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Simple examples

Fitting a straight line

Assessing fit

Correlation and Regression
Matrix approach to Least Squares
Statistical properties

Inferences about theta



Matrix Representation for Linear Least Squares

Y=X0+¢ (28)
Y € IR", 8 € IR?. X is an n X p matrix (not a random variable) and is known as the design
matrix; its rows are the z,, x2,...,z,’s for each measurement of y:
/'U]\ 91 /2311 Ty2 ... xl.p\
- s - 0, 21 T2 ... T2p
Y = 0 = X = (29)

\y.n / ép \z;al xn..Z . . xn..p /



We can also define a residual vector 7 € IR™
F=Y — X0 (30)

We see that S = 7.7 or the Euclidean length of 7. In other words the least-squares solution is the
one with the smallest misfit to the measurements, as given by

7 =rir; -Z =77 = || (3D



We want § = @ such that

Equivalently,

V;(7(6).7(6)] = 0

V;[(¥ — X0)"(Y — X0)] =
V(Y'Y —Y'X0-0"X"Y +6" X" X0 =

Since Y7 X6 = 67 XTY = (X7Y)7# this becomes

whence

which is to say

V;[YTY —2X"Y)'0+6"X"X6] =0
—2XTY +2X7X6 =0

b= (X"X)'XTY

(36) are the normal equations.
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(36)



Simple Example: y=bx

The matrix notation is readily understood if we use as an example the straight line fitting from an
earlier section. In this context (29) produces
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V=" 0'(.61) x=1|. " 37)
yn/ 1 =z,

We can form the normal equations as in (36) by

1
1 [T o9

Ty T2 ... Ty

XX = (



yielding

XTX = (

Inverting this we find

(X' X)'=

(L

Qi1

I;

along with

XTY=(

Now we get B using (36)

nZz:r?

1 - x?
— (i zi)? (_%f;”r

Zi Yi
Z,- T;Y;

B= [ﬁo] = (XTX)' X7V

By
1

“n 2w — Qo Ti)?
1

) ny.; T — Qizi)? L

L R

Qoiu)Qo zh) —Co ) i)

-
—
-

nSs Ty =0z Y

|



Statistical Properties of LS Estimators

If the errors in the original measurements are uncorrelated, i.e., Cov(e;, €;) =0 Vi # j and they
all have the same variance, o2, then we write the data covariance matrix as C,, = ¢?I. I isann

by n identity matrix. When this property holds for the data errors, each f:. is an unbiased estimate
of ¢ k
£@,)=6, forall k=1,....p (43)

Also the variance-covariance matrix for f is Cj; = 02(X” X) ", so that

Couv(f,,0,) = k, Ith element of e*(X ¥ X) !

0 : 2 vT 1 (44)

Var(6;) = k, kth diagonal element of o“(X " X)
Cj; 1s a p by p matrix, and (44) is just a generalization of (13). Observe that even though the
uncertainties in the original measurements are uncorrelated the parameter estimates derived from
them are in general correlated. Under this model an unbiased estimate for o2 is

2_o_|Y-Y|} _RSS

g =8

- (45)
n—p  n-—p

LS Estimators are BLUE, best, linear, unbiased estimates



e BLUE versus MMSE
 |nferences about the estimates

* Sqguared multiple correlation coefficient and
variance reduction
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Equivalence of ML and LS Estimates for
Multivariate Normal

Weighted LS
Numerical Stability

NLLS

A little bit about optimization



The Arrhenius relationship for thermally activated semiconduction in minerals is o(t) = oge /%

where o(t) is the electrical conductivity at temperature t, k is Boltzmann’s constant and A is the
activation energy. This has been used to model the electrical conductivity data for the mineral
olivine as a function of temperature. Olivine is a major constituent of Earth’s mantle, and it
is of some interest to understand the relationship between conductivity and the temperature and
other physical properties of Earth’s interior. For the conductivity example we can solve for the
activation energy A and oy simply by working in the log domain, and the transformed model is
shown in Figure 7-1 for conductivity data derived from a sample of Jackson County dunite.
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Figure 7 -1: Temperature - conductivity data for Jackson County dunite. The blue symbols appear
to follow the Arrhenius relationship reasonably well, but the red parts will require additional non-
linear terms.
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Robust Methods
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 What if the design matrix in least squares Is
random, as well as the observations?
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Figure 8.1: The total least squares problem for a straight line. Note that in the illustration the uncertainties

in x and y are equal.



* Robust methods and iteratively reweighted least
squares



Loss Function Influence Function
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Figure 8.2: Loss and influence function for ML estimation with Gaussian and exponentially distributed
noise. Robust M-type loss and influence functions for Huber’s t-function with £ = 1.5, and Tukey’s biweight
with ¢ = 4.5.



Non-Parametric Density

Function Estimation
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Background Reading: Chapter 9 of notes,
Dekking et al, Chapter 15
Constable (2000), doi: 10.1016s0031-9201(99)00139-9



Yellowknife Observatory Data
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Figure 2. Sample of hourly average values of geomagnetic observatory data from Yellowknife, Canada.
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Figure 3. Histograms of residuals from LS fit of lines to Yellowknife data set.
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Figure 4. Autocorrelation functions for the residuals from a LS fit to the Yellowknife data. The lower curve in each part of the figure is for the
unfiltered data, the upper part the autocorrelation for the residuals from the first differenced data.
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Figure 6. Comparison of the histograms of residuals for least-squares (dashed line and squares) and maximum likelihood (solid line and
triangles) estimation.
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Figure 7. Line amplitudes obtained by the various methods discussed in the text. Error bars are one standard deviation as computed by (11).



lToday's topics

Non-parametric density estimates

Histograms, Naive estimators, Kernel density
estimates, pros and cons

Choosing bandwidth for an estimate
Comparing with the sample distribution function

Adaptive estimation: nearest neighbors and
variable kernels

Maximum penalized likelihood estimation



A pdf for polarity interval length

Geomagnetic Field Polarity
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Histograms

Fraction of Events/h
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Sample Distribution functions and various estimates of pdf
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Estimating Reversal Rate
as a function of time
Constable, 2000, PEPI

Finding the time-varying
rate for a Poisson process
- adaptive density
estimate
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Finding the time-varying
rate for a Poisson process
- separate adaptive
density estimate before
and after the CNS

Reversal Rate, R(t) (Myr™")
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Cumulative Probability
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Putting bounds on the rate estimate using
the Kolmogorov Smirnov Statistic
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Reversal Rate (Myr—T)

Putting Bounds on Reversal Rates, assuming
monotonic variation of the pdt over 2 intervals
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