
OPTIMIZATION

Class Notes by Bob Parker

1. Mathematical Optimization and Geophysical Modeling

The subject of optimization theory in mathematics usually posed as fol-

lows. We are given a real function f (x) of the real vector argument

x ∈ IRn; that is, in mathematical notation f : IRn → IR. We wish to find the

vector x∗ such that f (x∗ ) is as small as possible. This is written in the lit-

erature as

x∗ = arg
x ∈ IRn
min f (x) .  (1)

The function f is called the objective or the penalty function. If f is

smooth, say continuously differentiable, then the classic solution to this

problem is to look for the stationary points, the places where the gradient

vanishes:

∂ f

∂x
j
∗

= 0, 1, 2, . . . n; or ∇ f (x∗ ) = 0 .  (2)

So (2) defines n (possibly nonlinear) equations in n unknowns, and if we

can solve that system we have the stationary points, which we can check

for local behavior. But numerically this not how (2) is solved, unless the

equations are linear (linear least squares), and even then not always, as

we will see. We can already anticipate a possible problem with (2): f may

not be smooth enough to have a derivative, for example suppose

f (x1, x2) = | 1 + x1 + x2|; then (2) won’t work.

Equation (1) is an example of an unconstrained optimization prob-

lem. Another important class of problems says that the coordinates x are

not free, but must themselves satisfy certain conditions, say for the

moment

g(x) = 0 .  (3)

This is called a constraint equation. So that the optimization now reads

x∗ = arg
g(x) = 0
min f (x), x ∈ IRn (4)

and this is an example of a constrained optimization problem. For

smooth functions you will recall this is solved by introducing a Lagrange

multiplier λ and generating a new function F defined by

F(x, λ ) = f (x) − λ g(x) .  (5)

Then the classic theory says the stationary points of (5) where

∂F

∂x j

= 0, 1, 2, . . n; and
∂F

∂λ
= 0 (6)
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are also stationary points of the constrained system. naturally we can

generalize (3) to be a whole collection of functions. Then a Lagrange mul-

tiplier is introduced for each constraint. Obviously we just differentiate

now on all the λ s.

Another way in which constraints can be applied is through an

inequality, for example

x∗ = arg
0 ≤ g(x)
min f (x), x ∈ IRn . (7)

In this case a John multiplier is added, which looks just like λ in (5).

There are then two possibilities to be considered: either the constraint is

active, and then g(x∗ ) = 0 and we solve as before with the Lagrange multi-

plier; or it is inactive, meaning g(x∗ ) > 0, and then we can solve by setting

λ = 0 and differentiating. Both cases have to be investigated. Things

become quite serious when many inequalities are included rather than

just one. We will not discuss this more difficult case any further here, but

even when g and f are linear, it is the subject of a huge literature about

linear programming; for nonlinear f or g we have what is called a

mathematical programming problem.

What does this have to do with geophysics? The reason geophysi-

cists are always using numerical optimization is because they want to fit

models with unknown parameters. For example, there is a model earth

with layers of different seismic velocity and travel time data to be match.

Suppose the model parameters are x1, x2, . . . xn and the measured num-

bers are d1, d2, . . . dm and the model theory says that we expect

d1 = f1(x1, x2, . . . xn)

d2 = f2(x1, x2, . . . xn)

. . .

dm = f m(x1, x2, . . . xn)

(8)

where the f j are functions modeling the behavior of the earth. We adopt

an obvious vector notation now:

d = f(x) .  (9)

Usually the number of data exceeds the number of parameters ( m > n),

but it doesn’t have to. In either case one is never going to be able to sat-

isfy (9) exactly with real field measurements. Why is that? So instead we

settle for the parameter set that best approximates a solution in some

sense. The almost universally adopted strategy is to replace (9) with

x∗ = arg
x ∈ IRn
min ||d − f(x)|| .  (10)

And (10) is an example of an optimization problem! The traditional choice

of norm here is

||y|| = (
m

k=1
Σ y2

k )½ (11)
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known as the 2-norm or the Euclidean norm. Then (11) is a Least

Squares (LS) problem. If the function f is just a linear map (that is rep-

resented by a matrix multiply) then (11) is a linear least squares problem,

the easiest kind. But most often f is not a linear map. And you can see

that if the parameters are velocities or layer thicknesses, it will be very

natural to insist that they are positive, leading to problems like (7), but of

a more general kind with a constraint on every parameter.

In the following notes we concentrate on unconstrained problems,

although we will occasionally use Lagrange multipliers. And least

squares problems will be our main topic.
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2. Simple Least Squares Problems

Least squares problems are examples of optimization problems that

involve the simplest of norms. We are going to solve these problems in

several ways, to illustrate a the use of use of Lagrange multipliers and a

few other things. The bible for the numerical aspects of LS is the ancient

Lawson and Hanson, 1974. Informally, a norm is a real number that mea-

sures the size of an element in a linear vector space. Assigning a norm to

a linear vector space is said to equip the space with a norm. Most linear

vector spaces can be so equipped (spaces of functions, operator, matrices,

etc), but here we will consider only the simplest norm for IRm, the

Euclidean length 1(11). Note from here on I will not use bold x for a vec-

tor, but just use x ∈ IRn as the math literature does. Here is an approxi-

mation problem often encountered in geophysics, the classical least

squares problem. We will state it as a problem in linear algebra.

Suppose we are given a collection of n vectors ak ∈ IRm and we wish

to approximate a target vector y by forming a linear combination of the

ak; when n < m, as we shall assume, we will not expect to be able to do

this exactly, and so there will be an error, called in statistics the residual:

r = y −
n

k=1
Σ xkak . (1)

In data analysis, straight-line regression is in this form, or fitting any

simple linear model to a data set. In numerical analysis you might want

to approximate a complicated function by a polynomial. To get the best

approximation in some sense, we want the size of the vector r ∈ IRm to be

as small as possible. Once we’ve picked a way to measure the size, we

have a minimization problem. The simplest norm for computational pur-

poses is the Euclidean length, and this leads to the overdetermined

least squares problem. If we can rewrite (1) in matrix notation:

r = y − Ax (2)

where x ∈ IRn and the matrix A ∈ IRm×n is built from columns that are the

ak:

A = [a1, a2, . . . an] .  (3)

So the minimization problem is to solve

x ∈ IRn
min f (x) (4)

where

f (x) = ||r||
2 = rT r = (y − Ax)T (y − Ax) .  (5)

Obviously we can square the norm if it simplifies the algebra.

I will offer you several solutions to this problem, some of which may

be unfamiliar. First the classical approach, which is to multiply descend

into subscripts, and differentiate:
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f =
m

j=1
Σ r2

j . (6)

Then

∂ f

∂xk

= 2
m

j=1
Σ r j

∂r j

∂xk

(7)

= 2
m

j=1
Σ (y j −

n

i=1
Σ A ji xi) × (− A jk) (8)

= −2
n

j=1
Σ A jk y j + 2

n

i=1
Σ (

m

j=1
Σ A jk A ji) xi (9)

and this is true for each value of k. At the minimum we set all the deriva-

tives to zero, which leads to:

n

i=1
Σ (

m

j=1
Σ A jk A ji) xi =

n

j=1
Σ A jk y j , k = 1, 2, . . . n . (10)

Translated into matrix language these are the so-called normal equa-

tions:

AT A x = AT y . (11)

Note that AT A is a square n by n matrix, and the left side is a column n-

vector. So the unknown expansion coefficients are found by solving this

system of linear equations, formally by writing

x = (AT A)−1 AT y (12)

a result that should be familiar to you.

This answer looks ugly and seems to have no intuitive content. But

a geometrical interpretation can help a lot. Suppose we assume that the

vectors ak are linearly independent (which they must be if we can write

(12)). Then the collection of all vectors that can be formed from linear

combinations of them is a subspace of IRm which we will call A ; it is the

column, or range space of the matrix A, and so A = R (A). The approxi-

mation problem we are solving can be stated as finding the vector in A

that comes as close to y as possible. We rewrite (11) as

0 = AT (A x − y) = AT r (13)

=








aT
1 r

aT
2 r

:

aT
n r








. (14)

Remember the zero on the left is the vector 0 ∈ IRn. So what this equa-

tion is saying is that the residual vector, the error in the approximation to

y, is orthogonal to every one of the basis vectors of the space A (because
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aT
1 r is the dot product between a1 and r). And that is what you might

expect from a geometrical interpretation as shown in Figure 5.1.

Let us give a name to the approximation we have created, let

Ax = ỹ. Then ỹ is called the orthogonal projection of y into the sub-

space A . The idea of a projection relies on the Projection Theorem for

Hilbert spaces. The theorem says, that given a subspace like A , every

vector can be written uniquely as the sum of two parts, one part that lies

in A and a second part orthogonal to the first. The part lying in A is

orthogonal projection of the vector onto A . Here we have

y = ỹ + r . (15)

There is a linear operator, PA the projection matrix, that acts on y to gen-

erate ỹ, and we can see that

PA = A (AT A)−1 AT . (16)

The general definition of a Projection Matrix is that P = PT and P2 = P.

The second property is natural for a projection, because acting once cre-

ates a vector falling into the given subspace, acting again leaves it there.

Verify these properties for PA .

From a numerical computational perspective, it turns out that (12)

may suffer unnecessarily from a loss of precision. We won’t go into detail

now, but we describe a completely different way of looking at the least-

squares (LS) problem. Let us return to Householder’s QR factorization

of a matrix, mentioned briefly in the previous section: every matrix

A ∈ IRm×n where A is tall (meaning m ≥ n ) can be written as the prod-

uct:

A = Q R (17)

where Q ∈ IRm×m, R ∈ IRm × n, and Q is orthogonal, and R is upper

Figure 2.1: Orthogonal projection of y onto the column space of A.
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triangular; recall that upper triangular means all zeros below the diago-

nal:

R =




R1

O





(18)

where R1 ∈ IRn × n. For how to the QR is found in practice and why QR is

numerically stable, see GIT 1.13 and the references there. To solve the LS

problem we look to the Euclidean norm of r:

||r|| = ||y − Ax|| = ||y − QRx|| . (19)

Recall that Q QT = I, so

||r|| = ||QQT y − QRx|| = ||Q(QT y − Rx)|| .  (20)

Now recall that the length of a vector is unchanged under mapping with

an orthogonal matrix: ||z|| = ||Qz||. So

||r|| = ||QT y − Rx|| = || ŷ − Rx|| . (21)

Next square the norm and partition the arrays inside the norm into two

parts, the top one with n rows:

||r||
2 =





ŷ1

ŷ2





−




R1

O





x
2

= || ŷ1 − R1 x||
2 + || ŷ2||

2
. (22)

The second term || ŷ2||
2

in the sum is indifferent to the choice of x; but

we can reduce the first term to zero by solving

R1 x = ŷ1 . (23)

So this must be the solution to finding the smallest norm of r. Because

R1 is upper triangular, (23) is solved by back substitution, starting at

the bottom and working upwards, which is very simple. This doesn’t look

like a very efficient way to find the LS answer, but it can be made very

efficient: for example, there is no need to store the matrix Q, because one

can calculate the vector ŷ = QT y without it. The QR factorization is com-

petitive with the normal equations for execution times (it is slightly

slower), but it is numerically much more stable against the accumulation

of numerical error. Therefore, for not too large systems, QR is the proper

wa y to go. In MATLAB, while you can get the QR factors with the call

[Q R] = qr(A);

the LS problem is solved automatically for you by the QR method if you

simply write

x = A\y;

Finally, suppose you substitute the QR factors into the expression for the

projection matrix. We find after some algebra that

PA = QT




In

0

0

O





Q (24)
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where In ∈ IRn × n is the unit matrix and the rest of the entries are zero.

Numerically this way of finding the projection is very stable because one

never needs to solve a linear system. But (24) also shows that if one

imagines rotating the data space onto new coordinates with Q, the projec-

tion operator then becomes the matrix in the middle of (24), which is the

projection that simply zeros out all the components of a vector after the

nth one.

Exercises

2.1 Show that the last m − n columns in the factor Q of the QR factor-

ization are never used in the LS calculation.

2.2 The Gram-Schmidt process is a method of creating a set of

orthonormal vectors from a given ordered set of linearly independent

vectors by forming linear combinations of one, then two, then three,

etc, of the given vectors. Show how the QR process does the same

thing.

Hint: First show that the inverse of an right triangular matrix is also

right triangular.

2.3 Show how Singular Value Decomposition can be used to solve the

over-determined least squares problem.
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3. Lagrange Multipliers and More Least Squares

There is more. We now consider solving minimization problems with

Lagrange Multipliers. For proofs see GIT 1.14 and the references men-

tioned there. The minimization we solved in (5) was an example of an

unconstrained minimization in which we found the smallest possible

value of a function. But suppose there is a side condition, called a con-

straint, that must hold for all solutions. The Figure 6.1, taken from GIT,

show the general idea for single condition. If the constraint condition is

expressed the form:

g(x) = 0 (1)

then the minimum of the constrained problem

x ∈ IRn
min f (x) with g(x) = 0 (2)

occurs at a stationary point of the unconstrained function

u(x, µ) = f (x) − µ g(x) (3)

where we must consider variations of x and µ; of course µ is called a

Lagrange multiplier. If there are q constraint conditions in the from

gk(x) = 0, k = 1, 2, . . . q, each would be associated with its own Lagrange

multiplier:

u(x, µ1, µ2, . . . µn) = f (x) −
q

k=1
Σ µk gk(x) .  (4)

As an example consider again the overdetermined LS problem. We

wish to find the minimum of the function f (r) = ||r||
2
, with r ∈ IRm. As

an unconstrained problem the answer is obviously zero. But we have the

following m conditions on r:

0 = y − Ax − r (5)

Figure 3.1: An optimization problem with one constraint.
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where y ∈ IRm and A ∈ IRm × n are known, while the vector x ∈ IRn is

unknown. So, writing (5) out in components and giving each row its own

Lagrange multiplier, (4) becomes for this problem

u(x, µ l) =
m

j=1
Σ r2

j −
m

j=1
Σ µ j(y j −

n

k=1
Σ a jk xk − r j) .  (6)

Differentiating over ri, xi and µ i, the stationary points of u occur when

∂u

∂ri

= 0 = 2ri + µ i (7)

∂u

∂xi

= 0 = −
m

j=1
Σ a ji µ j (8)

∂u

∂µ i

= 0 = yi −
n

k=1
Σ aik xk − ri . (9)

Equation (7) says the vector of Lagrange multipliers µ = − 2r; then using

this fact and translating (8), (9) into matrix notation:

AT µ = − 2AT r = 0 (10)

Ax − r = y . (11)

If we multiply (11) from the left with AT and use (10) we get the normal

equations 2(11) again. But let us do something else: we combine (10) and

(11) into a single linear system in which the unknown consists of both x

and r:





−Im

AT

A

On








r

x




= 


y

0




(12)

where Im ∈ IRm×m is the unit matrix, where On ∈ IRn × n is square matrix

of all zeros. This system has the same content as the normal equations,

but solves for the residual and the coefficients at the same time. If A is

sparse, (12) can be a better way to solve the LS problem than by the

Figure 3.2: Loss of sparseness in forming the normal equations.
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normal equations or by QR, particularly as QR does not have a good adap-

tation to sparse systems. The situation is illustrated for a common form

of overdetermined problem in Figure 6.2.

We turn next to the so-called undetermined least-squares prob-

lem. While the overdetermined LS problem occurs with monotonous regu-

larity in statistical parameter estimation problems, the underdetermined

LS problem looks quite a lot like an inverse problem. Instead of trying to

approximate the known y by a vector in the column space of A , we can

match it exactly: we have

y = Ax . (13)

where A ∈ IRm × n, but now m < n and A is of full rank. This is a finite-

dimensional version of the linear forward problem, in which the number

of measurements, y , is less than the number of parameters in the model

x . So instead of looking for the smallest error in (13), which is now zero,

we ask instead for the smallest model, x. We are performing a simplified

regularization, in which size, here represented by the Euclidean length,

stands for simplicity. This problem is solved just as the last one, with a

collection of m Lagrange multipliers to supply the constraints given by

(13), but with ||x||
2

being minimized instead of ||r||
2
. I will skip the

details and report the well-known result: we must solve

A AT µ = y (14)

for µ, where µ ∈ IRm is the Lagrange multiplier vector; then the solution

vector is

x = AT µ . (15)

The x of (15) has the smallest 2-norm of any of the infinitely many solu-

tions to (13).

Like the normal equations, (14) too suffers from poor conditioning

numerically, however. And as before QR comes to the rescue, but in a cute

wa y. Recall that the classic QR factorization works only if m ≥ n, here that

is violated. So we write instead that

AT = QR or A = RT QT . (16)

Then (13) can be written

y = RT QT x = RT x̂ (17)

where x̂ ∈ IRm is just QT x. Then, since Q is an orthogonal matrix

x = Qx̂ (18)

and it follows that x and x̂ have the same norm, ie. Euclidean length.

Recall that R is upper triangular; so (17) is

y = [RT
1 O]




x̂1

x̂2




(19)
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where R1 ∈ IRn × n, and x̂1 ∈ IRn. If we multiply out the partitioned matrix

we see that

y = RT
1 x̂1 + O x̂2 = RT

1 x̂1 . (20)

Because the second term vanishes, (20) shows that we can choose x̂2 (the

bottom part of x̂) in any way we like and it will not affect the match to the

data: only x̂1 influences that. So we match the data exactly by solving the

system

RT
1 x̂1 = y . (21)

Now observe that

||x||
2 = || x̂||

2 = || x̂1||
2 + || x̂2||

2
. (22)

So to match the data we solve (21), then to get the smallest norm we sim-

ply put x̂2 = 0. Thus x̂ has been found that minimizes the norm, and the

corresponding x is recovered from (18).

The undetermined LS problem is artificial in the sense that (13) the

condition that the model fit the data exactly is unrealistic: if there is noise

in the data y, we must not demand an exact fit. It is more realistic to say

that we would be satisfied with a reasonably close fit, as measured by the

Euclidean norm; so replace (13) with

||Ax − y|| = γ (23)

where we get choose γ from a statistical criterion that depends on the

noise in y. Now we need a single Lagrange multiplier to apply (23). To

complicate things slightly more, instead of minimizing the norm of x, we

will minimize

f (x) = ||Px||
2

(24)

where P ∈ IRp×n is a matrix that suppresses undesirable properties, for

example, it might difference x to minimize slopes instead of magnitudes.

Now we have the unconstrained function

u(x, µ) = ||P x||
2 − µ(γ 2 − ||Ax − y||

2
) (25)

where I have squared the condition factor because it will simplify things

later. A trivial rearrangement gives:

u(x, µ) = ||P x||
2 + µ||Ax − y||

2 − µγ 2 . (26)

It can be shown (see GIT, Chapter 3) that µ > 0. Then for a fixed value of

µ, the function u can be interpreted as finding a compromise between two

undesirable properties, large P x, and large data misfit. If we minimize

over x with a small µ we give less emphasis to misfit and find models that

keep P x very small; and conversely, large µ causes minimization of u to

yield x with small misfit. This is an example of a trade-off between two

incompatible quantities: it is shown in GIT that decreasing the misfit

always increases the penalty norm, and vice versa.
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We could solve this problem by differentiating in the usual tedious

wa y. Instead we will be a bit more clever. As usual, differentiating by µ
just gives the constraint (23). The derivatives on x don’t see the γ term in

(26) so we can drop that term when we consider the stationary points of u

with respect to variations in x:

û(x) = ||P x||
2 + µ||Ax − y||

2
(27)

= ||Px − 0||
2 + ||µ½ Ax − µ½ y||

2
. (28)

Both of the terms are norms acting on a vector; we can make the sum into

a single squared norm of a longer vector, the reverse of what we did on

equation 3(12):

û(x) =




P

µ½ A





x − 


0

µ½ y




2

(29)

= ||Cx − d||
2

. (30)

The matrix C ∈ IRp+m×n must be tall, that is p + m > n, or the original

problem has a trivial solution (Why?), (30) is just an ordinary overdeter-

mined least squares problem. So for any given value of µ, we can find the

corresponding x through our standard LS solution. But this doesn’t take

care of (23). The only way to satisfy this misfit criterion is by solving a

series of versions of (30) for different guesses of µ in an iterative way,

because unlike all the other systems we have met so far, this equation is

nonlinear.

Figure 3.3: Minimization of ||Px|| subject to ||Ax − y|| ≤γ for

x ∈ IR2.
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4. Lightly Parameterized Nonlinear Models

First a little digression on the penalty function. The objective in modeling

is to find a function that matches observation adequately, and so we need

to agree upon a measure of misfit between the predictions of the forward

calculations and the observations. The traditional choice is based on the

weighted 2-norm:

χ 2 =
m

j=1
Σ

[d j − p j(x1, x2, . . . xn)]2

σ 2
j

(1)

where d j are the measured values, m of them, and σ j are the estimated

uncertainties at the 1 standard deviation level, p j is the function that

predicts values for the measurements based on the n parameters xk. If

the noise in the measurements is Gaussian, zero mean, and uncorrelated

(a tall order) the minimum χ 2 has a statistical distribution like χ 2
m−n.

Then the expected size of χ 2 is m − n, and that is normally the target level

for model construction. If the value discovered by minimizing χ 2 is still

much larger that would expected statistically, we have to reject the model.

Now we come to the optimization problem: finding the parameter

values that minimize χ 2. In linear least squares problems the penalty

function is convex, which means that f (α x + (1 −α )y) ≤ α f (x) + (1 −α ) f (y)

for all 0 ≤ α ≤ 1. Then a local minimum, one found by differentiation, say,

is the smallest. Obviously for an arbitrary function that will not necessar-

ily be true: there may be many local minima. There is no general recipe

for ensuring the minimum you have found is indeed the best one, how-

ever.

The reason the optimization problem is nonlinear is that all the p j

are not linear functionals, and so they cannot be represented exactly by a

matrix. However, linear least squares problems are so easily solved, the

general approach is to make a linear approximation to the actual prob-

lem, and iterate. Here is an efficient algorithm, the Levenberg-Mar-

quardt (LM) method. First for convenience, we normalize the data and

the model predictions by the uncertainties to create nondimensional data

and prediction functions:

y j = d j /σ j ; g j = p j /σ j . (2)

We assume the functions g j are twice continuously differentiable, and

that we guess an initial solution with the parameters x0
k. The Taylor

series expansion for the forward problem is then

g j(x
0
k + ∆k) = g j(x

0
k) +

n

k=1
Σ ∆k

∂g j

∂x0
k

+ O(
k
Σ∆2

k) (3)

which can be more compactly written as

g(x0 + ∆) = g(x0) + J ∆ + O||∆||
2

. (4)

Here x0, ∆ ∈ IRn and g: IRn → IRm. The matrix J ∈ IRm×n, called the
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Jacobian matrix, is explicitly

J jk = [∇ g(x0)] jk =
∂g j

∂x0
k

. (5)

Next we substitute (4) into the nondimensional form of (2):

χ 2(x0 + ∆) = ||y − (g(x0) + J∆)||
2 + O||∆||

2
(6)

= ||(y − g(x0)) − J∆||
2 + O||∆||

2
(7)

= || ỹ − J∆||
2 + O||∆||

2
(8)

where we introduce the abbreviation ỹ = y − g(x0). Neglecting quadratic

terms, we differentiate χ 2 and obtain the standard linear LS result,

obtained by translating 2(8) into vector language, that

∇ χ 2 = − 2JT ( ỹ − J∆) .  (9)

If the second-order terms are truly negligible we can find the minimum χ 2

by setting the gradient ∇ χ 2 = 0; doing this in (9) we obtain the usual

least-squares (LS) result, 2(11), which in our current problem gives

∆ = (JT J)−1JT ỹ . (10)

Then the approximate solution is

x′ = x0 + ∆ . (11)

But suppose at the proposed solution, one cannot neglect the omitted

terms in (8). Then another, more cautious approach is to evaluate a differ-

ent Taylor series, the one for χ 2 itself. Using (9) we see that:

χ 2(x0 + ∆) = χ 2(x0) + ∆T ∇ χ 2(x0) + O||∆||
2

(12)

= χ 2(x0) − 2∆T JT ỹ + O||∆||
2

. (13)

In equation (13) we choose ∆ = µ JT ỹ for some scalar µ > 0; then

χ 2(∆) = χ 2(0) − 2µ||JT ỹ||
2 + O(µ2) (14)

which shows there if the value of µ is small enough (but positive) the mis-

fit χ 2(∆) is less than it is at the starting point. Solutions of the form

∆(µ) = µ JT ỹ are said to be on the steepest descent path awa y from the

current guess x0 , and will discuss this class of solutions in more detail in

the next Section. Notice that in the linear LS problem, the true mini-

mizer x∗ does not generally lie on the path of steepest descent.

Finally, Levenberg-Marquardt combines the steepest descent

approach (14) and the linearized LS solution (10) in the following clever

wa y. We consider a family of vectors

x(λ ) = x0 + ∆(λ ) = x0 + (λ I + JT J)−1JT ỹ . (15)
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When λ is small we see from (10) that x(λ ) is close to the linear LS solu-

tion; when λ is large x(λ ) lies on the steepest descent path but with a

small µ ˜ 1/λ . An iterative strategy, called a line search, is pursued:

(o) For a starting guess x0 evaluate χ 2(x0).

(i) For x0 fixed vary λ > 0  seeking the minimum of χ 2(x(λ )); call the x(λ )

achieving the minimum misfit x′.

(ii) If |χ 2(x0) − χ 2(x′)| ≤η where η is a small number ( ˜ 0. 01) stop and

accept x′ as the minimizing vector. If this convergence criterion is not

met, set x0 = x′ and go to (i).

We are guaranteed each time through the loop that χ 2 will decrease, and

since its value is bounded below by zero, the process must converge. In

practice the rate of converge is very satisfactory.

One practical drawback is the need to find the derivatives ∂g j /∂xk in

(3), which can be very messy if the calculation involves recursion, as it

does for both MT and resistivity sounding. Derivatives can be found

approximately by finite differences, although then the converge rate near

the end of the process may not be quite as good as with analytic deriva-

tives.
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5. Large-Scale Nonlinear Systems − Steepest Descents

We now study numerical optimization methods that, unlike LM, are not

specifically tied to least-squares penalty functions, although of course

they can be applied to them if desired. The function to be minimized is

the general real-valued f (x) = f (x1, x2, . . . xn), and so x ∈ IRn. As in the

last Section we will assume that we can obtain an analytic expression for

the derivatives of f , the gradient of f :

g = ∇ f (x) =




∂ f

∂x1

,
∂ f

∂x2

, . . .
∂ f

∂xn





T

. (1)

Then the condition that we are at a local minimum is of course that the

gradient vanishes, that is all the components:

∇ f (x) = 0 .  (2)

This is a system of n equations in n unknowns, and unless f is quadratic

(which it is for least-squares problems) (2) may be impossible to solve in

terms of elementary functions; when f is quadratic (2) is a set of linear

equations, the normal equations 2(11). Suppose now that m and n are

both so large that exact solution of the normal equations is rather slow,

typically on the order of n3/3 flops when n < m. The Levenberg-Mar-

quardt scheme requires such a solution for every step of its line search. If

we could find a scheme that avoids the necessity of solving a linear system

of equations we could speed things up and tackle problems with many

thousands of unknowns, which might be impractical otherwise. Even lin-

ear least squares might benefit. Notice (2) locates any local minimum,

maximum or saddle; if there are multiple minima, they will all satisfy the

system, and we must pick the best one, a fundamental difficulty in gen-

eral optimization problems.

We re-examine first the simple-minded steepest descent. Suppose

we are in the vicinity of a local minimum, at the point x0 ∈ IRn (Because

subscripts denote components of a vector, we have to use superscripts,

which do not mean powers of x; there should be no confusion since we nor-

mally do not exponentiate vectors). Then as usual we write the local

behavior of f using a Taylor expansion:

f (x) = f (x0 + s) = f (x0) + sT ∇ f (x0) + O||s||
2

. (3)

If we take s = −γ ∇ f (x0) with small γ , then

f (x) = f (x0) − γ ||∇ f (x0)||
2 + O(γ 2) (4)

and, repeating the argument in the previous Section, we see that for some

choice of γ > 0  we must be able to find a value of f (x) smaller than f (x0),

and therefore better, because from small enough γ the linear term will

dominate the quadratic one. (This is provided ∇ f (x0) does not vanish, but

then we would be at a stationary point.) Looking at the 2-dimensional

example in the figure below we see that taking the new x = x0 −γ ∇ f (x0) is
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to select a value on the line perpendicular to the local contour, that is to

head downhill as rapidly as possible, hence the name steepest descent).

But what value of γ should be selected?

The answer to this question is fairly obvious: we use a line search

on γ ; we keep increasing γ until f starts to increase again. In other words

we go to the minimum along the direction of initial steepest gradient, as

illustrated below. In general this point must be determined by numerical

experiment: in a systematic way we try various values of γ until the least

value has been found in the direction of ∇ f (x0). It is most unlikely that

the result will be the true minimum, and so the process will have to be

repeated. But the analysis guarantees an improvement will be obtained

for every iteration, and so if there is a local minimum, the procedure will

converge to it.

So the algorithm is as follows: at the k-th step we compute the next

approximation from

xk+1 = xk − γk ∇ f (xk), k = 0, 1, 2, . . . (5)

where γk > 0  is chosen to minimize f (xk+1), by a line search; x0 is an arbi-

trary initial guess vector. Notice that no large matrix (like the Jacobian

J ∈ IRm × n) is even computed here, just the gradient vector ∇ f ∈ IRn. And

no n × n linear system of equations is solved. Thus each step of the line

search in LM is much more expensive than the whole line search of steep-

est descents. However, steepest descents is far less efficient at locating

the minimum. If the function f is a quadratic form, then LM locates the

Figure 5.1: Contours of f from (6), and values of f on the first line of

steepest descent starting at x0.
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answer after only one line search because the linearized system is exact,

and the normal equations give the exact answer. But steepest descent

requires infinitely many iterations, because it is an iterative scheme even

for quadratic objective functions.

Below we illustrate the continuation of the iterations, using the solu-

tion from the previous line search as a starting point for another, and

repeating for several steps. The function used for illustration is:

f (x1, x2) = (x1 −0. 5)2 + x2
2 + ln (x2

1 +0. 1) (6)

∇ f = [2x1 −1 + 2x1/ (x2
1 +0. 1), 2x2]T . (7)

Obviously the penalty function here is not in the least-squares form.

After a moment’s thought it will be obvious to you that the new steepest

descent path must be orthogonal to the previous one, and therefore the

trajectory consists of a zig-zag path downhill. The error in the minimum

decreases geometrically as you can see from the right panel, and while

this looks fairly impressive, it is not very good for a simple two-dimen-

sional minimum; recall every point on the graph requires a separate line

search.

It is easy to write a crude line-search program, as you can imagine.

But a fair amount of care is needed to be efficient and avoid blunders. See

Numerical Recipes for a classic algorithm.

To understand, and then perhaps correct, this poor behavior we

study the simplest system, the quadratic form. If the second derivative

Figure 5.2: Steepest descent path and convergence of penalty func-

tion for (6).
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∇∇ f = H does not vanish at x∗ , the local minimum, then the behavior of

any smooth function of many variables is quadratic and is modeled by

f (x) = f (x∗ ) + ½(x − x∗ )T H(x − x∗ ) (8)

where we have dropped the terms from the third and higher derivative in

a Taylor series expansion. If x∗ truly is the site of a local minimum then

H is positive definite. Then it can be proved that the error in the esti-

mate of the minimum value at the k-th step behaves like c [1 − 1/κ 2(H)]k

where c is a constant, and κ 2 is the condition number in the 2-norm

(Recall κ 2 = λ max/λ min). For example, condition numbers greater than

1,000 are commonplace, and then the convergence would be as 0. 999k.

This is very poor behavior.

Before discussing the most popular remedy for this ailment, we

should notice that (8) is essentially identical to the function minimization

arising from the underdetermined least-squares problem: we must mini-

mize the penalty function

h(x) = ||Ax − b||
2 = (Ax − b)T (Ax − b) (9)

= bT b − 2bT Ax + xT AT Ax (10)

= bT b − yT y + (x − y)T AT A(x − y) (11)

where y = (AT A)−1 AT b (we arrived at y by completing the square). Com-

paring (9) with (11) we see they are the same (up to an additive constant),

after identifying AT A with ½H and y with x∗ . For sparse systems, in

which lots of elements in A might be zero, QR is unable to take much

advantage of sparsity. So when the system is large (> 1000 unknowns) it

might be very useful to minimize G in (9) directly by an iterative method,

since one evidently only needs to be able to perform the operation Ax a lot

of times, and it is often possible to simply skip large chunks of the array,

both in storage and in arithmetic, associated with zero entries. Further-

more, QR attempts to get an "exact" solution (up to limitations of round-

off), but an iterative approach might find a less accurate, but for many

purposes completely satisfactory, answer in a much shorter time. For

these reasons, large linear systems, even the solution of Ax = y for square

matrices A, are converted to quadratic minimizations. But they cannot be

efficiently solved by steepest descent; we need a better tool: conjugate gra-

dients.



OPTIMIZATION 21

6. Conjugate Gradients

The steepest descent path is clearly the best one can do if one is per-

mitted only a single operation. But each stage of the scheme behaves as

though we have been given a completely new problem — it doesn’t use

any information from the earlier steps, and as the Figure 5.2 shows, the

procedure seems condemned to repeat itself, zig-zagging back and forth

instead of heading down the axis of the valley in f . The conjugate gradi-

ent method takes advantage of earlier steps. It modifies the steepest

descent direction in the light of previous history, and achieves remarkable

gains, as we shall soon see. First let me simply describe the algorithm

without attempting to justify it.

The conjugate gradient algorithm chooses a search direction s for

a line search based on the local gradient, and on previous search direc-

tions like this:

xk+1 = xk + γ pk, k = 0, 1, 2, . . . (1)

where

pk = − ∇ f (xk) + β pk−1, k > 0  (2)

and

β =
∇ f (xk)T (∇ f (xk) − ∇ f (xk−1))

||∇ f (xk−1)||
2

. (3)

For the initial iteration, k = 0, when there is no previous search direction,

p0 = − ∇ f (x0), the steepest descent direction. At each step γ in (1) is

Figure 6.1: Conjugate gradient and objective convergence for (6).
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determined as before by minimizing f (xk+1) along the line.

Below we show the results of the application to the minimization of

(5). The improvement on steepest descent is extraordinary, as the right

panel shows. Notice also that the convergence is not a steady exponential

decline in error; the rate varies. This is a feature of conjugate gradient

optimization: it may chug along reducing the penalty only modestly, then

make a huge gain, then settle back to slower progress. Such behavior

makes a termination strategy difficult to devise, because one cannot tell

when the penalty has been reduced to its minimum value. Remember, the

convergence plots in these notes are cheats, because I know the real

answer, something obviously not normally available.

The design of the conjugate gradient method is centered on the goal

of solving a problem with a quadratic penalty function, like (8), exactly

after precisely n iterative steps, where n is the dimension of the space of

unknowns. When solving a very large system (with n > 1000, say), one

would not want to have to take so many steps, but it is often the case that

an exact answer is not required, and a perfectly satisfactory reduction in

the penalty function will have been achieved long before k = n. It also

turns out that for very large systems, exact answers cannot be obtained in

practice even after n iterations, because of the accumulation of round-off

error in the computer arithmetic.

Here is an explanation of how conjugate gradients work, taken from

Gill et al., Chap 4. Strang, and Golub and Van Loan, offer different

derivations which are longer. As just remarked the procedure is set up to

solve a quadratic problem, which we will take to be the minimization of

f (x) = c ⋅ x + ½x ⋅ Gx (4)

where G ∈ IRn×n and is positive definite and symmetric. For this last

proof we will use the familiar notation x ⋅ y to be the inner product of two

vectors because it is much cleaner: so recall x ⋅ y = xT y = yT x. Also, since

G is symmetric, note that x ⋅ Gy = y ⋅ Gx.

The exact minimum of f is easily seen to be the point x∗ = − G−1c, so

solution of (4) by conjugate gradients is equivalent to solving that linear

system of equations. You will easily verify that

∇ f (x) = c + Gx . (5)

We look at the process at iterative step k; we assume we have an approxi-

mation for the minimizer xk and we are going build the next approxima-

tion by a linear combination of vectors, p0, p1, . . . pk collected over previ-

ous iterations, together with the current approximation to the solution;

we will explain later how the vectors pk are chosen. For now we assert:

xk+1 = xk +
k

j=0
Σ w j p j (6)
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= xk + Pkw (7)

where the matrix P = [ p0, p1, . . . pk] and the vector w contains the

weights. Our first job is to find w so that xk+1 in (7) minimizes f . This is

a straightforward least-squares problem, details omitted. We find

w = − (PT
k GPk)−1 PT

k gk (8)

where the vector gk is defined as the gradient:

gk = ∇ f (xk) = c + Gxk . (9)

Plugging (8) into (7) gives

xk+1 = xk − Pk(PT
k GPk)−1 PT

k gk . (10)

At this point we note a useful property of the process: the gradient at the

k + 1-st approximation is orthogonal to all the current vectors pi. Proof —

calculate:

PT
k gk+1 = PT

k ∇ f (xk+1) = PT
k (c + Gxk+1) (11)

= PT
k (gk − Gxk + G(xk − Pk(PT

k GPk)−1 PT
k gk)) (12)

= PT
k gk − PT

k GPk(PT
k GPk)−1 PT

k gk (13)

= 0. (14)

By expanding Pk into column vectors we see this means:

PT
k gk+1 = [ p0 ⋅ gk+1, p1 ⋅ gk+1, . . . pk ⋅ gk+1]T = [0, 0, . . . 0]T (15)

and therefore

pi ⋅ gk+1 = gk+1 ⋅ pi = 0, i = 0, 1, 2, . . . k . (16)

Now if we assert that all the xk to this point have been found in the same

wa y, it must be true that for j = 1, 2, . . . k

pi ⋅ g j = g j ⋅ pi = 0, i < j . (17)

Thus the gradient vector g j is orthogonal to every earlier pi vector, as

advertised.

With this information let us calculate the product PT
k gk at the end of

(10):

PT
k gk = [ p0 ⋅ gk, p1 ⋅ gk, . . . pk ⋅ gk]T = [0, 0, . . . 0, α ]T (18)

where α = pk ⋅ gk.

So far the only property assumed of the pi has been linear indepen-

dence, needed for the inverse in (8). Let us now assert that we would like

another property (which we will have to build into process somehow): let

us propose that the vectors pi are mutually conjugate under the action
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of G. This means that they orthogonal in the G inner product, or explic-

itly that

( pi, p j)G = pi ⋅ Gp j = 0, i ≠ j . (19)

Then the matrix PT
k GPk in (10) becomes a diagonal matrix. Combining

that fact with (18), which is always true, the expression xk+1 in (10) sim-

plifies to

xk+1 = xk + γk pk (20)

which is (1). In other words, when we started, the search for the mini-

mum at step k was over the complete set of previous vectors p j , but with

conjugacy we find only the most recent vector need be searched over to

achieve the optimal result. The parameter γk which we happen to know is

γk = −
α

pk ⋅ Gpk
= −

pk ⋅ gk

pk ⋅ Gpk
(21)

could be found by a line search, and would be if this is a linearization of a

nonquadratic system.

To summarize: if we can somehow arrange the vectors pi to be

mutually conjugate, they are the search directions at each iterative step,

and at the end of that step, f has achieved its minimum over the space

spanned by the vectors p0, p1, . . . pk. Since these vectors are linearly

independent and at step n −1 there are n of them, they must span IRn,

and therefore at this last step we must have the global minimum of f over

all vectors in IRn. Our task is to set up a scheme for producing search

direction vectors pi with the property of conjugacy under G.

We set about building the pi from the available gradients as follows.

First we take p0 = − g0 (the steepest descent direction; why?). Subse-

quently we say

pk = − gk +
k−1

j=0
Σ β kj p j (22)

that is, the new direction is found from the current gradient and a linear

combination of previous search directions. In what follows we work

towards determining the values of the unknown coefficients β kj in this

expansion. By a simple rearrangement, it follows from the recipe (22)

that gk is a linear combination of the p j up to j = k: Consider i < k and

dot a gradient vector with any earlier gradient vector:

gk ⋅ gi = gk ⋅
i

j=0
Σ σ j p j =

i

j=0
Σ σ j gk ⋅ p j (23)

= 0 (24)

because of (17). So the gradient vectors are mutually orthogonal too!
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To discover the coefficients β kj we make use of the mutual conjugacy

of the pi vectors — we pre-multiply (22) by G, then dot on the left with pi:

pi ⋅ Gpk = − pi ⋅ Ggk +
k−1

j=0
Σ β kj pi ⋅ Gp j . (25)

Then for i < k, because of the conjugacy, (19), the left side vanishes and so

do most of the terms in the sum:

0 = − pi ⋅ Ggk + β ki pi ⋅ Gpi, i < k (26)

= − gk ⋅ Gpi + β ki pi ⋅ Gpi . (27)

From (9), the definition of gi, and using (20) we see

gi+1 − gi = G(xi+1 − xi) = γiGpi . (28)

This allows us to substitute for Gpi in (27):

0 = −
1

γi

gk ⋅ (gi+1 − gi) + β ki pi ⋅ Gpi . (29)

But now the orthogonality of the gradients, (24), means that when i < k −1

the first term on the right automatically vanishes too; since pi ⋅ Gpi must

not be zero,

β ki = 0, i < k −1 .  (30)

Hence we have just shown that to get conjugacy of search directions, the

new search direction at each step involves the current gradient and the

previous direction only; (22) has become:

pk = − gk + β k,k−1 pk−1 (31)

which is of course (2). Finally we need to find the coefficient β k,k−1 explic-

itly. Premultiply (31) by G then dot with pk−1; conjugacy makes pk−1 ⋅ Gpk

on the left side vanish, and so, rearranging we find

β k,k−1 =
pk−1 ⋅ Ggk

( pk−1 ⋅ Gpk−1
(32)

=
(gk − gk−1) ⋅ gk

gk−1 ⋅ gk−1
(33)

=
gk ⋅ gk

gk−1 ⋅ gk−1
=

||gk||
2

||gk−1||
2

(34)

where (33), (34) follow from applications of (16), (24) and (28). The form

(33) is used in the nonquadratic application (3) rather than (34) because

when the problem is not quadratic, orthogonality of the successive gradi-

ents is only approximate.

Powerful as CG certainly is, it still may require a lot of numerical

work when the dimension of the system becomes very large. Then there a
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further tricks that can improve the convergence rate, but they are depen-

dent on special structure a particular problem may exhibit, and are not

generally available. The concept is called preconditioning, and is cov-

ered in Golub and Van Loan, Chapter 10.
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