obviously, this is the end of the line (in all senses).

If you try to do this to an exisfing file, you will (or should) get an error
message — one of the few things done to protect you. (If not, you
should set up your “environment” so this will be the case, by running
set nocl obber).

Connection Methods |l

e > (“redirect”) connects the sfdout of one program o a file.

For example

%cat tnp | sort | uniqg -c > tnpl

would put the counted results of the phrase (option 4) intfo the file
fmp .

Obviously, this is the end of the line (in all senses).

If you try to do this to an exisfing file, you will (or should) get an error
message — one of the few things done to protect you. (If not, you
should set up your “environment” so this will be the case, by running

set nocl obber).

e >l connects the sfdout of one program to a file, and overwrites
what is there.

Connection Methods |l

e > (“redirect”) connects the sfdout of one program o a file.
For example
%cat tnp | sort | uniqg -c > tnpl

would put the counted results of the phrase (option 4) intfo the file
fmp .

Obviously, this is the end of the line (in all senses).

If you try to do this to an exisfing file, you will (or should) get an error
message — one of the few things done to protect you. (If not, you
should set up your “environment” so this will be the case, by running
set nocl obber).

e >l connects the sfdout of one program to a file, and overwrites
what is there.

e >> connects the sftdout of one program to a file, and appends to
what is there.

Error Output

If you send the output fo a file (>, >>, or >!') or pipe it to another
program (|) the error ouft will still go fo the screen. If you want it, also,
to go to afile, you need fo use >&.

Options Using Command-Line Flags

The usual way of setfing various options is fo add flags on the
command line; sometimes these have a - before them, sometfimes a
- - ; usually the option sefting can be combined.

Options Using Command-Line Flags

The usual way of setfing various options is fo add flags on the
command line; sometimes these have a - before them, sometfimes a
- - ; usually the option sefting can be combined.

For example, | s has the options (of which | know a few):

Options Using Command-Line Flags

The usual way of setfing various options is fo add flags on the
command line; sometimes these have a - before them, sometfimes a
- -, usually the option setting can be combined.

For example, | s has the options (of which | know a few):

a --all
-A --alnost-all -m
-b --escape -n
--bl ock-si ze=S| ZE -N
-B --ignore-backups -0
_C _p
-C -q
--cplor{:MHEM
-d --directory - Q
-P --dired
- r
F --classif R
--fornat;%CRD -S
--full-tinme -S
-% --no- group
-h - - human-r eadabl e t
- -SlI -T
-H ,] u
_ --indicator-style=WORD -U
-1 --1nod -V
- - -1 gnhor e=PATTERN - W
-F --ki'l obyt es -§
-L --dereference -1

- quot e- nanme
-quot i ng
-reversge
-recursive
-si ze

-sort =\WORD
-t me=

-t absi ze=COLS

—~+—
-
< 0O

- st

-wW dt h=COLS

- hel p.
-version

| s -al tr gives a full listing of all files in reverse chronological order.

[<]l>]

Getting Help |: man

The command
% man name

will produce the manual page for the program called name, if there is
one.

Getting Help |: man

The command
% man name

will produce the manual page for the program called name, if there is
one.

For example,
% man |s
produces

LSCT) FSF LS(T)

NAME
s - list directory contents

SYNOPSIS
Is (OPTION)... (FILE)...

DESCRIPTION
List information about the FILE's (the current directory by default).
Sort entries alphabetically if none of -cftuSUX nor --sort.

-a, -—-all
do not hide enftries starting with .

-A, --almost-all
do not list implied . and ..

efc.

Geftting Help Il: apr opos

The command
% apr opos sfring

will produce all NAME lines froon manual page that contain sfring:
usually too many.

Getting Help II: apr opos

The command
% apr opos sfring

will produce all NAME lines froon manual page that contain sfring:
usually too many.

For example

% apropos |ist

produces, among other things:

ciphers(1ssl) - SSL cipher display and cipher list tool

column(l) - columnate lists

history(n) - Manipulate the history list

join(n) - Create a string by joining together list elements
list(n) - Create a list

Is(T) - list directory contents

Isort(n) - Sort the elements of a list

mkdep(1) - construct Makefile dependency list

users(1) - list current users

vgrind(1) - grind nice listings of programs

