PIASD
Programs for the Interactive Analysis of Strainmeter Data

Duncan Carr Agnew

IGPP
La Jolla, CA

1. Introduction

PIASD is a set of programs designed for the analysis of time series, with a particu-
lar focus on some of the processing tasks that are commonly applied to data from strain-
meters and tiltmeters: tidal analysis, intersectiting, and spectrum computatioithis
system, like UNIX, uses a number of programs, each with a specific function; it deli-
brately aoids having a f& programs (or just one) with mgmoptions. Thisputs more of
an initial burden on the useince there is perhaps more to learn; the gagdahe much
greater flexibility from being able to put the programs together in differags-wand
especially in being able to create scripts that use the programs.

A difference between this package and UNIX is that data is not piped between pro-
grams but instead is written to and read from disk fildse programs get needed param-
eters either interactly or from a script, usually in question/answer form, occasionally
through command-line options. The system thus relies on the user to pass information
between programs; so it isnays helpful, and usually necessaiy keep some record of
what is done. As described beicthe best way to do this is to package all operations in
scripts, which are easily made self-documenting.

2. Program Behavior

Many of these programs were written (as was UNIX) some time ago; and so some
aspects of them may woseem somewhat oldashioned. Thisection describes the dw
most obvious of these aspectswttbe programs interact with the usard hav data files
are named and structured. It is not just baakis compatibility that has led to the reten-
tion of the methods used: thelso hare sgnificant advantages for use in a scientific set-
ting.

2.1. Interaction with the User

The PIASD programs, l&k UNIX, (and such programs as GMT) arettbased—
the interactie aliting programcredit aside. Hwvever, instead of using command-line
arguments, the PIASD programs get the parameteysried by asking questionghis
has the great advantage that the user does not need to memorize (as with GMT) a host of
command-line options; aague memory that (forxample)powercomputes power spec-
tra is enough to get startedfter you start the program it will ask for what information is

5 April 2004

needed, as in this example:

Ypower
Nunber of data file; 100
Locations of first and last points ; 1 1000
Length of sections (le 20000) ; 200
Renmove mean and trend from each section? (y/n); vy
Type of windowing (-1 for nore information); -1
Avai | abl e wi ndows are
- none
- triangul ar taper
- 1 + cos (hann) taper
4pi prol ate spheroi dal taper
- triangular, 50% overl ap
- hann, 50% overl ap
- 4pi prolate, 70% overlap
Type of windowing (-1 for nore information); 5
Nunber of output file; -100
28. degrees of freedom
95% confidence limts are 2.6 and -2.0 db.
51 points in file -101

OOk, wWNEFO
1

%

In this example and othet$i s f ont is what is printed by the programhi s f ont

is what is typed by the useThis example illustrates the style used in PIASD, including
the use of help lists when is appropriatit.must be said that the flag for these lists is not
consistent). Otourse, you need to & ome idea of what the program is doing: in the
case ofpower, computing the spectrum by dividing the data series into sections, windo
ing each section and taking theufier transform, and thervaaging the resultsObvi-
ously knowledge of this method of spectrum analysis is needed te fulkise of all the
options; just for reference, tapering opt®rs usually a good choice.

2.1.1. UsingScripts

Besides ease of use, the biggestaatige of this style is that it makes it easy to
create well-documented scripts which can combine a whole series of steps. Indeed, this
is probably the biggest advantagevé&i how often things hee © be dne wer, having a
script leads to considerable long-rufi@éncy. While setting up a script for the first time
takes a little longeral reruns aredst. Creating <ript also documents what was done,
in a way impossible with a GUI, and does so almost automatically (of course, adding
comments in the script is helpful, and nofidiflt.) Thisturns out to be a huge atage
when (not untypically) some piece of analysis needs to be revisited, or reused and modi-
fied, some time after it & first done: you do not need to remember your steps, the script
has them all recorded.

To areate a script, you first run the Urggript command, so thatverything typed
is then logged in the filgypescript Once you hee mun the program, typexi t to stop
the logging. Then the programascriptis run to create a script that can becaited to

5 April 2004

rerun the programFor example, typing
% escript typescript % > power.script

produces a filepower.scrip} that looks like

power << XXX

100 # Nunber of data file

1-1 # Locations of first and |last points

200 # Length of sections (le 20000)

y # Renpve nean and trend from each section? (y/n)
5 # Type of windowing (-1 for nore information)
-100 # Nunber of output file

XXX

#

R end of power

#

This file uses the UNIX “here documengyntax available in most UNIX shells to input

the information to the programlhe questions from the program are turned into com-
ments: anything after th# is ignored by the routine that reads input for the program.
Rescriptseparates questions from answers using the semicolon that ends all questions.

The script abee dffers (intentionally) from the first example inaways. Onds
trivial: the- 1 answer to th&ype of w ndow ng question has been omitted, since
there is no reason for the script to print out the list of options. The other change is that
the terms to be taken from the filevedeen changed tb - 1. This is a common usage
for most of the PIASD programs, and medtaké the second term, to be the last one of
the file’. This usage makes the script independent of the actual length of the data file.

This example is deliberately limited to one program, with aoation. Butmore
flexibility is easy To begn with, it is not difficult to hae the script include a whole chain
of steps. If, for example, we wanted to create a digital fils it to filter data, and then
find the spectrum, we could rgeript, then run the programfdtds (filter design)deki
(filtering) andpower, and finallyexi t . Then typing

% escript typescript %> conb. scri pt

will produce a script that, whemxeeuted, will run all all three stepgAlternatively, we
can go through the sequenseri pt, run program,exit, rescri pt three times,
adding each section to theepall script.)

The other source of #éility comes from the use of shell variables in the scripts.
For example, if we edippower.scriptby substitutingbl for 100, $2 for - 100, and $3
for 200 (the section length) we i@ a general-purpose shell script which can be run as

%power . script file-in file-out section-length

which means that we canvea ©mpact, command-line form of the program if we like.

Some of the PIASD programs do use command-line arguments; these will print out
a dhort help message if none are provided.

5 April 2004

-4-

As noted abee, the answers to most questions (anything numeric) are read by a special rou-
tine (ffin) which will read ag numerical format, with spaces, commas, tabs or carriage return being
the allowed separators. This routine differs from F77 free format in tleaditwore adjacent com-
mas are the same as one, rather than indicating a value of zero, and carriage return does not end the
input. Also,the input routine will not let the program proceed until it has beam @il its numbers;
if for example, the program typesFor ... type 1; ", a arriage return will lege it
waiting; you must type 1 (or 0) to proceewhile ffin does not in general takon-numeric input,
there is one exception: the first non-numeric character is returned to the prdgranfeature is
used in some programs.

2.2. DataFiles: Names and Formats

As the g&les abee $row, data files are referred to inside the programs using numbers:

the data file is 100, and the output file -18hile the use of numbers is less flexible and less
less mnemonic than names, it does, as | discusws/bledoesome adantages. Buto start, the
characteristics of data files are:

1.

Datafiles consist of series of numbers (called terms, points, or seessy the first of

which is term 1. Files may nokeeed $2 sup 32$ terms in length: in practice, not much of

a restriction (for short-integer data, thiswd be a 64 Gb file). One way to think of such

files is as a very long 1l-dimensional vector; another is as a continuaudrég) time

series. Therés no header or internal information on such issues as timing: for all the pro-
grams knwy, a ®ries could be sampled once a decade or orerg microsecond—orwven

just be a set of numbers, and not a time series at all. There are three types of files: short-
integer (16 bits per term), long integer (32 bits) and floating point, or real (32 bits).

Filesare referred in the programs by numbeffier actual filenames use the numbers,
plus an appended .D, with prefixes as follows:

a. Filescontaining short (16-bit) integersvea rame starting with I, and i@ rumber
values between 100 and 999 (which would be nahie@D. D andl 999. Drespec-
tively.

b. Hles read as reals (32-bit) /eaa rame starting with R, and & rumber \alues
between -100 and -999 (which would be naR&80. D andR999. Drespectiely.

C. Filesread as long (32-bit) integersveaa rmme starting with L, and ka rumber
values between 1100 and 1999 (which would be naim®@0. D and L999. D
respectiely.

Filesmay be created in the systémnp area. Br such “temporary files”, the numbering

is 2100 to 2999 for short-integer files, -2100 to -2999 for real files, and 3100 to 3999 for
long-integer files. The actual names include the pathname of wdnadeectory you are

in, to avoid conflicts. For additional information see the man pagerialib, the programs

that actually perform input and output.

Filesin other directories than the one you are in can be accessed by adding a multiple of
10000 to the number (or of —10000 for real fileK)this is done, the path of the resmt
directory will be asked forSo, for example, if you anted to combine data from three
directories, you would use numbers in the 10900¢ the first directorythe 200005 for

the second, and the 3008Gor the third. Note that the directory name will need to be
included in ag script.

5 April 2004

-5-

Since the files themseds hae ro internal information or metadata, additional files need to
be used for this.One particular format that marof the programs interact with is called the
header file this is summarizes information about a single file (or set of files) with the same tim-
ing (start, end, and sample intaeliy Headeffiles are stored as if thievere short-integer data
files (so, numbered 100 through 999), but read using a special subrdbéaethe program
headerfor more information.A header file can usually be recognized by its length, which is 586
terms (1172 bytes).

Naming files with numbers, while it makes the file names short, certainly can also mak
the names somewhat cryptidt the same time, being able to order and group numberstan-dif
ent ways makes it easy to come up withventional arrangements of files. Once these are used
a few times, thg become easier to remember than nantéste is an example, for the common
situation in which there is a number of channels wfdata, each of which has associated with it
a file of editing instructions (lvo these wrk is described in the next section), and a final
“ cleaned’file. AREADME for this set of files would look like

Ch Nanme Dat a Edits d eaned
100h 200h
1 LSM HDR 101 201 301
2 LSM RCLP 102 202 302
pred tides -2102
resi dual 2102 " - 302
3 N LOA 103 203 303
4 S LOA 104 204 304
5 VAC 105 205 305

where the third columrDat a) gives the file numbers for the wadata, and associated fileshé
100's’. The fourth column (the 208) is the edits files, and the last column is the cleaned data.
This example also shows a common use for temporary files. predicted tides corresponding

to the strain data ihSM RCLP are in a temporary file, outside the direct@yce these can be
regenerated at grater time. The data are all in 16-bit igéz but the preedicted tides are reals,
as is the cleaned residual series {toicaroundof). Of course, it would be possible tovép
names for all these filesubwhen this was tried (and it was), it turned out to be difficult to
develop a consistent set of naming gentions.

Several strategies for working with this type of file naming are:

1. Maintainsome documentation (a README file) in whasedirectory you are wrking.
The scriptdsd andlsdt are designed to help in this by listing the files ay tne referred
to, giving their series lengths rather than file lengths.

2. Usetemporary files as much as possible for intermediate stages—this minimizes the num-
ber of files in a directorylf you develop the proper scripts, you could just keep the ra
and edits files, regenerating the final cleaned data as temporary files when needed.

3. Develop consistent habits, of the type shown\ahevhere certain ranges of numbers, and
offsets between ranges, Meaertain uses. Another ceention we hae, besides that
shavn abae, is to retain the highest range (990 to 999) for Waway files that we do not

5 April 2004

-6-

want to have vanish (as the temporary files are set up to do).

3. Editing Data

The basic philosgpadopted in PIASD for data editing is to neak interactve, snce only
a few kinds of simple problems can be handled by automatic editing programs: notably steps in
otherwise good data, and single-point sgik Arything more complicated calls for the judge-
ment of an expert, which has a flexibility that can be programmed only with méichlgif The
PIASD editing programs aim to malt as esy as possible to apply expert judgement, while
minimizing the drudgery of keeping track of the editing information.

B A

Raw Interactive Editing: Edits aut ocl Cleaned
data file credit file data file
Metadata User
(e.g., logbooks judgement
Figure 1

Figure 1 is a block diagram that st®hav this is done. The most important part is the
program callectredit (for “cursor edit’). This takes as input a data file (assumed to be a time
series), displays it on the screen, and allows the user to indicate where edits should be made, both
to discard data and, if necessanydfset the series across suchag.g Asedits are made, thie
are applied to the displago he series appears to be editéd.fact, the original data are not
changed at all: each time data are displayed, thedaga are read in from disk and the editing
instructions applied to makthe series plotted. The output @kditis anedits file, which con-
tains the editing information onlyThis file is amiolib integer file; though it has a special format
(described below) the user does not need to deal with this.

Once an edits file has been created, the proguwatocl (“auto-clean’) is used to read in
the edits and the wadata, and write out a file ofcleaned’ data, with the edits appliedThe
editing information is thusdpt separate from the data; there is, intentionatly‘'flag value’ to
indicate where data are bh&eparating the edits from the data has turned out tattsosdinar-
ily useful, since then the editing information can be used iari@ty of ways. For example, in
performing a tidal analysis, the program for fitting harmonics reads an edits file to find out where
to assume there are “gapisi the data: that is, terms to be skipped in the analysis.

For historical reason (the need to deal with long series while using only short integers), the
edits file format is pa@d unusually The first term is the number of edits; each edit is specified by a
triplet of integers. Eachriplet gives (in order) the number of terms from the preceding edit (for the
first edit, the origin) to the last good point preceding the bad section, the offset to be applied to the
data folowing the edit relat o that before, and the number of bad points +Ah edit file

! Thoughautoclcan create a file with this, agdeditread such a flagged file and pro-
duce an edits file.

5 April 2004

containing the numbers 2 521 -211 19 2763 500 67 thus has 2 edits, with terms 523-540 and
3305-3370 being bad; 540 is 521+19+1, and 3305 is 540+2769%8, a total offset of -211 euld

be applied to terms 541-3304, and 289 (= 500-211) to terms 33&rdmwifthe edits are stored as
short-intger files, the maximum gap length is 32767 terms, and the largest of82767 units.

Both restrictions can bevercome if the edits file is long integer; notewswer, that the restriction to

integer means that offsets less thdncannot be doneThis is rarely a problem with actual unscaled
data.

4. Plotting Data

Aside from the screen plots made witleiedit anddatred this package does not include
ary software for plotting data, on the assumption thataser is likely to already va a aivaite
one. luse, almostxelusiely, the plotxy program deeloped by R. L. Brker and Loren Shure,
since this allows complete control of the appearance of the plot, controlledibly adt of com-
mands. Thigprogram is descibed at http://mahi.ucsd.edukraBoftware/softare.html. Aver-
sion is aailable that readsiolib files directly Otherwise, to covert such files to ASCII that
most plot packages will read, seatdat

5. Additional Documentation

All of the programs are, as noted aboself-documenting, usually through the questions
they ask; those that use command-lingwnents will print a short description of usage ifythe
are run with no guments. Fulledescriptions are contained in theanpages, which also ver
some of the subroutines theall: notablyheader(5)which describes the contents of the header
files, andniolib(3), which gives nore details about the data files. There is anxrade permuted
index to these pageskor the interactte-editing prograncreditthere is also a tutorial.

6. Program History

The (distant) ancestor of this set of programs is a package called BOM&8bel at La
Jolla in the 196® by Sr Edward Bullard, Flicki OglebayWalter Munk and Gaylord Miller
This was a command-line system (albeit with the commands punched on cards), whose spirit
(somavhat) names (more often) and code (occasionailgs lon in hese programs. The conti-
nuity is perhaps unsurprising, since BOMM wasattegped for processing of long time series,
particularly of sea-Mel and weather data: there are mamilarities with strain data. The con-
version to an interacte s/stem took place in the late 1980bn a PDP-11 system: for what it is
worth, the same machine being used at the same time for the early versions of ThNEX.
development was done for processingvifrequeng strain and seismic data, and was undentak
by a number of people including Duncan Agneon Beger, Bob Rarker and Karen Yung.
The initial coversion to a UNIX-based version was done by Agreg CIRES in 1980, and
developments hae cntinued to the presenf distribution was madevailable in 1981, under
the name PITSA,; unfortunatelthis acronym was also used by Scherbaum and Johnson, a little
later, for a suite of seimic data analysis programs, and so has had to be dBppe4d/PIASD
IS now on its sixth operating system.

REFERENCE

E. C. Bullard, FOglebay W. H. Munk and G. R. Miller (1964)A Users Guide to BOMM: A
System of Rigrams for the Analysis of Time Seri@sa Jolla: IGPP).

5 April 2004

