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Abstract. It is usually assumed in geodetic studies that
measurement errors are independent from one
measurement to the next and that the rate of deformation
(velocity) is constant over the duration of the experiment.
Any temporal correlation between measurements can
substantially affect the uncertainty in this velocity estimate
when it is determined from the time series of
measurements. One source of possible long-term
correlation is motion of the geodetic monument with
respect to the "deep" crust. Available measurements
suggest that this motion introduces errors that have the
form of a random walk process. We show how such errors
affect the uncertainty of velocity estimates. For a geodetic
experiment of set duration we calculate the velocity
uncertainty as a function of the number of observations and
of the relative amount of correlated and uncorrelated noise.
We find that 1) neglecting long-term temporal correlations
makes the uncertainty in the estimated velocities much too
small, and that 2) when the correlated and independent
noise sources are of similar magnitude, the expected
improvement in uncertainty from having more
measurements (1/VN) is not realized; there is almost no
improvement in some cases. We have also examined the
effect of outliers ("blunders") on the velocity uncertainty;
for a frequency of outliers typical of geodetic field
campaigns, the previous two conclusions remain
unchanged. These resuits suggest that long-term
correlations have a large effect on estimating deformation
rates; unless these correlations are small, frequent
observations give little advantage. If frequent observations
are planned, the amount of correlated noise due to
monument instability must be kept small if the full
capabilities of the measurement technique are to be
realized.

Introduction

It is common in actively deforming areas to make
repeated geodetic measurements and to estimate rates of
deformation by fitting a linear trend to these measurements
assuming no significant episodic deformation has occurred
(e.g., a seismic or volcanic event). To determine this trend
(the velocity) and its uncertainty, some estimate of the data
covariance matrix is needed. Usually the errors from one
measurement to another are assumed to be independent,
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making the covariance matrix diagonal. However, for
geodetic measurements of tectonic motion another potential
source of error is the instability of the geodetic monument
which can introduce large temporal correlations into the
data. Ideally the position of a geodetic monument would
reflect only deep-seated tectonic deformations. For this to
be true requires the monument to be unaffected by non-
tectonic processes such as desication weathering, water
withdrawal, and landslides to name only a few of the many
possibilities.

Wyatt [1982] and Wyatt [1989] show that continuous
measurements of near surface monuments from a sensitive
strainmeter at Piflon Flat Observatory in southern Califor-
nia have power spectra that rise at low frequencies approxi-
mately as f~2. In addition, Langbein et al. [1993] show
power spectra from frequent geodetic measurements which
also suggest an f~2 dependence. This behavior is a charac-
teristic of a random walk (Brownian motion) where the
monuments move about as if they are particles under the
influence of small random forces, which is a plausible
model for the physics of the problem. We demonstrate here
the effect such an error source has on estimates of secular
velocities, and especially on the uncertainty of those esti-
mates, through simulations with synthetic data. In an ear-
lier paper [Johnson and Wyatt, 1994] we used a similar
technique to understand the effect of noise from monument
motion (and other noise sources) on estimates of fault-
model parameters.

The effect of long-range correlations on estimates of
uncertainty has long been noted by practicing statisticians
(e.g., Jeffreys [1939]), but has not been much studied in the
statistical literature until the last few years; Beran [1992]
describes much of this recent work. Arnadottir et al.
[1992] have shown the importance of acknowledging the
existence of spatial correlations which are introduced into
the geodetic data (in this case primarily leveling) by the
processing strategy. We treat a different case here in which
the correlations are temporal in nature; it should be noted
that insofar as this sort of correlation is present, as it must
be at some level due to monument motion, it is an issue for
all geodetic data.

Technique

We assume that the measured position of a reference
point (in one dimension) is given by:

P(t)=Py+rt;+e(ty) (1)

where Py is an initial position and r is velocity. We further
assume that the error, £(¢;), is the sum of two terms, one
from the measurement system and the other from monu-
ment motion:

e(t) =aa(t) +bp(1;) ()
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Figure 1. Three synthetic time series representing one year of daily position estimates as described by equations (1) and
(2) with a = 1. The relative amount of the random walk error component (b) increases by a factor of 10 from bottom to
top. Only in the top two traces is the correlated nature of the time series evident.

where a(t;) is a sequence of independent, unit-variance
Gaussian random variables, B(z;) is a random walk
sequence, and a and b are scale factors that control the rel-
ative amount of each type of error (we use millimeters as
our basic unit of position and years for time).

The random walk sequence is generated by the cumula-
tive addition of Gaussian random variables, and is nonsta-
tionary. Our scaling of B(t;) in equation (2) is such that its
standard deviation after time ¢ is given by 1 mm Xxt.
Thus, a large number of realizations of B(t;) would have a
standard deviation of one millimeter after one year, two
millimeters after four years, and so on. Since analyses of
actual geodetic data in California (done by us and by J.
Langbein [personal communication]) suggest that monu-
ment instabilities as large as a few mm/yyr are typical, we
can thus reasonably suppose b to be in the range 0.1 to 3.
Likewise, errors of 0.5-3 mm for a seem representative for
the measurement error of current regional GPS systems.

Given a time series of the form (1), we fit to it a model
with

P(t)= (3)

where P and 7 are the estimated initial position and
velocity. Since we are interested only in velocity estimates,
we set Py =0, and do not discuss it further. We may also,
again without loss of generality, set r=0. We use a
2-norm fitting criterion (least squares) in which case the
standard theory for regression gives matrix equations to
determine r and its standard error, o; . To find these, we
must also know the covariance matrix, Zpp; for the error

0+rt

Table 1. Slope and standard deviation estimates for the time
series in Figure 1.

Error sources included in covariance matrix

Measurement system Measurement system &

model given by (3), this is
pp = a1+ b°T )

where I is the identity matrix and T is

0
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where f;' is the sampling frequency in years'. (A
derivation of the T matrix is contained in the appendix of
Johnson and Wyatt [1994] where it is called the X, matrix.
Note, however, that there is an error in the Z matrix in that
derivation: the right-most column of zeros should be
removed.) For the actual computation we use a Cholesky
factorization of the covariance matrix to transform the cor-
related time series into an uncorrelated one. In this new
system the transformed data are independent and the
parameter estimation proceeds easily.

Results and Discussion

What does a correlated time series look like? Or, more
importantly, how much correlation can be “hidden” in a
time series before it can easily be seen by eye? Figure 1
attempts to demonstrate the answer to these questions by
showing three synthetic time series of the form described
by equations (1) and (2) but with different relative amounts
of correlated noise. Each series represents one year of
daily measurements. The same sequences of pseudo-
random numbers were used to generate each series. The
scaling of the independent errors is the same (a =1, fora 1
mm standard deviation) in all three series; the scaling, b, of

. (only) Monument instability the random walk error term ranges from 1 at bottom to 10
bla r o; r o; in the top trace. Only in the top two series is the influence
10.0 -0.993 0.181 0,662 10.054 of the random walk noise term ev1dc?nt. .

Table 1 shows the results of fitting a model in the form

3.0 -0.386 0.181 -0.312 3.054 ; . . . .
1.0 0213 0.181 ~0.263 1.057 of equation (3) to each of these time series, using different
covariance matrices: the full matrix described by (4), and
Units of 7 and o7 : mm/yr. one which ignores the correlations (b =0 in (4)). For all
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Figure 2. Slope estimates for 100 realizations of the bottom time series of Figure 1. In the top panel the correct covari-
ance matrix is used in the calculations, including the correlations due to the random walk error term, while in the lower
panel these correlations are incorrectly ignored. The error bars on the individual slope estimates in the lower panel are far
too small (due to this omission) despite the fact that the correlation in the bottom time series of Figure 1 is not at all evi-

dent by eye.

ratios of b/a the estimated velocities 7 are nearly the same;
but the estimated uncertainties, o;, differ substantially,
especially as the relative amount of monument instability
increases. If the proper covariance matrix for correlated
data is used then none of the estimates for 7 are signifi-
cantly different from zero, however the estimates of
uncertainty derived by ignoring the correlation in the data
would lead one to believe otherwise. Figure 2 makes this
same point in a different way; each panel presents the esti-
mated deformation rate and its uncertainty for 100 simula-
tions of one year of daily measurements with a and b equal
to 1. (Again, the same sequence of pseudo-random num-
bers was used for each panel.) The lower panel shows how
much the uncertainty in velocity is underestimated if the
effects of temporal correlation are ignored; the error bars in
the top panel, however, appear quite reasonable, serving to
validate the methodology used. In fact, the size of each
individual error bar in the top panel is statistically the same
as the standard deviation of the ensemble of 100 velocity
estimates.

Figure 2 demonstrates that we must include off-
diagonal terms in the covariance matrix when correlated

Table 2. Deformation rate uncertainty: 5 year experiment

Time between surveys

2 days 1 week 1 month 1 year
bla o;la
10.0 4.477 4.479 4.480 4.481
3.0 1.348 1.352 1.359 1.370
1.0 0.454 0.459 0.471 0.514
0.3 0.141 0.148 0.168 0.276
0.1 0.053 0.065 0.100 0.246

errors are present. Given such errors, how does the sam-
pling frequency affect the uncertainty in velocity? Figure 3
(see also Table 2) presents this information for an experi-
ment lasting 5 years and a sampling frequency which varies
from once per year up to every other day (6 to 916 total
measurements). We assume that the only source of correla-
tion is the random-walk component, although in actual
geodetic measurements with GPS there are other correla-
tions present with periods of a few days (T. Herring, per-
sonal communication). The y-axis is the ratio o;/a, and
each solid curve in Figure 3 corresponds to different rela-
tive levels of error. When the random walk error dominates
over the independent error (b/a = 10.0) o; is quite insensi-
tive to the sampling frequency; if the random walk error
level is much smaller than the independent error
(bla=0.1) o; diminishes with more frequent sampling
(more measurements) roughly as the 1NN rule for com-
pletely independent errors.

Figure 3 shows that to make the most precise velocity
estimates over a given time span it is crucial to reduce the
amount of correlated error present. Unless the ratio
between error sources, b/a, is kept below 1, making posi-
tion determinations annually will give velocities with
nearly the same uncertainty as daily measurements would.
Current estimates of the horizontal precision of regional-
scale GPS are 2 to 3 mm (Y. Bock, personal communica-
tion); if, as current estimates indicate, the typical level of
random-walk error in geodetic data is between about 1 and
3 mm/+[yr then the b/a ratio would be between 0.3 and 1.5:
only if we can hold the random-walk error to the lower of
these values is there likely to be much benefit to frequent
sampling.

It may be felt that there is another motivation for more
frequent measurements: to provide enough data to identify
outliers. J. Savage and M. Lisowski (personal communica-
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Figure 3. Rate uncertainty (normalized) as a function of sampling frequency for an experiment lasting five years. Each
curve gives the results for a different ratio of the random walk to independent error terms. For example, yearly measure-
ments made with a =b =1 give o; of 0.52 mm/yr; if the amount of each noise source is doubled to a = b =2 then o;
also doubles to 1.05 mm/yr. The simulations resulting in the dashed curves include a 2% chance of a 5-c blunder in the
measurements; the largest difference between the solid and dashed curves is only 20%.

tion) have concluded, from an analysis of the complete
southern California Geodolite data set, that such “blun-
ders” occur in actual field measurements (probably from
setup errors) about 1% of the time. To test the effect of
outliers on our estimates of rate uncertainty we have modi-
fied equation (2) so that there is a small chance of a rela-
tively large independent error for each synthetic datum
created. To simulate a worst case situation we allow a 2%
chance that a in equation (2) is 5 times its usual value at
each point. Figure 3 also presents the results for this case,
as the dashed curves, where each velocity uncertainty was
calculated directly from a Monte Carlo analysis of 60,000
simulations. Since the dashed curves in Figure 3 are very

" nearly the same as the solid curves (the maximum differ-
ence is 20%, for very small monument motions and very
few measurements), we conclude that the presence of out-
liers does not change our previous conclusions.

Conclusion

Long-term temporal correlations must be taken into
account when geodetic data are analyzed to determine
deformation rates (velocities). Random-walk noise, say
due to the instability of geodetic monuments, can have a
large effect on the uncertainty in these velocity estimates if
it is comparable in size to the measurement system noise.
In particular, there is then very little improvement in the
velocity uncertainty as the frequency of measurement
increases. This result implies that for continuous GPS net-
works to achieve high precision velocity estimates in a rea-
sonable period of time (e.g., 5 years) they will have to be
constructed so as to hold the monument instability to a

. small fraction of the measurement system precision.
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