PIASD
Programs for the Interactive Analysis of Strainmeter Data

Duncan Carr Agnew

IGPP
La Jolla, CA

1. Introduction

PIASD is a set of programs designed for the analysis of time series, with a particu-
lar focus on some of the processing tasks that are commonly applied to data from strain-
meters and tiltmeters: tidal analysis, interactive editing, and spectrum computation. This
system, like UNIX, uses a number of programs, each with a specific function; it deli-
brately avoids having a few programs (or just one) with many options. This puts more of
an initial burden on the user, since there is perhaps more to learn; the payoff is the much
greater flexibility from being able to put the programs together in different ways—and
especially in being able to create scripts that use the programs.

A difference between this package and UNIX is that data is not piped between pro-
grams but instead is written to and read from disk files. The programs get needed param-
eters either interactively or from a script, usually in question/answer form, occasionally
through command-line options. The system thus relies on the user to pass information
between programs; so it is always helpful, and usually necessary, to keep some record of
what is done. As described below, the best way to do this is to package all operations in
scripts, which are easily made self-documenting.

2. Program Behavior

Many of these programs were written (as was UNIX) some time ago; and so some
aspects of them may now seem somewhat old-fashioned. This section describes the two
most obvious of these aspects: how the programs interact with the user, and how data files
are named and structured. It is not just backwards compatibility that has led to the reten-
tion of the methods used: they also have significant advantages for use in a scientific set-
ting.

2.1. Interaction with the User

The PIASD programs, like UNIX, (and such programs as GMT) are text-based—
the interactive editing program credit aside. However, instead of using command-line
arguments, the PIASD programs get the parameters they need by asking questions. This
has the great advantage that the user does not need to memorize (as with GMT) a host of
command-line options; a vague memory that (for example) power computes power spec-
tra is enough to get started. After you start the program it will ask for what information is
needed, as in this example:

5 April 2004

Spower

Number of data file; 100

Locations of first and last points ; 1 1000
Length of sections (le 20000) ; 200

Remove mean and trend from each section? (y/n); y

Type of windowing (-1 for more information); -1
Available windows are

0 - none

1 - triangular taper

2 — 1 + cos (hann) taper

3 - 4pi prolate spheroidal taper

4 - triangular, 50% overlap

5 - hann, 50% overlap

6 — 4pi prolate, 70% overlap
Type of windowing (-1 for more information); 5
Number of output file; -100
28. degrees of freedom.
95% confidence limits are 2.6 and -2.0 db.
51 points in file -101

o\

In this example and others this font is what is printed by the program; this font
is what is typed by the user. This example illustrates the style used in PIASD, including
the use of help lists when is appropriate. (It must be said that the flag for these lists is not
consistent). Of course, you need to have some idea of what the program is doing: in the
case of power, computing the spectrum by dividing the data series into sections, window-
ing each section and taking the Fourier transform, and then averaging the results. Obvi-
ously, knowledge of this method of spectrum analysis is needed to make full use of all the
options; just for reference, tapering option 5 is usually a good choice.

2.1.1. Using Scripts

Besides ease of use, the biggest advantage of this style is that it makes it easy to
create well-documented scripts which can combine a whole series of steps. Indeed, this
is probably the biggest advantage: Given how often things have to be done over, having a
script leads to considerable long-run efficiency. While setting up a script for the first time
takes a little longer, all reruns are fast. Creating a script also documents what was done,
in a way impossible with a GUI, and does so almost automatically (of course, adding
comments in the script is helpful, and not difficult.) This turns out to be a huge advantage
when (not untypically) some piece of analysis needs to be revisited, or reused and modi-
fied, some time after it was first done: you do not need to remember your steps, the script
has them all recorded.

To create a script, you first run the Unix script command, so that everything typed
is then logged in the file fypescript. Once you have run the program, type exit to stop
the logging. Then the program rescript is run to create a script that can be executed to
rerun the program. For example, typing

5 April 2004

3-

%rescript typescript % > power.script

produces a file (power.script) that looks like

power << XXX

100 # Number of data file

1 -1 # Locations of first and last points

200 # Length of sections (le 20000)

\ # Remove mean and trend from each section? (y/n)
5 # Type of windowing (-1 for more information)
-100 # Number of output file

XXX

#

- end of power

#

This file uses the UNIX “here document™ syntax available in most UNIX shells to input
the information to the program. The questions from the program are turned into com-
ments: anything after the # is ignored by the routine that reads input for the program.
Rescript separates questions from answers using the semicolon that ends all questions.

The script above differs (intentionally) from the first example in two ways. One is
trivial: the =1 answer to the Type of windowing question has been omitted, since
there is no reason for the script to print out the list of options. The other change is that
the terms to be taken from the file have been changed to 1 —1. This is a common usage
for most of the PIASD programs, and means “take the second term, to be the last one of
the file”’. This usage makes the script independent of the actual length of the data file.

This example is deliberately limited to one program, with no variation. But more
flexibility is easy. To begin with, it is not difficult to have the script include a whole chain
of steps. If, for example, we wanted to create a digital filter, use it to filter data, and then
find the spectrum, we could run script, then run the programs filtds (filter design) deki
(filtering) and power, and finally exit. Then typing

%rescript typescript % > comb.script

will produce a script that, when executed, will run all all three steps. (Alternatively, we
can go through the sequence script, run program, exit, rescript three times,
adding each section to the overall script.)

The other source of flexibility comes from the use of shell variables in the scripts.
For example, if we edit power.script by substituting $1 for 100, $2 for -100, and $3
for 200 (the section length) we have a general-purpose shell script which can be run as

% power.script file-in file-out section-length

which means that we can have a compact, command-line form of the program if we like.

Some of the PIASD programs do use command-line arguments; these will print out
a short help message if none are provided.

5 April 2004

4.

As noted above, the answers to most questions (anything numeric) are read by a special rou-
tine (ffin) which will read any numerical format, with spaces, commas, tabs or carriage return being
the allowed separators. This routine differs from F77 free format in that two or more adjacent com-
mas are the same as one, rather than indicating a value of zero, and carriage return does not end the
input. Also, the input routine will not let the program proceed until it has been given all its numbers;
if for example, the program types, "For ... type 1; ", a carriage return will leave it
waiting; you must type 1 (or 0) to proceed. While ffin does not in general take non-numeric input,
there is one exception: the first non-numeric character is returned to the program. This feature is
used in some programs.

2.2. Data Files: Names and Formats

As the examples above show, data files are referred to inside the programs using numbers:

the data file is 100, and the output file -100. While the use of numbers is less flexible and less
less mnemonic than names, it does, as I discuss below, have some advantages. But to start, the
characteristics of data files are:

1.

Data files consist of series of numbers (called terms, points, or series values) the first of
which is term 1. Files may not exceed $2 sup 32$ terms in length: in practice, not much of
a restriction (for short-integer data, this would be a 64 Gb file). One way to think of such
files is as a very long 1-dimensional vector; another is as a continuous (gap free) time
series. There is no header or internal information on such issues as timing: for all the pro-
grams know, a series could be sampled once a decade or once every microsecond—or even
just be a set of numbers, and not a time series at all. There are three types of files: short-
integer (16 bits per term), long integer (32 bits) and floating point, or real (32 bits).

Files are referred in the programs by numbers. Ther actual filenames use the numbers,
plus an appended .D, with prefixes as follows:

a. Files containing short (16-bit) integers have a name starting with I, and have number
values between 100 and 999 (which would be named I100.D and I999.D respec-
tively.

b. Files read as reals (32-bit) have a name starting with R, and have number values
between -100 and -999 (which would be named R100.D and R999 . D respectively.

c. Files read as long (32-bit) integers have a name starting with L, and have number
values between 1100 and 1999 (which would be named 1.100.D and 1.999.D
respectively.

Files may be created in the system /tmp area. For such “temporary files”’, the numbering
is 2100 to 2999 for short-integer files, -2100 to -2999 for real files, and 3100 to 3999 for
long-integer files. The actual names include the pathname of whatever directory you are
in, to avoid conflicts. For additional information see the man page for niolib, the programs
that actually perform input and output.

Files in other directories than the one you are in can be accessed by adding a multiple of
10000 to the number (or of —10000 for real files). If this is done, the path of the relevant
directory will be asked for. So, for example, if you wanted to combine data from three
directories, you would use numbers in the 10000’s for the first directory, the 20000’s for
the second, and the 30000’s for the third. Note that the directory name will need to be
included in any script.

5 April 2004

_5-

Since the files themselves have no internal information or metadata, additional files need to
be used for this. One particular format that many of the programs interact with is called the
header file; this is summarizes information about a single file (or set of files) with the same tim-
ing (start, end, and sample interval). Header files are stored as if they were short-integer data
files (so, numbered 100 through 999), but read using a special subroutine. See the program
header for more information. A header file can usually be recognized by its length, which is 586
terms (1172 bytes).

Naming files with numbers, while it makes the file names short, certainly can also make
the names somewhat cryptic. At the same time, being able to order and group numbers in differ-
ent ways makes it easy to come up with conventional arrangements of files. Once these are used
a few times, they become easier to remember than names. Here is an example, for the common
situation in which there is a number of channels of raw data, each of which has associated with it
a file of editing instructions (how these work is described in the next section), and a final
“cleaned” file. A README for this set of files would look like

Ch Name Data Edits Cleaned
100h 200h
1 LSM HDR 101 201 301
2 LSM RCLP 102 202 302
pred tides -2102
residual 2102 " -302
3 N LOA 103 203 303
4 S LOA 104 204 304
5 VAC 105 205 305

where the third column (Data) gives the file numbers for the raw data, and associated files: ‘“‘the
100’s”’. The fourth column (the 200’s) is the edits files, and the last column is the cleaned data.
This example also shows a common use for temporary files. The predicted tides corresponding
to the strain data in LSM RCLP are in a temporary file, outside the directory, since these can be
regenerated at any later time. The data are all in 16-bit integer, but the preedicted tides are reals,
as is the cleaned residual series (to avoid roundoff). Of course, it would be possible to develop
names for all these files, but when this was tried (and it was), it turned out to be difficult to
develop a consistent set of naming conventions.

Several strategies for working with this type of file naming are:

1. Maintain some documentation (a README file) in whatever directory you are working.
The scripts /sd and Isdt are designed to help in this by listing the files as they are referred
to, giving their series lengths rather than file lengths.

2. Use temporary files as much as possible for intermediate stages—this minimizes the num-
ber of files in a directory. If you develop the proper scripts, you could just keep the raw
and edits files, regenerating the final cleaned data as temporary files when needed.

3. Develop consistent habits, of the type shown above, where certain ranges of numbers, and
offsets between ranges, have certain uses. Another convention we have, besides that
shown above, is to retain the highest range (990 to 999) for throwaway files that we do not

5 April 2004

_6-

want to have vanish (as the temporary files are set up to do).

3. Editing Data

The basic philosopy adopted in PIASD for data editing is to make it interactive, since only
a few kinds of simple problems can be handled by automatic editing programs: notably steps in
otherwise good data, and single-point spikes. Anything more complicated calls for the judge-
ment of an expert, which has a flexibility that can be programmed only with much difficulty. The
PIASD editing programs aim to make it as easy as possible to apply expert judgement, while
minimizing the drudgery of keeping track of the editing information.

B i

Raw Interactive Editing: Edits autocl Cleaned
data file credit file data file
Metadata User
(e.g., logbooks) judgement
Figure 1

Figure 1 is a block diagram that shows how this is done. The most important part is the
program called credit (for ““cursor edit”’). This takes as input a data file (assumed to be a time
series), displays it on the screen, and allows the user to indicate where edits should be made, both
to discard data and, if necessary, to offset the series across such a gap. As edits are made, they
are applied to the display, so the series appears to be edited. In fact, the original data are not
changed at all: each time data are displayed, the raw data are read in from disk and the editing
instructions applied to make the series plotted. The output of credit is an edits file, which con-
tains the editing information only. This file is an niolib integer file; though it has a special format
(described below) the user does not need to deal with this.

Once an edits file has been created, the program autocl (‘‘auto-clean’) is used to read in
the edits and the raw data, and write out a file of “cleaned” data, with the edits applied. The
editing information is thus kept separate from the data; there is, intentionally, no “flag value” to
indicate where data are bad.! Separating the edits from the data has turned out to be extraordinar-
ily useful, since then the editing information can be used in a variety of ways. For example, in
performing a tidal analysis, the program for fitting harmonics reads an edits file to find out where
to assume there are ‘““gaps’ in the data: that is, terms to be skipped in the analysis.

For historical reason (the need to deal with long series while using only short integers), the
edits file format is packed unusually. The first term is the number of edits; each edit is specified by a
triplet of integers. Each triplet gives (in order) the number of terms from the preceding edit (for the
first edit, the origin) to the last good point preceding the bad section, the offset to be applied to the
data folowing the edit relative to that before, and the number of bad points + 1. An edit file

! Though autocl can create a file with this, and gsedir read such a flagged file and pro-
duce an edits file.

5 April 2004

containing the numbers 2 521 -211 19 2763 500 67 thus has 2 edits, with terms 523-540 and
3305-3370 being bad; 540 is 521+19+1, and 3305 is 540+2763+2. Also, a total offset of —211 would
be applied to terms 541-3304, and 289 (= 500-211) to terms 3371 onwards. If the edits are stored as
short-integer files, the maximum gap length is 32767 terms, and the largest offset is 32767 units.
Both restrictions can be overcome if the edits file is long integer; note, however, that the restriction to
integer means that offsets less than £1 cannot be done. This is rarely a problem with actual unscaled
data.

4. Plotting Data

Aside from the screen plots made within credit and datred, this package does not include
any software for plotting data, on the assumption that any user is likely to already have a favorite
one. I use, almost exclusively, the plotxy program developed by R. L. Parker and Loren Shure,
since this allows complete control of the appearance of the plot, controlled by a fairly set of com-
mands. This program is descibed at http://mahi.ucsd.edu/parker/Software/software.html. A ver-
sion is available that reads niolib files directly. Otherwise, to convert such files to ASCII that
most plot packages will read, see putdat.

5. Additional Documentation

All of the programs are, as noted above, self-documenting, usually through the questions
they ask; those that use command-line arguments will print a short description of usage if they
are run with no arguments. Fuller descriptions are contained in the man pages, which also cover
some of the subroutines they call: notably header(5) which describes the contents of the header
files, and niolib(3), which gives more details about the data files. There is an index and permuted
index to these pages. For the interactive-editing program credit there is also a tutorial.

6. Program History

The (distant) ancestor of this set of programs is a package called BOMM, developed at La
Jolla in the 1960’s by Sir Edward Bullard, Flicki Oglebay, Walter Munk and Gaylord Miller.
This was a command-line system (albeit with the commands punched on cards), whose spirit
(somewhat) names (more often) and code (occasionally) lives on in these programs. The conti-
nuity is perhaps unsurprising, since BOMM was developed for processing of long time series,
particularly of sea-level and weather data: there are many similarities with strain data. The con-
version to an interactive system took place in the late 1970’s, on a PDP-11 system: for what it is
worth, the same machine being used at the same time for the early versions of UNIX. This
development was done for processing low-frequency strain and seismic data, and was undertaken
by a number of people including Duncan Agnew, Jon Berger, Bob Parker, and Karen Young.
The initial conversion to a UNIX-based version was done by Agnew at CIRES in 1980, and
developments have continued to the present. A distribution was made available in 1981, under
the name PITSA; unfortunately, this acronym was also used by Scherbaum and Johnson, a little
later, for a suite of seimic data analysis programs, and so has had to be dropped. PITSA/PIASD
is now on its sixth operating system.

REFERENCE

E. C. Bullard, F. Oglebay, W. H. Munk and G. R. Miller (1964). A Users Guide to BOMM: A
System of Programs for the Analysis of Time Series. (La Jolla: IGPP).

5 April 2004

