
CHAPTER 2

PROBABILITY AND RANDOM
VARIABLES

In statistics it is a mark of immaturity to argue overmuch about
the fundamentals of probability theory.

M. G. KENDALL and A. STUART The Advanced Theory of
Statistics (1977)

2.1 Introduction

In this chapter we introduce a few concepts from probability theory,1 start-
ing with the basic axioms and the idea of conditional probability. We next
describe the most important entity of probability theory: the random vari-
able; this requires that we introduce the probability density function (and
the related distribution function) needed to describe it. We then define
means, variances, expectations, and moments of these functions (and so of
the random variables they describe), and show how to do arithmetic with
random variables. We close by applying some of these developments to
demonstrating the Central Limit Theorem, which provides the main justi-
fication for using the Normal probability density function (equation 1.1) to
model data.

1 We use the term probability theory for a branch of mathematics; this is the gen-
eral usage. Kendall and Stuart call this the calculus of probabilities, which allows them
to make the useful distinction between this bit of mathematics, and what they call proba-
bility theory, which is how this mathematics applies (or not) to the real world – something
we discuss in Section 2.2.
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2.2 What is Probability?
There is a long-running dispute over what, in the real world, the formal
mathematics of probability theory correspond to. The two commonest views
are:

• The frequentist interpretation, which is that the probability of some-
thing corresponds to what fraction of the time it happens “at random”
or “in the long run”. This might well be called the casino interpreta-
tion of probability, since that is one place where it makes sense. But
there are many others in which it does not; as we noted in Chapter
1 geophysics provides many examples. It might make sense to talk
about the probability that the next earthquake in California will be
bigger than some amount, since there are lots of earthquakes; but
it is much less clear how to apply frequentist concepts to (say) the
Earth’s gravitational field: there is only one.

• The Bayesian or subjective interpretation, in which the probability
of something corresponds to how likely we think it is: probabilities
represent states of mind. This view has led to a distinctive set of
methods for analyzing data.

We have already hinted at our preference, which is that it is actually
meaningless to ask what probability “really is”. Rather, it seems most
useful to regard probability as a mathematical system; like other parts of
mathematics it can be used to model certain aspects of the real world. In
this view, probability is no different from other mathematical idealizations
that are used for models: for example, in studying seismic waves, we repre-
sent the Earth by an elastic solid – which is just as much a mathematical
idealization. If we simply take probability as some mathematics used in
a model, there is no problem in having it represent more than one kind of
thing, so both Bayesian and frequentist interpretations can each be valid
or invalid, depending on what it is we choose to model.

2.3 Basic Axioms
So, what is the mathematics of probability? The basic concepts and axioms
were developed by Kolmogorov using set theory; though the names used
are meant to suggest the “casino” model, the mathematics does not require
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this. We start with the idea of a sample spaceΩ: a set whose elements are
subsets containing all possible outcomes of whatever it is we are proposing
to assign probabilities to. Examples of outcomes are heads or tails, a value
from a throw of dice, normal or reversed magnetic fields, or the results of
doing some experiment or making some observation. Note that outcomes
need not be numbers.

We denote each set of outcomes by a letter (e.g., A), and the probability
of that set of outcomes by Pr[A]. Then the rules for probabilities are:

• Pr[Ω] = 1; the probability of all the outcomes combined is one, indi-
cating that some outcome has to happen (true since Ω includes all
outcomes by definition).

• Pr[A]≥ 0; probabilities are positive.

• If two sets of outcomes are disjoint (mutually exclusive) then Pr[A i ∪
A j]=Pr[A i]+Pr[A j]: the probability of the combination (union of the
sets) is the sum of the individual probabilities.2 That is, if outcome A i
precludes outcome A j and vice-versa, the probability of having either
one is the sum of the probabilities for each (think of throwing a die,
which has six disjoint outcomes).

All of these rules are pretty good fits to the kinds of things we are at-
tempting to model; they are almost intuitive to how we think about ran-
domness. But these few axioms are enough to produce the whole theory.

2.4 Conditional Probability
Things become slightly more interesting (because less obvious) when we in-
troduce the concept of conditional probability. This is written as Pr[A|B],
meaning “The probability of outcome set A given that we have outcome set
B”, the last part of which is sometimes phrased as “given that outcome B is
true”. The relation for this is that Pr[A|B]Pr[B] = Pr[A∩B]: the probabil-
ity that A and B are both true is the probability of B being true, times the
probability of A being true given B. This is more usually written so as to
define conditional probability:

Pr[A|B]= Pr[A∩B]
Pr[B]

(2.1)
2 Remember that A∪B is the union of A and B; A∩B is the intersection of A and B.
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Conditional probability leads to the concept of two sets being indepen-
dent: A and B are independent if Pr[A|B]=Pr[A], which is to say that the
probability of A does not depend on whether B has happened or not.3 This
means, from 2.1, that Pr[A∩B]=Pr[A]Pr[B]: if A and B are independent,
the probability of having both A and B is the product of their individual
probabilities. This rule is easily abused, since it is all too tempting to de-
cide that events are independent when they actually are not.

2.4.1 Applying Conditional Probabilities: Was That a
Foreshock?

We can apply conditional probabilities to a geophysical problem of actual
social significance by asking what we should do if a small earthquake oc-
curs close to (say) the San Andreas fault, given that it might be either a
foreshock to a major earthquake on this fault, or just be a small shock that
happened there by chance (a “background” earthquake). The full treatment
[?] becomes rather complicated, but a simplified version illustrates the pro-
cedure, and the use of conditionals. Our set of possible outcomes is three
events:

• A background earthquake has occurred: (B).

• A foreshock has occurred: (F).

• A large (so-called characteristic) earthquake will occur: (C).

If a small background shock were to coincidentally happen just before
the characteristic earthquake, we would certainly class it as a foreshock.
So, B and C are disjoint: they cannot both occur. The same holds true for B
and F: we can have a foreshock or a background earthquake, but not both.

The probability that we want is the conditional probability of C, given
either F or B (because we do not know which has occurred). This is, from
equation (2.1),

Pr[C|F ∪B]= Pr[C∩ (F ∪B]]
Pr[F ∪B]

(2.2)

Because F and B are disjoint, the probability of their union is the sum of
the individual probabilities (axiom 3), allowing us to write the numerator

3 Often this is called statistical independence; the extra adjective is confusing, since
there is no use of statistics in the definition.
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as
Pr[(C∩F)∪ (C∩B)]=Pr[C∩F]+Pr[C∩B]=Pr[C∩F]

where the disjointness of C and B eliminates the Pr[C ∩B] term. By the
definition of conditional probability,

Pr[C∩F]=Pr[F|C]Pr[C] (2.3)

where Pr[F|C] is the probability that a mainshock is preceded by a fore-
shock. Using the disjointness of F and B again, the denominator becomes

Pr[F ∪B]=Pr[F]+Pr[B] (2.4)

Because a foreshock cannot, by definition, occur without a mainshock, the
intersection of C and F is F, and therefore

Pr[F]=Pr[F ∩C]=Pr[F|C]Pr[C] (2.5)

We can use equations (2.3), (2.4), and (2.5) to rewrite equation (2.2) as

Pr[C|F ∪B]= Pr[F]
Pr[F]+Pr[B]

= Pr[C]Pr[F|C]
Pr[F|C]Pr[C]+Pr[B]

(2.6)

For Pr[B] À Pr[F|C]Pr[C] this expression is small (the candidate event is
probably a background earthquake), while for Pr[B] = 0, the expression is
equal to one: any candidate earthquake must be a foreshock.

The second form of expression in 2.6 is a function of three quantities,
which in practice we obtain in very different ways. Pr[B], the probability
of a background earthquake, comes from seismicity catalogs for the fault
zone. Pr[C], the probability of a characteristic earthquake, comes from
the past history of large earthquakes on this fault, usually determined by
paleoseismological studies. If we had a record of the seismicity before many
large earthquakes on the fault, we could evaluate Pr[F|C] directly; but
because of the limited time over which seismicity has been recoded, we do
not have such a record. So we have to assume that the average of Pr[F|C]
over many earthquakes on one fault is equal to the spatial average over
many faults over a shorter time; perhaps not valid, but the best we can do.

2.4.2 Natural Frequencies: Another Frame for the
Problem

While the algebraic manipulations in Section 2.4.1 are needed to develop
the solution to the full problem, they are not the easiest way to get the
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simplified result just given. Strangely, insight into problems of this sort
depends very much on just how they are phrased [?]. For almost every-
one, stating the numbers in terms of probabilities does not help intuitive
reasoning; what works much better is to state them in terms of numbers
of events (out of some large but very round number), an approach called
natural frequencies.4 We recommend this approach for explaining con-
ditional probability methods to other people, or even to yourself (as a good
way to check your algebra). To show this method for the foreshock compu-
tation, suppose we had a C every 100 years, a B 10 times a year, and half
the C’s had F ’s. Then in (say) 1000 years we would expect 10 C’s, and hence
5 F ’s; and also 10,000 B’s. So we would have 10,005 possible B’s and F ’s,
and the chance that any possible member of this class would be an F would
thus be 5/10005. You can easily plug in the daily probabilities for F, C,
and V into 2.6 to get the same result – which, put this way, seems almost
trivial.

2.5 Bayes’ Theorem
The procedures followed for the foreshock probability estimate are very
similar to those used to derive Bayes’ Theorem, a result that forms the ba-
sis for one type of statistical inference. The theorem itself is not difficult to
derive. Suppose we have N disjoint sets of outcomes, called B1, B2, . . . BN ,
and another set A. The probability of both A and a particular one of the
B’s (say B j) is, by the definition of conditional probability,

Pr[A∩B j]=Pr[B j|A]Pr[A]=Pr[A|B j]Pr[B j] (2.7)

where you should remember that Pr[A∩B j]=Pr[B j∩A]. But, since the B’s
are disjoint, Pr[A] = ∑

j Pr[A|B j]Pr[B j]. Combining this with 2.7, we find
that

Pr[B j|A]= Pr[A|B j]Pr[B j]∑
j Pr[A|B j]Pr[B j]

(2.8)

The different parts of this expression have special names: Each B j is called
a hypothesis, Pr[B j] is called the prior probability of B j, and Pr[A|B j]
the likelihood of A given B j.

4 ? tested how well this and two other approaches worked when people had to process
the results (e.g. adding or multiplying probabilities); they found that expressing probabil-
ities as “1 in [some number]” is much less easily understood – though it may be needed for
very small probabilities.
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All this is unproblematic; the contentiousness comes in deciding how
to apply this to inference about the real world. One way to do so is to
regard the Pr[B]’s as degrees of belief about a hypothesis: for example,
Pr[B1] would be our belief (expressed as a probability) that a coin is fair,
and Pr[B2] our belief that it actually has heads on both sides. Now suppose
we toss the coin four times, and get heads in each case. Then A is (for
this example) the result that all of four tosses give heads, the probability
of which (the likelihood) is 1/16 if B1 is true, and 1 if B2 is true. Then
equation (2.8) allows us to find Pr[B j|A], the posterior probability of
each hypothesis.

The attractiveness of this scheme is clear: we have used the data to
alter our degree of belief in some fact about the world, which is what we
would like to do with all data. This procedure is called Bayesian infer-
ence. But we have evaded one part of this: how should we set the prior
probabilities? Our evasion is deliberate, since deciding on prior probabil-
ities is complicated and controversial. So for now we put Bayes’ theorem
and Bayesian inference aside.

2.6 Random Variables: Density and
Distribution Functions

So far we have talked about “outcomes” as things described by set theory.
But most of the time, what things we want to model are described by num-
bers, so we introduce the idea of a random variable, which we denote by
(say) X . It is extremely important to realize that this is not the same thing
as the variables we know from algebra and calculus, which we will call con-
ventional variables; this name is our own invention, adopted because it
allows us to keep emphasizing the difference between various types of vari-
ables, and remind you that some applications call for one type, and some
for the other.

A random variable is a particular kind of mathematical entity; just as
vectors and scalars are different kinds of things, so random and conven-
tional variables are not the same. Conventional variables have definite (if
unknown) values, and can be described by a single number (or a group of
numbers); random variables do not have any particular value, and have to
be described using probabilities. We follow the convention in probability
and statistics that upper case (e.g., X ) denotes a random variable, while
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lower case, x, denotes a quantity which always has the same value: in our
terminology, a conventional variable. As is common in the statistics litera-
ture we will often abbreviate random variable as rv.

A common source of confusion is that these very different kinds of vari-
ables can seem to refer to nearly identical things in the world. Consider
(again) rolling dice. For a particular roll of the dice, the conventional vari-
able x describes what we actually get – this is clearly not subject to vari-
ation. But before we roll the dice, or if we merely imagine doing so, the
random variable X is what we have to use to describe the outcome to be
expected.

Formally, a random variable is a mapping from a sample space Ω (con-
taining all possible outcomes) to the relevant space of numbers. For exam-
ple, if Ω is the outcomes from rolling a pair of dice, the space of outcomes
maps into the integers from 2 through 12. If Ω maps into some part of the
real line ℜ (or the whole of it) X is termed a continuous random vari-
able; if, as in our dicing example, the rv maps into some or all of the inte-
gers, it is called a discrete random variable. Either way, each element
ω in Ω corresponds to a unique number X (ω).

We describe a conventional variable x with some number; how do we de-
scribe a random variable X? The answer is that we need a function, which
is called the probability density function of X . This makes random
variables much more complicated than conventional ones: a conventional
variable is completely specified by a number, while to specify a random
variable takes a function.

We can best understand what such a function does by looking at the
most common way of plotting the relative frequency of different values of
random data, the histogram, which we already used in Chapter 1 for four
datasets. In Figure 1.1 we showed two forms of this plot: for the GPS data
we plotted the number of observations in each bin; for the ridge data we
divided this number by the total number of data to get relative frequencies
in a normalized histogram; the values in each bin should then be about
the same for different numbers of data. Such a normalized histogram is a
crude version of a probability density function (pdf) for a random variable,
which we symbolize by φ(x).

The pdf relates to probability in the following way: the probability of the
random variable X lying in the interval [x, x+δx] is given by the integral,
over that interval, of the probability density. We write the probability of X
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lying in this interval as:

Pr[x ≤ X ≤ x+δx]=Prob[x ≤ X ≤ x+δx]= p[x ≤ X ≤ x+δx].

where we have used two other common notations for probability, Prob[],
and p[]. The relationship between the pdf and the probability of X is then
given by the formula

Pr[x ≤ X ≤ x+δx]=
∫ x+δx

x
φ(u)du

For any x and small interval δx this means

Pr[x ≤ X ≤ x+δx]≈φ(x)δx+ (δx)2

so that φ(x) represents the density of probability per unit value of x in the
neighborhood of x.

Probability density functions have the following properties:

• φ(x)≥ 0 for all x: probabilities are always positive.

•
∫ L t

Lb
φ(x)dx = 1: X must take on some value within its permissible

range. Often this range is all of the real line, with Lb = −∞ and
L t =∞; but sometimes it is only a part. Section 1.2 already gave an
example, which is that time intervals have to be positive, so Lb = 0
and L t =∞. Or, if we were considering the direction of something, X
has to fall within [0,2π).

The usual notation for a random variable X being distributed with a pdf φ
is X ∼ φ. Note that for a continuous random variable X , Pr[X = x] = 0 for
all x: there is zero probability of X being exactly equal to any value.

If we integrate the probability density function, we get a cumulative
distribution function (or cdf), which we have already denoted by Φ(x):

Φ(x)=
∫ x

LB

φ(x)dx =Pr[Lb ≤ X ≤ x]

which means that
φ(x)= dΦ(x)

dx
provided this derivative exists, and also that

Pr[x ≤ X ≤ x+δx]=Φ(x+δx)−Φ(x) (2.9)

Figure 2.1 shows a pdf φ(x) and its corresponding cdf Φ(x).
The cdf has the following properties:
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Figure 2.1: The left panel shows a possible pdf, φ(x), for a made-up
distribution; the right panel shows the corresponding cdf Φ(x). The
dashed lines show how to find the 0.25, 0.50, and 0.75 quantiles: these
are the points on the x-axis intercepted by these lines.

• 0≤Φ(x)≤ 1.

• limx→−∞Φ(x) = 0 limx→∞Φ(x) = 1 or Φ(Lb) = 0 and Φ(LT) =
1.

• Φ is non-decreasing; Φ(x+h)≥Φ(x) for h ≥ 0.

• Φ is right continuous; limh→0+Φ(x+h)=Φ(x); that is, as we approach
any argument x from above, the function approaches its value at x.

While the cdf is perhaps less intuitive than the pdf, we will see that there
are several advantages in using it.

The cdf also allows us to introduce what are called the quantiles of the
distribution. Because Φ is monotonically increasing, it has an inverse Φ−1.
Then, if the quantile value is q, the associated value of x is

x(q)=Φ−1(q)

where Φ is the theoretical cdf. Figure 2.1 shows in graphic form the quan-
tiles for a cdf, for q equal to 0.25, 0.50, and 0.75. The quantile for q = 1/2
may be more familiar to you as the median; we discuss some of the others
in Section 2.7.

2.6.1 The Lebesgue Decomposition Theorem and How
to Avoid It

Most treatments of probability take the cumulative distribution function
for X as being the more fundamental description of a random variable, us-
ing equation 2.9 for the relation to probability, and then define the pdf φ(x)
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as the derivative of the cdf if this derivative exists. This approach allows
discrete as well as continuous random variables, through the Lebesgue
decomposition theorem. This theorem states that any distribution func-
tion, Φ(x), can be written in the form

Φ(x)= a1Φ1(x)+a2Φ2(x)+a3Φ3(x)

with ai À 0, and a1 +a2 +a3 = 1. Φ1 is absolutely continuous (i.e., contin-
uous everywhere and differentiable for almost all x), Φ2 is a step function
with a countable number of jumps (that is, the sum of a finite number of
Heaviside step functions, suitably scaled); Φ3 is singular, and we ignore it
as pathological. Φ2 has the form Φ(x) = ∑

xi≤x pi, where pi = Pr[X = xi];
that is, the random variable X has a finite probability of occurring at the
discrete values x1, x2, x3 . . ., and zero probability of having any other val-
ues. Then pi is called the probability mass function or the frequency
function of the random variable X ; we avoid the latter term because of pos-
sible confusion with frequency in the Fourier sense. The Lebesgue theorem
says that cumulative distribution functions can be used for both continu-
ous and discrete random variables – or indeed for a combination of the two.
Dice-throwing has been our standard example for a discrete rv; we could
also use this kind of rv to model the probability of the number of some kind
of event: for example, the number of magnitude 6 or larger earthquakes in
a year which is integer-valued.

If the rv has a discrete component, the cumulative distribution func-
tion will have steps. While the derivative does not, strictly speaking, exist
at these steps, we can obtain such a cumulative distribution function by
integrating a pdf φ(x) that contains δ-functions, in which case φ is a gener-
alized function. This approach is not usually followed in probability theory,
perhaps because the standard mathematical development of that theory
predates the development of generalized functions. We will be using delta-
functions for many other things, so we feel free to include them in pdf ’s
that describe a discrete rv.

2.6.2 Empirical Cumulative Distributions
We can usefully apply the cdf to show how data are distributed by plotting
what is called the empirical cumulative distribution function or the
sample distribution function; we denote this by Sn(x). As we noted in
Section 1.2, the histogram is intuitively obvious, but has a major defect: its
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Figure 2.2: The top panels show histograms of the GPS data also
plotted in Figure 1.1, for varying bin widths. The histograms are nor-
malized so thapt they integrate to one. The lower left panel shows
the empirical cumulative distribution function; the lower right panel
shows the same information, but plotted as individual data points.

appearance depends what bin size we choose. Make the bin too large, and
we lose resolution; too small, and there are a lot of (possibly meaningless)
fluctuations. Figure 2.2 illustrates the problem. The bin width of Figure
1.1 is between these, but there is no way to say that it is “right”.

But we can avoid having to choose a bin size if we instead construct and
plot Sn(x). In keeping with the Lebesgue Decomposition Theorem, this is
usually defined as being like the cdf of a discrete pdf: a “stairstep” function
that is continuous except for steps at each data value, and increases mono-
tonically from zero to one. Suppose we have n data; we sort these into in-
creasing order to form the set (x(1), x(2), . . . , x(n)), where the subscripted par-
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entheticals are the standard notion for sorted (ordered) data. From these
ordered data we create Sn(x):

0 x < x(1)
Sn(x)= i/n x(i) ≤ x < x(i+1), i = 1, . . . ,n−1

1 x(n) ≤ x

Figure 2.2, also shows Sn(x) for the GPS data; it appears fairly smooth even
with no binning.

2.6.3 Probability Plots and Q-Q Plots
The lower right panel of Figure 2.2 shows the data for the empirical cdf
plotted, not as a function, but as the values of the individual data points.
We can use a modification of this plot both to show how well (or poorly) the
data distribution agrees with a model, and to compare the distributions
of two sets of data. Such plots provide qualitative information, as part of
what is called exploratory data analysis: these are graphical methods
that are the first thing you should apply to a new dataset.

The first method is the probability plot, which we can create given
both the empirical cdf, Sn(x), of a dataset and the cdf, Φ(x) of a particular
probability distribution. Imagine warping the x-axis so that the function
Φ(x) becomes a straight line, and then plotting Sn(x) – or actually, just
plotting the positions of the corners at the values of the data points. That
is, we find a set of quantiles based on the number of data, n:

ai =Φ−1
(

i− 1/2
n

)
i = 1, . . . ,n

so that the ai divide the area under Φ(x) into n+ 1 areas, each exactly
1/(n+1). To make a probability plot, we plot the sorted data against these
values, as n pairs ai, x(i). If the pdf is a good description of the data these
points would fall on a straight line.

The top two panels of Figure 2.3 show probability plots for our GPS data
set, using the Normal distribution as the assumed distribution. The left-
hand panel shows almost the full dataset; we have not shown all the data
because then all that can be seen is that that there are a few very large
outliers. Even with these omitted, the distribution bends away from the
diagonal, showing that there are more values far from the mean than would
be present in a Normal distribution. This property is expressed by saying
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Figure 2.3: Probability plots for data sets from Chapter 1: for the GPS
data compared with a Normal pdf, for the reversal data compared
with an exponential distribution, and for the earthquake-time data
compared with a uniform distribution.
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Figure 2.4:

that the actual distribution is long-tailed or heavy-tailed, which is not
uncommon. The right-hand panel shows the distribution if we omit (that
is, ignore) points beyond ±0.25; the distribution then is impressively close
to Normal. And the plot allows us to estimate several summary quantities
that we will define in Section 2.7: the mean (from the zero intercept); the
standard deviation (from the intercept of a line through the data, evaluated
for Φ−1(x)=±1), and the median and interquartile range.

The lower two panels show the other two datasets we use as examples.
On the lower left we have the intervals between reversals, plotted on the
assumption that the intervals are exponentially distributed (see Section
3.4.1) as they would be for a Poisson process. We have to use log scales
on both axes to make the plot readable. The data clearly do not follow
a straight line, so we may be sure that this model is not adequate. The
lower right panel shows the times of earthquakes from Figure 1.5, plotted
assuming that they are uniformly distributed. The event times seem to
approximate uniformity fairly well, something we discuss more rigorously
in Sections 6.3.1 and 6.5.1.

We can extend the plotting of quantiles to two datasets, making what
is called a quantile-quantile or Q-Q plot. Suppose we have two sets of
ordered data, of size n and m:

x(1), x(2), . . . x(n−1), x(n) and y(1), y(2), . . . y(m−1), y(m)

If n = m, then we simply plot the ordered pairs (x(i), y(i)). If not, we have
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to interpolate to get the quantiles, which we do by taking the quantile q,
where 0 ≤ q ≤ 1, and from it finding the values r = qn+ 1/2 and s = qm+ 1/2.
We truncate these to get the integers k and l, and find the fractional parts
e = r− k and f = s− l. Then we can create interpolated “data values” that
are (approximately) associated with this quantile:

x(q)= (1− e)x(k) + ex(k+1) and y(q)= (1− f )y(l) + f x(l+1)

We evaluate and plot these pairs (x(q), y(q)) for a selected set of q’s; to make
the plot useful it is usually best to use a finer sampling for q near 0 and 1,
and a coarser sampling for q near 1/2. If we used this scheme with n = m,
we could take q to be a multiple of n−1, and would get, as we should, the
ordered pairs (x(i), y(i)). If the two data sets have the same distribution, the
plotted points will lie along the line y= x. Shifts in the mean will move the
points right or left from this line; differences in the variance will change
the slope away from one. As with the probability plot, the advantage of the
Q-Q plot is that it shows the behavior over the full range of the data, not
merely a few summary values. And, it does not depend on any assumption
about some “underlying” distribution: it comes from the data. However, we
are usually limited to values of q between 0.05 and 0.95, so a Q-Q plot may
not show if one of the datasets is longer-tailed than the other.

Figure 2.4 compares a couple of our “standard” datasets with closely
related ones. The left panel shows the quantiles for times of large earth-
quakes against those of smaller ones;5 the smaller ones have times that are
nearly uniformly distributed, so the plot looks very much like the probabil-
ity plot in Figure 2.3. On the right, we compare our GPS data with data for
a later time span; there is a clear shift in location, and the later data (along
the y-axis) having just slightly less variance than the earlier data, though
a very similar pdf.

2.7 From RV’s to Conventional Variables I:
Summarizing PDF’s

We now leave data behind (for the moment) and return to discussing ran-
dom variables and the functions that describe them. Often it is useful to

5 The smaller earthquakes are those between magnitude 3.5 and 5.4 in the Southern
California earthquake catalog between 1981.0 and 2003.5, omitting days with 5.5 and
larger shocks.
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summarize certain attributes of a random variable, for example its “typ-
ical” value, or its variability; these attributes are conventional variables
and not rv’s. We can extract different kinds of summary variables from a
pdf: we may lose information but computations are often more manageable
when we consider summary variables rather than full functions.

The operations we perform on the pdf to get summary values are per-
formed on the pdf, not on data – though operations on pdf ’s can suggest
how we might summarize datasets, as we discuss in Chapter 5.

One possible summary of the typical value of a random variable, also
called its “location”, is the value of x which maximizes φ(x); this value is
the mode. Though density functions often have one peak (unimodal), they
may have many (multimodal, as in Figure 2.1), in which case the mode is
not very useful. More generally, the mode can vary substantially even with
small changes around the peak of the distribution: so it is a poor measure
of the location of the rv.

A better summary value for the location comes from taking integrals
or sums of the pdf to get the mean of the rv, which we symbolize by µ. If
X is a continuous random variable with pdf φ(x) the mean comes from an
integral whose integrand includes the pdf:

µ=
∫ ∞

−∞
xφ(x)dx (2.10)

where we can integrate over the entire real line because, if X is confined
to only part of it, over the rest φ(x) = 0. For a discrete random variable X ,
with probability distribution pi = Pr[X = xi], i = 1, 2, . . .; we can convert to
a continuous rv using delta functions, with the pdf being

∑
i piδ(x− i)). The

mean of the rv is then
µ=∑

i
pixi

The other summary variable that is useful to have is one that expresses
the spread of the rv, or equivalently the width of its pdf. One such variable
is called the variance σ2 and is computed from the pdf by

V [X ] def= σ2 =
∫ ∞

−∞
(x−µ)2φ(x)dx or V [X ] def= σ2 =∑

i
pi(xi −µ)2 (2.11)

where the first expression is how we write the variance of a random vari-
able X ; def= is shorthand for “the left side is defined to be what is on the
right side”.6 V can be viewed as an operator that acts on a random variable

6 Though sometimes we will write the defined quantity on the other side.
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and produces a conventional one. For a Normal distribution,7 σ=p
V [X ] is

called the standard deviation or standard error, but this term is best
avoided unless that particular distribution is being used or assumed. As
we will see in Chapter 3, some pdf ’s are completely specified if we know µ

and σ2, but others are not.
Other measures of central value and spread are based on the quantiles

of the cdf; as we showed above, the q-th quantile of the distribution Φ is the
value xq such that Φ(xq)=Pr[X ≤ xq]= q, so that xq =Φ−1(q). The median
of the distribution, µm, is the quantile corresponding to q = 1/2; this means
that ∫ µm

−∞
φ(x)dx =

∫ ∞

µm

φ(x)dx = 1/2

which is equivalent to Pr[X < µm] = Pr[X ≥ µm] = 1/2. The quantiles corre-
sponding to q = 0.25 and q = 0.75 are called the lower and upper quartiles
of Φ, and give another measure of spread; the difference x0.75− x0.25, which
is known as the interquartile range or IQR. The dashed lines in Figure
2.1 show how the median and interquartile range are found for a particular
cdf; in this case, with a multimodal pdf, neither the mean nor the mode are
good values of location – actually, with a pdf shaped like this we cannot
really summarize it very well with only one or two numbers.

Even small changes in the tails of a pdf can strongly influence the mean
and variance, but these will have little effect on the median and interquar-
tile range; we will see an example of this in Section 5.2. A summary value
that is insensitive to small changes in the pdf is called robust. A robust
measure of spread not based on quantiles is the the mean deviation, σm:

σm =
∫ ∞

−∞
|x−µ|φ(x)dx

2.8 From RV’s to Conventional Variables II:
Moments

The mean and variance are examples of the moments of a pdf; these in-
volve multiplying the pdf φ(x) by a power of x, and integrating or sum-
ming8. The mean is also called the first moment, and the variance is

7 Note that, as is common, we say “probability distribution” even when we refer to the
density function.

8 The term “moment” comes from mechanics – remember moment of inertia.
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Figure 2.5: Graphical demonstration of the computation of the first
moment (left panel, value is µ = 4.3, which is the dashed line); the
second centered moment (center panel, value is σ2 = 1.17, σ = 1.08;
the heavy line is µ±σ); and the mean deviation (right panel, value is
σm = 0.91; the heavy line is µ±σm). In each panel the red line is the
pdf, the blue line is the influence function, and the shaded region is
the product, whose area gives the moment or deviation.

related to the second moment. There are actually two kinds of moments.
The first kind, the moments about the origin, are

µ′
r =

∫ ∞

−∞
xrφ(x)dx or µ′

r =
∑

i
xr

i pi (2.12)

where the expressions on the left and right give the r-th moments about
the origin for r = 1, 2, . . . (why is r = 0 uninteresting?). The second kind, the
moments about the mean, which are what is usually meant by “moment”
for r ≥ 2, are defined by

µr =
∫ ∞

−∞
(x−µ′

1)rφ(x)dx or µr =
∑

i
(xi −µ′

1)r pi

for r = 2, . . . . (Why is µ1 uninteresting?) So the mean µ is µ′
1; the variance

σ2 is µ2 =µ′
2 −µ2.

The moments of order higher than two of a pdf φ(x) provide additional
summarizing information about the rv X . The third moment, µ3, is a mea-
sure of the asymmetry of φ(x), also called the skewness of X ; µ4, known
as the flatness (or kurtosis) further describes the shape of the pdf.

Figure 2.5 shows a graphical way of viewing computation of the first
two moments, and also of the mean deviation. All of these can be viewed
as the result of forming the product of φ(x) with some other function, and
integrating the result. For example, for the first moment the multiplication
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results in a new function that is (very roughly) the pdf scaled by the value
of x around the location of the pdf; since the integral of φ(x) is one, the inte-
gral of φ(x) scaled to cφ(x) is just c. Similarly, the definition of the variance
is the integral of φ(x) multiplied by a parabola centered on φ(x), and the
mean deviation is the integral of φ(x) multiplied by two lines centered on
φ(x). Both the parabola and the straight lines are examples of influence
functions, so called because they give varying weight, or influence, to dif-
ferent parts of φ(x). Clearly the parabola gives more influence to the pdf
far from its center – which may not be a good thing to do.

2.9 From RV’s to Conventional Variables III:
Expectations

Moving towards even greater generality, we come to an even more inclu-
sive way of getting a conventional variable from a random one, again by
integrating over an expression that includes the pdf. Suppose we have
a function (strictly speaking, a functional) which maps the domain of the
random variable into some other domain (for example, maps the real line
into itself); we call this function g. When g operates on a random variable
X , the result Y = g(X ) is another random variable. The expected value
of Y = g(X ), also called its expectation, is given by∫ L t

Lb

g(x)φ(x)dx (2.13)

where the limits are those applicable to g(X ); for example, if X could take
on any positive or negative value, and g(x) was x2, the limits for g, and the
integration, would be from zero to infinity. We write the expectation of a
random variable Y as E [Y ].

E is a kind of operator, like the variance operator V introduced in equa-
tion (2.11) – or like differentiation or integration. The expectation takes
any random variable and creates a conventional variable from it; for a con-
ventional variable c, E [c] = c.9 Because E involves integration, it is linear,
so that

E

[
k∑

i=1
ci g i(X )

]
=

k∑
i=1

ciE [g i(X )] (2.14)

9 One way to view this is that c is in fact a random variable C whose pdf is δ(x− c): so
C is always equal to c
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The simplest case is when g(Y )= X ; then

E [X ]=
∫ L t

Lb

xφ(x)dx =µ

where the last part comes from the definition of the mean: that the mean
is E [X ] is of course the reason for the name “expected value”. Similarly,
equations 2.10, 2.11, and 2.12 become

E [X ]=µ σ2 = V [X ]= E [(X −µ)2] E [X r]=µ′
r (2.15)

2.10 Transformations and Functions of
Random Variables

We now look at what we might call the arithmetic of random variables.
Suppose that we produce a new random variable Y from a random variable
X with pdf φX (x), how do we specify rules that tell us the pdf φY (x) of Y .
In the next section we will see that it is complicated to find the pdf of even
the sum of two rv’s, so we start with two simpler cases: first, combining rv’s
with conventional variables, and second, functions of a random variable.

A general combination of a random variable with conventional variables
is a linear transformation, involving both multiplication and addition:

Y = c(X + l) (2.16)

where we label the variables c and l because we will use these in Chap-
ter 3 for the spread and location parameters of a pdf. Now consider the
probability

Pr[y≤Y ≤ y+ g]=
∫ y+g

y
φY (v)dv (2.17)

From equation (2.16) we have that

Pr[y≤Y ≤ y+ g]=Pr[y≤ c(X + l)≤ y+ g] (2.18)

remembering that y, being the one end of a range, is just a conventional
variable, and does not change when the random variable does. We can
rewrite the right-hand side of equation (2.18) as

Pr
[

x− l
c

≤ X ≤ x− l+ g
c

]
=

∫ x−l+g
c

x−l
c

φX (u)du (2.19)



2.10. Transformations and Functions of Random Variables 37

by the definition of the pdf φX . In order to make the limits on the integral
the same as those in equation (2.17), we have to perform a change of vari-
ables, with w = cu+ l so u = (w− l)/c). Making this change, the integral in
equation (2.19) becomes ∫ y+g

y
φX

(
w− l

c

)
dw
c

which means that

φY (x)= 1
c
φX

(
x− l

c

)
This is a result we will use frequently, for example, in Section 3.3.1.

Intuitive though the pdf is, the result derived above can be found much
more easily if we use the cumulative distribution function instead. We can
put most of the steps on one line:

ΦY (y)=Pr[Y ≤ y]=Pr[cX + l ≤ y]=Pr
[

X ≤ y− l
c

]
=ΦX

(
y− l

c

)
(2.20)

and have only to take the derivatives:

φY (y)= d
d y
ΦY = d

d y
ΦX

(
y− l

c

)
= 1

c
φX

(
y− l

c

)
where the c−1 in the last expression comes from the chain rule for deriva-
tives.

Now suppose we have a more general case, in which Y = g(X ); we as-
sume that over the range of X ; g(X ) is differentiable, and also monotone, so
that there is an inverse function that satisfies X = g−1(y). Then we can use
the same approach to relate φY (y) to φX (x). We follow the steps in equation
(2.20) and write

ΦY (y)=Pr[Y ≤ y]=Pr[g(X )≤ y]=Pr[X ≤ g−1(y)]=ΦX (g−1(y)) (2.21)

which we differentiate, using the chain rule, to get

φY (y)= d
d y
ΦY = d

d y
ΦX (g−1(y))=φ((g−1(y))

∣∣∣∣ d
d y

(g−1(y))
∣∣∣∣ (2.22)

where the absolute value is present to deal with the case in which Y de-
creases as X increases.
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As an example, suppose that we have φ = 1 for 0 ≤ X ≤ 1 (the uniform
distribution) and want the pdf of Y = X2. Then g−1(y)=py, and

φY (y)= 1
2
py

which is interesting because it shows that the pdf can be infinite, provided
only that the associated singularity is integrable.

While 2.22 might appear to provide a simple formula to apply, it is actu-
ally better in practice to start with the steps in 2.21, which are more general
and easier to remember. If, for example, we had φ= 1 for −1/2 ≤ X ≤ 1/2 and
Y = X2, we could not use 2.22 because there is no unique inverse; but the
steps in 2.21 become

ΦY (y)=Pr[Y ≤ y]=Pr[X2 ≤ y]=Pr[−py≤ X ≤p
y]=Φx(

p
y)−Φx(−py)

from which the pdf, y−1/2 for 0≤ y≤ 0.25, can easily be derived.

2.11 Sums and Products of Random
Variables

We have not, so far, dealt with such basic arithmetic operations as adding
or multiplying two variables together. So the next question we address is,
given two rv’s X1 and X2 with known pdf ’s, what are the pdf ’s of X1 + X2,
X1X2, and X1/X2? We derive some results for these combinations in this
section, we can then use the one for summation to demonstrate the Central
Limit Theorem (Section 2.12). We will also use the results of this section
extensively in Chapter 3 in the course of deriving a variety of pdf ’s.

2.11.1 Summing Two Variables

Our first step may appear to just complicate the problem; this is to gener-
alize the concept of a pdf to more than one variable. This generalization
requires us to introduce the concept of joint probability for random vari-
ables. We already have joint probabilities for sets: the joint probability for
set A and set B is Pr[A∩B]. If we say that set A is having X1 fall between
x1 and x1 +δx1, and set B is having X2 fall between x2 and x2 +δx2, then
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Figure 2.6: In the left panel the shaded area is the region for the
integral in equation (2.24) for finding the pdf of the sum of two rv’s.
In the right panel the shaded area is the region for the integral in
equation (2.25) for finding the pdf of the product of two rv’s.

we can write the joint probability in terms of a pdf of two variables:

Pr[(x1 ≤ X1 ≤ x1+δx1)∩(x2 ≤ X2 ≤ x2+δx2)]=
∫ x1+δx1

x1

∫ x2+δx2

x2

φ(x1, x2)dx1dx2

(2.23)
which we write as X1, X2 ∼ φ(x1, x2), meaning that the random variables
X1 and X2 are jointly distributed with pdf φ(x1, x2).

To find the pdf for the sum, we introduce the rv Y = X1 + X2, which has
the pdf ψ and distribution Ψ. Then we find

Ψ(y)=Pr[Y ≤ y]=Pr[X1 + X2 ≤ y]=
∫

x1+x2≤y
φ(x1, x2)dx1dx2 (2.24)

so that the integral is over the shaded area on the left of Figure 2.6.
To proceed beyond this, we have to assume that the random variables

X1 and X2 are independent; Chapter 4 will deal with the case that they are
not. For sets independence means that Pr[A∩B]=Pr[A]Pr[B]; this can be
consistent with equation 2.23 only if the pdf for the two variables has the
form

φ(x1, x2)=φ1(x1)φ2(x2)

where φi is the pdf of X i. In this case the properties of X1 can be found
independently of the distribution of X2; that is to say, from φi alone. Then

Ψ(y)=
∫

x1+x2≤y
φ1(x1)φ2(x2)dx1dx2
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Letting s = x1 + x2 we get

Ψ(y)=
∫ y

−∞

∫ ∞

−∞
φ1(x1)φ2(s− x1)dx1ds

Differentiating gives the pdf for Y :

ψ(y)= dΨ
d y

=
∫ ∞

−∞
φ1(x1)φ2(y− x1)dx1

def= φ1 ∗φ2

In the last part of this equation we have introduced a new notation, namely
∗ to mean the particular integral of a product of functions, which is called
the convolution of the two functions φ1 and φ2 to form the function ψ. We
can generalize this result for multiple independent rv’s X1, X2, ..., Xn, with
Xk ∼ φk: the sum has the pdf

X1 + X2 + . . .+ Xn ∼ φ1 ∗φ2 ∗φ3 . . .∗φn

which is to say, if we add independent random variables, we get a random
variable whose pdf is the convolution of the component pdf ’s.

2.11.2 Multiplying Two Variables
For the product of two rv’s, we proceed similarly to the derivation for sums:
we introduce the rv Y = X1X2, with pdf ψ and distribution Ψ; Y ∼ ψ with
ψ= dΨ

d y . Then
Ψ(y)=Pr[Y ≤ y]=Pr[X1X2 ≤ y]

To get this, we have to integrate the joint pdf φ(x1, x2) over the set such
that x1x2 ≤ y; if x1 ¿ 0, x2 ≥ y/x1, while if x1 À 0, x2 ≤ y/x1, making the
integral of the joint pdf over the shaded area on the right of Figure 2.6. We
can write this as the sum of two integrals∫ 0

−∞

∫ ∞

y/x1

φ(x1, x2)dx2dx1 +
∫ ∞

0

∫ y/x1

−∞
φ(x1, x2)dx2dx1 (2.25)

We introduce a new variable s = x1x2, which makes 2.25∫ 0

−∞

∫ −∞

y

1
x1
φ(x1, s/x1)dsdx1 +

∫ ∞

0

∫ y

−∞
1
x1
φ(x1, s/x1)dsdx1

=
∫ 0

−∞

∫ y

−∞
1

−x1
φ(x1, s/x1)dsdx1 +

∫ ∞

0

∫ y

−∞
1
x1
φ(x1, s/x1)dsdx1

=
∫ y

−∞

∫ ∞

−∞
1

|x1|
φ(x1, s/x1)dx1ds



2.12. The Central Limit Theorem 41

Since this is Ψ(Y ), we can differentiate to get

ψ(y)=
∫ ∞

−∞
1

|x1|
φ(x1, y/x1)dx1 =

∫ ∞

−∞
1

|x1|
φ1(x1)φ2

(
y
x1

)
dx1 (2.26)

where only at the last step have we assumed that X1 and X2 are indepen-
dent. A similar approach for Y = X1/X2 gives

ψ(y)=
∫ ∞

−∞
|x1|φ1(x1)φ2(x1 y)dx1 (2.27)

which we will also use in Chapter 3.

2.12 The Central Limit Theorem
In probability theory and statistical inference the Normal distribution,
also called the Gaussian distribution, plays a major role. The pdf for
this, with the mean set to zero, is

φ(x)= 1

σ
p

2π
e−x2/2σ2

which is conventionally written as X ∼ N(0,σ).
This major role importance of the normal distribution is in part justi-

fied by the central limit theorem; loosely speaking this theorem states
that if a random variable X is the sum of a large number of other random
variables, then X will be approximately normally distributed, irrespective
of the pdfs of the variables that are summed to produce it.

We now demonstrate this, with two caveats. The first is that this is not
a fully rigorous proof; pp. 113-116 of ? has one. The second is that, despite
this theorem, actual data (see, for example, Figure 1.1) have a stubborn
habit of not being normally distributed. Often they are “close enough” that
it doesn’t matter (much), but your should always check this, and allow for
the possibility that the data are not normal.

2.12.1 The Characteristic Function
We begin our demonstration by doing something that, unless you are al-
ready familiar with convolution, will not be obvious: we take the Fourier
transform of the pdf. We do so because the convolution operation on the
pdf ’s is then replaced by multiplication of their Fourier transforms, which
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is much more manageable. For a random variable X ∼φ, the Fourier trans-
form of φ is written as F [φ] or φ̃( f ), and defined as

φ̃( f )=
∫ ∞

−∞
φ(x)e−2πi f x dx

In probability theory this transform is called the characteristic function
of φ; it has the inverse transform

φ(x)=
∫ ∞

−∞
φ̃( f )e2πi f x d f

Because pdf ’s are such well-behaved functions (positive and with a finite
area) these two transforms always exist. Note that

φ̃(0)=
∫ ∞

−∞
φ(x)dx = 1

where the integral follows from direct substitution into the Fourier-transform
equation.

The inverse Fourier transform shows that the characteristic function
uniquely determines the pdf, and so, just as much φ itself does, completely
specifies the properties of X ; so we can use this function for demonstrating
theorems. To start, note that the characteristic function can also be defined
in terms of the expectation operator (equation 2.13); if we take g(x) to be
e−2πi f x, we see that the Fourier transform corresponds to our definition of
an expectation, so that

φ̃( f )= E
[
e−2πi f X

]
(2.28)

which, mysterious as it might first appear, is just the application of a func-
tion to some random variable.

Expanding the exponential in equation (2.28), and making use of the
linearity of the expectation operator (equation 2.14) and the definition of
the higher moments (equation 2.12), gives a Taylor series expansion of the
characteristic function:

φ̃( f )=
∞∑

r=0

(−2πi f )r

r!
µ′

r (2.29)

where µ′
r = E [X r]. Since a Taylor series determines the function (and hence

the pdf) uniquely, we have shown that, given all its moments µ′, a pdf is
completely determined.
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We can use equation (2.29) to express the mean and variance of a dis-
tribution in terms of derivatives of the characteristic function, evaluated
at zero. For example, if we take the derivative of equation (2.29), and then
evaluate it at zero, we have only one term left in the expansion, so that

φ̃′(0)=−2πiµ′
1 whence E [X ]= −φ̃′(0)

2πi

by equation (2.15); similarly, φ̃′′(0)=−4π2µ′
2, so for the variance we get

V [X ]= φ̃′(0)2

4π2 − φ̃′′(0)
4π2

so, since φ̃′′(0)≤ 0, V [X ]≥ 0, as it should be.

2.12.2 Summing Many Variables
For demonstrating the Central Limit Theorem we first find the character-
istic function of the Normal pdf:

φ̃( f )= 1p
2πσ

∫ ∞

−∞
e−

1/2(x2/σ2)e−2πi f x dx

This integral may be evaluated by completing the square in the exponent
to give a definite integral in x, which then gives another Gaussian:

φ̃( f )= e−2π2σ2 f 2

From this we can already see that if we sum n Gaussian random variables
the resulting characteristic function φ̃n will be

φ̃n( f )= e−2π2nσ2 f 2

and undoing the FT yields

φn(x)= 1p
2πnσ

e−
1/2(x2/nσ2)

Now, we relax the assumption of a Gaussian distribution and just sup-
pose that we have random variables X1, X2, . . . Xn, which are independent
and identically distributed, an assumption so common that it gets its



44 Chapter 2. Probability and Random Variables

own acronym, namely iid. We assume the pdf has a mean of zero, a vari-
ance σ2, and that all the higher moments exist.10 Let Sn = ∑n

i=1 X i. The
Central Limit Theorem is the statement that, in the limit as n → ∞, the
distribution of Sn approaches N(0,σ

p
n); the variance σ2 grows as n. If

Sn ∼φn and each X i ∼φ then φn is an n-fold convolution

φn =φ∗φ∗φ∗ . . .∗φ

which means that the characteristic function φ̃n is given by

φ̃n = φ̃ · φ̃ · . . . φ̃= (φ̃)n = en ln φ̃

Assuming that all the moments of φ exist, then so do all the derivatives of
φ̃ at f = 0 and we can expand φ̃ in a Taylor series:

φ̃( f )=φ̃(0)+ f
1!
φ̃′(0)+ f 2

2!
φ̃′′(0)+ . . .

=1+ f 2

2!
φ̃′′(0)+ f 3

3!
φ̃′′′(0)+ . . .

where we have made use of φ̃(0) = 1 (true for all φ̃) and φ̃′(0) = 0 (because
we assumed E [X ]= 0).

Putting this series into the en ln φ̃, we get

φ̃n( f )=exp
[
n ln

(
1+ f 2

2!
φ̃′′(0)+ f 3

3!
φ̃′′′(0)+ . . .

)]
≈exp

[
nf 2

2!
φ̃′′(0)+ nf 3

3!
φ̃′′′(0)+ . . .

]
The approximation in the second line above has used the Taylor-series ex-
pansion for ln(1+ ε) = ε− ε2/2+ ε3/3 . . ., keeping only the linear term in ε.
Next we define a new variable

σ2
n = V [Sn]= −nφ̃′′(0)

4π2 = nV [X i]

and a constant

c3 = 4φ̃′′′(0)
3(−φ̃′′(0)/π)3/2

10 In Section 3.5.1 we will encounter a pdf for which these moments do not in fact exist.
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Figure 2.7: The histogram (left) and the cumulative distribution func-
tion (right) for the heights at which GPS antennas were set above the
ground, for a very large database. Heights outside the range from 0.5
to 1.8 m usually involved some kind of pole with a fixed height; be-
tween these heights the usual stand for the antenna was a surveyor’s
tripod, which can be set up over a wide range. The dashed line in the
right-hand plot is the cdf for a Normal distribution with mean 1.204
m and standard deviation 0.275 m.

in terms of which we can rewrite the series as

exp
[
−2π2σ2

n f 2 + (σn f )3c3p
n

+O
(
(σn f )4

n

)]
The effect of introducing σ has been to make all terms but the first ap-
proach zero as n → ∞, and the first term gives a Gaussian characteristic
function, with V [Sn] = nV [X i]; φ(x) tends to a Gaussian with mean zero
and variance nV [X ]= nσ2, which is what we wanted to show.

To go from mathematics to real data, Figure 2.7 shows the histogram,
and cumulative distribution function for a collection of very independent
data: setups of surveyors’ tripods, representing nearly 17,000 decisions by
hundreds of people over two decades. In the right frame, the dashed line
shows that, indeed, over a wide range the empirical cumulative distribution
function for these heights is very nearly a Gaussian, or Normal, distribu-
tion, with only two parameters needed to describe a large dataset.


