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Abstract

Single-epoch estimates of position using GPS are improved by removing multipath
signals, which repeat when the GPS constellation does. We present two programs for
finding this repeat time, one using the orbital period and the other the topocentric
positions of the satellites. Both methods show that the repeat time is variable across
the constellation, at the few-second level for most satellites, but with a few showing
much different values. The repeat time for topocentric positions, which we term the
aspect repeat time, averages 247 s less than a day, with fluctuations through the day
that may be as much as 2.5 s at high latitudes.

Introduction

A feature of the GPS satellites that was well-known to early users was that the constel-
lation would repeat: the same satellites would appear in the same part of the sky with a
period slightly less than one day–an important characteristic when the system was incom-
plete and data had to be collected when the most satellites were visible. The usual rule of
thumb was that the repeat time was 4 minutes (240 s) earlier each day, a good approxima-
tion to a more exact rule that the repeat time was one sidereal day (235.9 s less than one
solar day). Over such a period the satellites would complete exactly two orbits in inertial
space, and the Earth one revolution, bringing everything back to the same geometry.

That this repetition could be used to reduce one source of noise was first pointed out
by Genrich and Bock (1992). We can write the carrier-phase signal (the electric field, say)
at the antenna as (using complex notation)

Ete
2πft+φ = Ede

2πft + Es(n̂)e2πft+θ(n̂) (1)

where the left side is the total, which can be broken down into two parts. The direct
signal Ed; is what would be observed in the absence of any local scatterers, or with a
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very directional antenna pointed at the satellite, in the direction of the unit vector n̂. Es

is the contribution from all scatterers, both near-field and far-field. If the geometry and
electromagnetic properties of the scatterers do not change, the amplitude and phase of Es

will depend only on the direction to the satellite, n̂. Therefore, when the constellation
repeats, so will this scattered contribution, which is also known as carrier-phase multipath.
Insofar as multipath is a significant source of noise, we should be able to reduce the variation
in a time-series of sub-daily positions by differencing observations, or analyzed results,
observed at one (or more) repeat cycles.

Genrich and Bock (1992) demonstrated that such differencing, which they called mul-
tipath modeling, did in fact reduce the observed scatter on a 260-m baseline. This same
method was used by Bock et al. (2000) and Nikolaidis et al. (2001), again assuming a 4-
minute advance, for reducing the noise on longer baselines determined with single-epoch
positioning. This was termed sidereal filtering, by analogy with the method used for cor-
recting GPS time series (spatial filtering) for seasonal fluctuations Wdowinski et al. (1997).
(A better term, by analogy with similar procedures used to correct for periodic components,
would be sidereal adjustment.) Other workers have used this repetition period to isolate
signals presumed to be from multipath, for example Elósegui et al. (1995), Wübbena et al.

(1997), and Park et al. (2004b).
However, as Seeber et al. (1998) first pointed out (at least in the geodetic literature)

the actual orbital period of the GPS satellites is not half a sidereal day, but slightly less.
The simple model for repetition that we gave above is correct only if the plane of the orbit
is fixed in space, and it is not. The ellipticity of the Earth, as expressed by the C20 term in
the spherical harmonic expansion of its gravity field, produces a slow rotation of this plane
(called the regression of the nodes), at a rate of about 14.66◦y−1 for the right ascension of the
ascending node. (See Airy (1834) for a qualitative explanation, not of course with reference
to GPS, and Beutler et al. (1998) for a mathematical development). In order to maintain
the same ground track, the terrestrial longitude of the ascending node needs to be kept
constant, which is accomplished by shortening the period so that the regression of the node
in space is canceled by the fact that the earth has rotated slightly less than one revolution
when the satellite reaches the equator; the daily regression of the node corresponds to 9.6
seconds of earth rotation.

While Ge et al. (2002) observed the shorter repetition period by cross-correlation of
measurements intended to determine multipath, the importance of using this period to
improve high-rate GPS positioning was first pointed out by Choi et al. (2004) in the context
of GPS seismometry (Nikolaidis, 2002; Larson et al., 2003; Bock et al., 2004; Langbein and
Bock, 2004; Genrich and Bock, 2006). Choi et al. (2004) showed that correcting 1-Hz
positions using data from the previous day, shifted by the orbital period, gave a lower
scatter than using a sidereal day as the correction period.

It should be clear that the use of a sidereal period, while a conventional assumption that
was adequate for low sampling rates, is simply incorrect, and should be abandoned. There
is no need to try to find the true repeat time from observations of the GPS signal, since it
can be computed from the orbital parameters. Our purpose in this note is to provide two
programs which do this computation; we use these to describe different repeat times and
how they might be used in practice.
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Figure 1: Figure 1. Orbital repeat times (twice the orbital periods) found from the broadcast
ephemerides of all GPS satellites from 1996:001 through 2006:120. The top plot shows the
full range of periods; the expanded scale on the bottom, the band within which most periods
fall. The left axis is the repeat time, the right the daily advance relative to 24 hours; an
advance of 4 minutes/day corresponds to 240 seconds on the right axis. Both times are in
seconds. The dashed line in the bottom plot is the sidereal-day period.

3



Orbital Periods

The easiest computation is to find the true periods of the different satellites. This
requires two parameters provided in the broadcast ephemeris: as, the square root of the
semimajor axis, and nc, the correction to the mean motion that would be deduced from
Kepler’s third law. The mean motion n is given by

n =
√

GMa−3
s + nc (2)

where
√

GM for the Earth is 1.996498 × 107 in SI units. The repeat time To is twice
the orbital period: To = 4π/n. The program orbrep reads a broadcast ephemeris file in
RINEX format (Hofmann-Wellenhof et al., 1994) and writes out the repeat times To for
all the satellites; if multiple ephemerides are given in the file, the values of as and nc are
averaged for each satellite.

Figure 1 shows the resulting periods, computed at 5-day intervals, over the last decade.
We show both the time needed for two full orbits, and the “daily advance”, meaning how
much earlier the repeat is per solar day. The upper panel shows the full range of periods,
and illustrates that most of the periods fall within a narrow band, which the lower panel
shows to be within 5 seconds of a mean value of 86154.4 s for To (a daily advance of 245.6
s), which is 9.7 seconds less than sidereal (shown by the dashed line). For most of the time
span shown, there have been one or two satellites with very different periods, presumably
ones being adjusted into orbit, or failing.

Aspect Repeat Time

While the orbital period is easy to compute and gives the most direct insight into the
range of behaviors of the satellites, it is not the repeat time of most interest. Another time,
slightly different, would be that required for the satellite to be over the same location (at
the same point in its ground track); in astronomical terms this would amount to having the
same geocentric place. But, for measurements in a given location, what is most relevant is
the period over which the satellite comes closest to occupying the same topocentric place:
that is, the period for most nearly having the same direction vector n̂ for a particular point
of observation. This is slightly different from the geocentric repeat time because of parallax.
To revive an old astronomical term, this time is when the satellite has the same aspect, so
we call this the aspect repeat time.

The program artrep reads in sp3 format files (Remondi, 1989), which give the satellite
position, very conveniently for this application, in Earth-fixed coordinates. The vector
n̂0 is found for a specified time, using polynomial interpolation of the tabulated positions
Schenewerk (2003), and finding the topocentric position vector for a given place, for each
satellite. The program then steps N days ahead and searches for the time, for each satellite,
at which n̂(t) is closest to n̂0; this is done using s grid search, followed by inverse parabolic
interpolation. If this time is tr, the repeat time is Ta = tr−t0 Two byproducts of this method
are the difference in direction, ∆θ, between n̂0 and the nearest n̂(t), and the angular velocity
of the satellite on the celestial sphere, θ̇. The ratio ts = ∆θ/θ̇ gives the difference in angle
in terms of time, which is a useful parameter for deciding how different the actual repetition
is.
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Table 1: Aspect and Orbit Repeat Times

SV 86400 − To To Ta ∆θ Elev. Az. θ̇ ts
s s s mrad ◦ ◦ mrad/s s

1 247.05 86152.95 86151.06 0.016 -38.8 139.0 0.0937 0.2
2 239.98 86160.02 86159.93 0.346 -41.2 97.6 0.1029 3.4
3 246.42 86153.58 86151.98 0.062 -38.2 40.8 0.1003 0.6
4 241.13 86158.87 86159.05 0.244 4.7 170.0 0.1173 2.1
5 250.84 86149.16 86147.79 0.342 -17.3 264.2 0.1120 3.1
6 249.02 86150.98 86148.27 0.111 -60.3 229.3 0.0870 1.3
7 243.87 86156.13 86155.19 0.070 74.5 198.0 0.1457 0.5
8 244.85 86155.15 86154.73 0.019 51.2 117.7 0.1492 0.1
9 242.57 86157.43 86157.31 0.171 5.3 311.6 0.1151 1.5

10 247.80 86152.20 86150.98 0.115 -8.4 228.6 0.1133 1.0
11 244.49 86155.51 86154.98 0.070 19.4 61.1 0.1192 0.6
13 240.96 86159.04 86159.30 0.086 -17.3 157.3 0.0998 0.9
14 240.31 86159.69 86159.12 0.278 -44.5 8.2 0.1015 2.7
15 241.69 86158.31 86158.24 0.190 -31.9 343.7 0.1037 1.8
16 243.53 86156.47 86155.91 0.081 -60.9 110.2 0.0921 0.9
17 250.99 86149.01 86146.23 0.129 -32.0 221.7 0.0992 1.3
18 247.63 86152.37 86150.94 0.062 -7.5 322.4 0.1089 0.6
20 241.55 86158.45 86157.81 0.290 -20.3 101.2 0.1118 2.6
21 242.96 86157.04 86156.41 0.164 -46.9 300.0 0.1040 1.6
23 236.53 86163.47 86165.77 0.169 -13.1 6.3 0.0989 1.7
24 251.53 86148.47 86145.34 0.092 -17.6 197.7 0.1020 0.9
25 249.77 86150.23 86148.57 0.207 -87.7 171.4 0.0901 2.3
26 247.10 86152.90 86151.38 0.127 41.0 282.9 0.1368 0.9
27 249.42 86150.58 86149.73 0.299 19.1 129.2 0.1344 2.2
28 245.43 86154.57 86153.76 0.011 61.2 25.9 0.1307 0.1
29 243.74 86156.26 86155.25 0.113 44.4 260.8 0.1423 0.8
30 244.09 86155.91 86155.13 0.077 -43.5 251.2 0.0958 0.8
31 246.29 86153.71 86151.92 0.012 -8.9 42.5 0.1054 0.1
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Table 1 gives the results from these two programs, for the location and time examined
by Choi et al. (2004): 22 Dec 2003 (day 356), at 19:15 UTC, and 35.881◦N, 120.402◦W.
As it happens, at this time there were no satellites with significantly different periods from
the nominal: the most discrepant is SV 23, about 10 seconds away from the nominal value.
This table shows that the orbit repeat periods and aspect repeat times, while similar, can
differ by as much as 3 seconds, with the aspect repeat time being, usually, shorter.

Of course, part of the aspect is whether or not the satellite is actually observable, and
so artrep also gives the elevation and azimuth. To find the appropriate aspect repeat
time for adjusting a position series at a given location and time, we would take only those
satellites above a given elevation (or, given data, those actually observed), and find the
mean aspect repeat time, ignoring satellites with very discrepant periods to avoid biasing
the mean. (Such satellites do not in fact repeat their sky paths well in any case, so it is not
clear that the multipath signals from them will repeat). Figure 2 shows the results of such
a computation for a range of latitudes and the existing constellation. The aspect repeat
time has an average value over the day corresponding to a daily advance of 246.8 s, but
fluctuating around this by several seconds, especially at the higher latitudes. This value
is what was found by Ge et al. (2002) from observation; while Park et al. (2004b) argued
for a sidereal period based on the annual repetition of the time of maximum correlation,
their plot is consistent with a repetition over 350 days, which is what would be expected
for the repeat time found here. For daily sampling, this repeat period will alias to a
frequency of 0.0028565 cycles/day, or 1.04333 cycles/year; variations at this frequency (and
its harmonics) have been seen in stacks of global GPS data (J. Ray, pers. commun.).

It is perhaps worth noting that the sky tracks of the satellites do not in fact repeat
exactly over short times. The mean value of ∆θ (again ignoring the discrepant satellites)
after N days is about 0.15N mrad. Given the extremely small angular size of multipath
fluctuations observed by Park et al. (2004a) (in the only direct measurement of these yet
made), such an increase in day-to-day separation may account in part for the observation
that the multipath signal is most similar only on adjacent days, becoming different as the
time separation increases.

To conclude, we see that the idea of a “GPS repeat time” is not as simple as it might
seem, at least when we are looking at sampling at high rates. Correcting for multipath
effects on the assumption that they repeat “every day” requires some care in defining what
a day really is. We have described two ways of finding this, and given average results. Since
we find that the aspect repeat time (the most relevant) varies among the different satellites
of the constellation, it seems likely that the best corrections for multipath will be obtained
by processing data from each satellite separately, rather than working with time series of
positions.
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Figure 2: GPS aspect repeat time, (time between the satellite appearing in the same direc-
tion from a particular location), averaged over the GPS constellation (visible above 5◦) as
of 2006:100. Locations are at 0◦ longitude and latitudes as shown. The average varies with
time of day (UTC) and latitude, and averages about 86153 s over the day.
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