
SIOG223A
A Very Brief Introduction to 

Geophysical Modeling and Inverse Theory.

Background reading see Bob Parker’s optimization notes.
For much more on this topic take SIOG230.

Transitioning from parameter estimation to inverse theory,
dealing with nonlinear problems and optimization.



Forward modeling:

model space
data

 space

m = (m1, m2, .....,mN )
x = (x1, x2, x3, ......, xkM )

d̂ = (d̂1, d̂2, d̂3, ....., d̂M )

d̂ = f(x,m)
Model parameters (layers, blocks, ...)

Independent variables (freqs.,  locations, ...)

Predicted data (gravity, magnetic, electric, ...)

Some forward functional f



Inverse modeling:

model space data
 space

d = (d1, d2, d3, ....., dM )
� = (�1, �2, ...,�M )
m

Given real (observed) data 
with errors

find an



There are several approaches to inversion: 

Stochastic 
Monte Carlo, Markov Chains 
Genetic Algorithms 
Simulated annealing, etc. 
     (Bayesian Searches) 

Deterministic 
Newton Algorithms 
Steepest descent 
Conjugate Gradients 
Quadratic (and Linear) Programming, etc. 

Analytical 
D+ (1D MT) 
Bilayer (1D resistivity) 
Ideal body theory in gravity and magnetism 



Stochastic methods: 

model space

data
 space

“acceptable” data
 space

A useful approach, largely restricted to simple problems (because millions of 
models required), with most of the subtlety in model generation methods.

The advantages are that (i) only forward calculations are made and (ii) some 
probabilities can be obtained on model parameters.  Best for sparsely 
parameterized models.  One needs to be careful that bounds on explored model 
space don’t unduly influence the outcome.



Deterministic 
Newton Algorithms 
Steepest descent 
Conjugate Gradients 

model space

data
 space

“acceptable” data
 space

starting model



Analytical 
e.g. D+ (1D MT) 

model space
my data

best
fitting model

(guaranteed!)



These solutions are guaranteed best fitting but usually pathological.  For 
example, in 1D MT or global induction the least squares solutions are 
delta functions in electrical conductivity.



Existence and Uniqueness: Is there a solution to the inverse 
problem?  Is there only one solution? 

Finite noisy data for a linear problem (say, gravity) 
An infinite number of solutions fit the data 

Finite noisy data for a nonlinear problem 
Either zero or an infinite number of solutions fit the data 

Infinite exact data 
A unique solution has been shown to exist for a 
few cases.    

As someone put it, there is no such thing as being a little bit non-
unique. 



What we have talked about so far is model construction.  For a great 
many geophysicists this is what they think of when inversion is 
mentioned.  More rigorous approaches try to obtain bounds on model 
properties - something that is true of all models.  The classic example is 
total mass from gravity: 
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An example from global conductivity studies: 



model space

data
 space

1D 

3,4D 

2D 

Where in model space you are is determined by your 
parameterization - this also determines where in data space you 
can be.

In non-linear geophysical problems, even forward modeling can 
involve a challenging computational effort.



One could ask the question: “Can our mathematics ever completely describe 
nature?”. 

The trite answer, of course, is “No”.  However, it is more useful to 
understand the nature of the limitations: 

Are the physics sufficient (e.g. scalar versus anisotropic models)? 

Is the forward computational machinery accurate?  

Is the dimensionality of model space large enough? (1D, 2D, 3D, 4D) 

Is the discretization fine enough and the model size big enough? 

One can rarely afford to blindly ensure these are all achieved, so 
intelligence and understanding must be applied, perhaps by trial and error.  

 



model
space

data
 space

Best fit 

real 
world 

Even with your best efforts, the real world is unlikely to be captured by 
your model parameterization, and the best fitting model almost 
certainly won’t be either.  Understanding this can be important.



So what constitutes an 
“adequate” fit to the data?



For noisy data (read: all data), we need a measure of how well a given 
model fits.  Sum of squares is the venerable way:

⇥2 =
M⇤

i=1

1
�2

i

�
di � f(xi,m)

⇥2

�2 = ||Wd�Wd̂||2

W = diag(1/�1, 1/�2, ...., 1/�M ) .

or

where W is a diagonal of reciprocal data errors

We could use other measures of fit, but the quadratic measure works 
with the mathematics of minimization, and for Gaussian errors LS is a 
maximum likelihood, minimum variance, unbiased solution.  But...

I like to remove the dependence on data number and use RMS:

RMS =
p

�2/M .



... sum-squared misfit measures are unforgiving of outliers:    

With 5% error bars this 
data point has the same
weight as 40,000 other data   

All through the inversion process you should monitor weighted residuals
to ensure that there are no bad guys out there.
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Geophysical inversion is non-unique:

A single misfit will map into an infinite number of models (or none at 
all!).

�2
model space

misfit
 space



and usually poorly constrained:

model space

A small distance in      
corresponds to a large distance 
in m

�2

�2

misfit
 space

(And don’t forget: the minimum      
is likely outside your model 
parameterization).   

�2



In the real world, N (model size) is infinite (even in 1D).  How we 
proceed from here depends on whether N is small, moderately large, or 
infinite.  

Small (sparse) parameterizations can be handled with parameterized 
inversions (e.g. Marquardt) or stochastic inversions.  The concept of 
least squares fitting works because sparse models don’t have the 
freedom to mimic the pathological true least squares solutions.

Infinite N requires real inverse theory.

A lot of geophysical model construction deals with moderately large N. 

d̂ = f(x,m) Some forward functional f
m = (m1, m2, .....,mN ) Model parameters

Speaking of model space parameterization:



To invert non-linear forward problems we often linearize around 
a starting model: 

d̂ = f(m1) = f(m0 + �m) � f(m0) + J�m

Jij =
⇥f(xi,m0)

⇥mj

�m = m1 �m0 = (�m1, �m2, ...., �mN )

�2 ⇥ ||Wd�Wf(m0) + WJ�m||2

using a matrix of derivatives 

and a model perturbation

Now our expression for      �2

�2 = ||Wd�Wd̂||2

Is then



For a least squares solution we solve in the usual way by differentiating 
and setting to zero to get a linear system: 

where

So, given a starting model       we can find an update         and iterate 
until we converge.  (This is Gauss-Newton.)

⇥ = ��m

� = (WJ)T W(d� f(m0))
� = (WJ)T WJ .

m0 �m

�m = ��1⇥

This can only work for small N (it isn’t even defined for N > M ).  Even for 
very sparse parameterizations, it rarely works without modification. 



You need to start “linearly close” to the solution for this to work.  
Long, thin, valleys in      space are common and present problems 
for Gauss-Newton methods.

�2

�2
min Start here and you will

diverge

Start here and you will 
get to the solution rapidly

�2



Another approach is “steepest descent”, in which you go down 
the gradient of the contours of     :�2

�2

�2
min

�m = µ(WJ)T [W(d� f(m0))]

These solutions are of the form 

but the steps are always orthogonal and the step size is 
proportional to the slope, so this method stalls near the solution



When     is large, this reduces to steepest descent.  When      is small, it 
reduces to the Newton method.    Starting with large        and then 
reducing it close to the solution works very well.

For problems that are naturally discretely parameterized, Marquardt is 
hard to beat.  For sparse parameterizations of infinite dimensional 
models, the parameterization (e.g. number of layers chosen) has a big 
influence on the outcome.

The Marquardt method combines the steepest descent method and 
Newton method in one algorithm by modifying the curvature matrix:

�jk = �jk for j �= k .

� �
�

�jk = �jk(1 + ⇥) for j = k



Global versus local minima: 

For nonlinear problems, there are no guarantees that Gauss-Newton 
will converge. 

There are no guarantees that if it does converge the solution is a 
global one. 

The solution might well depend on the starting model.

local minimum global minimum
(maybe)



If you increase N too much, even with the Marquardt approach the 
solution goes unstable.

If N is big then the solutions become unstable, oscillatory, and generally 
useless (they are probably trying to converge to D+ type solutions).   

where          is some measure of the model and     is a trade-off 
parameter or Lagrange multiplier.  

Almost all inversion today incorporates some type of regularization, 
which minimizes some aspect of the model as well as fit to data:

U = ||Rm1||2 + µ�1
�
||Wd�Wf(m1)||2

⇥

Rm µ



In 1D a typical      might be:R

U = ||Rm1||2 + µ�1
�
||Wd�Wf(m1)||2

⇥

R1 =

�

⇧⇧⇧⇧⇧⇧⇧⇤

�1 1 0 0 0 . . . 0
0 �1 1 0 0 . . . 0
0 0 �1 1 0 . . . 0

. . . . . .

�1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌅

which extracts a measure of slope.  This stabilizes the inversion, creates 
a unique solution, and manufactures models with useful properties. 

This is easily extended to 2D and 3D modelling.
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When     is small, model roughness is ignored and we try to fit the data.  
When    is large, we smooth the model at the expense of data fit. 

One approach is to choose    and minimize     by least squares.  There 
are various sets of machinery to do this (Newton, quasi-Newton, 
conjugate gradients, etc.).  With many of these methods     must be 
chosen by trial and error, increasing the computational burden and 
introducing some subjectivity.  

U = ||Rm1||2 + µ�1
�
||Wd�Wf(m1)||2

⇥

µ U

µ
µ

µ

Picking     a priori  is simply choosing how rough your model is 
compared to the data misfit.  But, we’ve no idea how rough our model 
should be.  However, we ought to have a decent idea of how well our 
data can be fit.

µ

The Occam  approach is to introduce some acceptable fit to the data (      
) and minimize:

�2
�

U = ||Rm1||2 + µ�1
�
||Wd�Wf(m1)||2 � ⇥2

⇥
⇥



U = ||Rm1||2 + µ�1
�
||Wd�Wf(m1)||2 � ⇥2

⇥
⇥

Linearizing:

 The only thing we need is to find the right value for    .

(Note we are solving for the next model m1 directly instead of         .
Bob Parker calls these “leaping” and “creeping” algorithms.)

µ

After differentiation and setting to zero we get 

m1 =
�
µRT R + (WJ)T WJ

⇥�1(WJ)T W(d� f(m0) + Jm0) .

U = ||Rm1||2 + µ�1
�
||Wd�W

�
f(m0) + J(m1 �m0)

⇥
||2 � ⇥2

⇥
⇥

�m



Occam finds     by carrying out a line search to find the ideal value.  
Before       is reached, we minimize      .  After        is reached we 
choose the      which gives us exactly     .

�2
�

�2
�

�2

µ
�2
�

�2
��2

µ

µ



For zero-mean, Gaussian, independent errors, the sum-square misfit

�2 = ||Wd�Wd̂||2

is chi-squared distributed with M degrees of freedom.  The expectation 
value is just M, which corresponds to an RMS of one, and so this could 
be a reasonable  target misfit.  Or, one could look up the 95% (or other) 
confidence interval for chi-squared M.

RMS = 1 RMS = 1.36

How to choose       ?�2
�



So, if our errors are well estimated and well behaved, this provides a 
statistical guideline for choosing       .�2

�

Errors come from 

• statistical processing errors

• systematic errors such as instrument calibrations, and 

• “geological or geophysical noise” (our inability to parameterize fine 
details of geology or extraneous physical processes).

Instrument noise should be captured by processing errors, but some 
error models assume stationarity (i.e. noise statistics don’t vary with 
time).  In practice, we only have a good handle on processing errors - 
everything else is lumped into a noise floor.



Target misfit 2.4 Target misfit 2.0 Target misfit 1.5

Target misfit 1.3 Target misfit 1.2 Target misfit 1.1

Even with well-estimated errors, choice of misfit can still be somewhat 
subjective.

Joint 2D inversion of marine CSEM (3 frequencies, no phase) and MT 
(Gemini salt prospect, Gulf of Mexico):

 



Beware of trade-off (“L”) curves:
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Beware of trade-off (“L”) curves:

(they are not as objective as proponents say...)
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Regularization 
Solution on the trade-off curve

Choice of Misfit Again

  

Regularization 
Example of core surface field trade-off curve

  

Regularization 
Solution on the trade-off curve

  

Regularization 
Solution on the trade-off curve

  

Regularization 
Solution on the trade-off curve

  

Regularization 
Solution on the trade-off curve



For a given misfit,  the model now depends on (R)
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Data

 model

Data errors
and misfit choice

Regularization

Priors/
constraints

geology  

Finally, remember that geophysical inversion for model construction 
depends on much more than the data alone:

Geophysical
inversion
algorithm

Model
Parameterization


