
CHAPTER 3

SOME UNIVARIATE
DISTRIBUTIONS

I know of scarcely anything so apt to impress the imagination as
the wonderful form of cosmic order expressed by the ‘law of error.’
A savage, if he could understand it, would worship it as a god. It
reigns with severity in complete self-effacement amidst the
wildest confusion. The huger the mob and the greater the
anarchy the more perfect is its sway.

FRANCIS GALTON J. Anthrop. Institute, 15, 487-499 (1886)

Experimenters imagine that it [the normal distribution] is a
theorem of mathematics, and mathematicians believe it to be an
experimental fact.

GABRIEL LIPPMANN, attributed

3.1 Introduction
In this chapter we describe some of the more commonly encountered proba-
bility distributions, giving both pdf ’s and cdf ’s. We mentioned “exploratory
data analysis” as what we do when we first look at data; part of this can be
finding a pdf to model the data. If we can use a well-known pdf, we can then
use the many well-established results on how to analyze data with that pdf;
if we have to develop a whole new probability model, we are in for a lot more
work. In Section 2.6.3 we discussed some ways to see if data match a given
pdf, something we revisit more rigorously in Section 6.5.1; for now we sim-
ply offer a guide to some of the most useful probability density functions.
We also describe how to generate a series of numbers that mimic a random
variable with a given pdf, since (Chapter 5) there are statistical methods
that depend on being able to do this.
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Most discussions of pdf ’s are unduly complicated because, for historical
reasons, different names and symbols are used for parameters with the
same role – and some of the names (notably “number of degrees of freedom”)
are not very informative.

To minimize this complexity we note that for continuously distributed
random variables nearly all pdf ’s have formulas like

1
cAr(s)

φs

(
x− l

c

)
for Lb ≤ x ≤ Lc (3.1)

In this expression the L’s give the range of the variable: often from −∞
to ∞, or from 0 to ∞, but sometimes over a finite range. The function φs
gives the actual shape of the pdf; the constant Ar(s) is the area under the
function, included to normalize the integral of φ to unity. We call s the
shape parameter; not all pdf ’s have one. But almost all pdf ’s do have two
others:

1. A location parameter l, which sets the location of the pdf on the
x-axis. This parameter appears mostly, though not always, for pdf ’s
on (−∞,∞).

2. A scale parameter c, which expands or contracts the scale of the
x-axis. For the pdf to remain properly normalized, c also has to scale
the size of the pdf, and so multiplies Ar(s).

We will give each pdf in three forms: (1) a stripped-down form, usually
with l set to 0 and c to 1; (2) in the full form, but with all the parameters,
and using the L, c, and s symbols, and (3) in the full form, but with all
the parameters given their conventional symbols. Though the first two
expressions are not equal, we will use the equal sign to connect them. You
should try to see how equation 3.1 above can be applied to the stripped-
down form to produce the conventional one.

3.2 Uniform Distribution
The simplest probability density function is the uniform or rectangular
distribution, which has the probability density function (pdf)

1 0≤ x ≤ 1
φ(x)=

0 x < 0 or x > 1
(3.2)
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and the cumulative distribution function (cdf)

0 x < 0
Φ(x)= x 0≤ x ≤ 1

1 x > 1
(3.3)

In this case the “conventional” formula is the one without scaling, and we
indicate that a random variable X has this distribution by writing X ∼
U(0,1). We can apply l and c to move the nonzero part to any location, and
make it of any finite length, in which case we have

φ(x)= c−1 for l ≤ x ≤ l+ c

This distribution is used mostly in simulation methods, as the basis for
computing rv’s with other pdf ’s; most computer software contains a func-
tion named ran (or some similar name), repeated calls to which are sup-
posed to produce numbers with this distribution. We say “supposed to” be-
cause the numbers produced by actual software can depart from this ideal
distribution in two ways:

• The first departure is that any computer function is deterministic;
so what it actually produces is a set of numbers designed to “look
random”; hence these are called pseudorandom numbers. Almost
always, ran includes an argument (called a seed); different seeds cre-
ate different sets of random numbers, so if we let the seed depend on
(say) the time, we can get random sets that vary every time. But if
we want to debug a program it is very useful to always be able to use
the same sequence.

• The second departure can be very harmful: many computer routines
in fact do not produce a collection of uniformly distributed and inde-
pendent random numbers. If your work depends on the output of ran
being very like a uniform distribution, you should use a known al-
gorithm, not just the default function for your system. Press et al.
[1992] provide a good basic discussion, and L’Ecuyer and Simard
[2007] gives a full review, which notes that the “Mersenne twister”
of Matsumoto and Nishimura [1998], passes all the tests known at
the time. Another algorithm, adjustable to different levels of ran-
domness, is given by Lüscher [1994] and James [1994].
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Figure 3.1: A Normal, or Gaussian, pdf and its cdf, plotted for zero
mean and unit variance. In this figure, unlike most of the others, the
y axis is not exaggerated relative to the x axis.

x ±1.00 ±1.65 ±1.96 ±2.58 ±3.29 ±3.90
Mass fraction 0.68 0.90 0.95 0.99 0.999 0.9999

3.3 The Normal (Gaussian) Distribution
We have already met this pdf,1 but present it again to illustrate our differ-
ent ways of writing a pdf:

φ(x)= 1p
2π

e−x2/2 = 1

c
p

2π
e−(x−l)2/2c2 = 1

σ
p

2π
e−(x−µ)2/2σ2

(3.4)

where the location parameter (conventionally µ) is called the mean and
the scale parameter (conventionally σ) is called the standard deviation.
Figure 3.1 shows the pdf and cdf for this distribution, with the dashed lines
showing where Φ attains the values 0.05, 0.50, and 0.95. The 0.5 and 0.95
lines bound 0.9 (90%) of the area under the pdf (often called, since this is
a “density function,” the mass). Table 3.3 gives some values of the mass
as a function of different x-values (plus and minus). We would, for exam-
ple, expect that out of 1000 rv’s with this distribution, no more than one
would be more than 3.3σ away from the central location µ. We described in
Section 2.12 why this pdf is special, namely that the central limit theorem
says that (for example) sums of rv’s approach this distribution somewhat
irrespective of their own distribution. It very often simplifies the theory to
assume Gaussian behavior (we will see many examples of this), and many
datasets are normally distributed, at least approximately. But you should
never casually assume it.

This is a good place to introduce another term of statistical jargon,
namely what a standardized random variable is. We say that any nor-
mally distributed random variable X ∼ N(µ,σ) may be transformed to one

1 For the history of the names, see Stigler [1980].
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with the standard normal distribution (with µ= 0 and σ= 1 by creating the
new standardized random variable Z = (X −µ)/σ, so that Y ∼ N(0,1).
We will see other examples of such transformations.

3.3.1 Generating Normal Deviates
The title of this section contains one of those terms (like Love waves) liable
to bring a smile until you get used to it; but “deviates” is the standard term
for what we have called a collection of random numbers. There are quite a
few ways of producing random numbers with a Gaussian pdf; for very large
simulations we need methods that are fast and also reliably produce the
relatively rare large values [Thomas et al., 2007]. We describe two related
methods; both allow us to give some examples of the procedures developed
in Section 2.10 for finding the pdf ’s of functions of random variables.

In both methods, we start by getting two rv’s, with an independent and
identical distribution, namely a uniform one; as noted in Section 3.2, this is
usually easy given the usual ran function in software. These two variables
can viewed as specifying a point in a square, with 0≤ x1 ≤ 1 and 0≤ x2 ≤ 1,
and the pdf describing the distribution of these points is a uniform bivariate
one, with φ(x1, x2) = 1 over this square region. We term these two rv’s U1
and U2, though we use x1 and x2 for the actual numbers.

The first method, known as the Box-Muller transform, computes two
values given by

y1 =
√

−2ln x1 cos2πx2 and y2 =
√
−2ln x1 sin2πx2

which (we assert) each has a Normal distribution. To show this, we have to
find the pdf ’s of the rv’s

Y1 =
√

−2lnU1 cos2πU2 and Y2 =
√

−2lnU1 sin2πU2

where we have the same expressions but with random variables replacing
the conventional ones.

First we write the joint pdf in polar coordinates, as φY (r,θ), the distri-
bution in angle θ is uniform because U2 is. The pdf in radius is found from
equation (2.22) in Chapter 2, with W = g(R) = p−2lnR, with R (like U1)
uniformly distributed. The inverse is g−1(w) = e−w2/2; applying equation
(2.22) and using the uniformity of R, gives

φW =φR(g−1(w))
∣∣∣∣ d
dw

g−1(w)
∣∣∣∣= we−w2/2 (3.5)
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If Y1 and Y2 are (as we claim) iid variables with a Gaussian distribution,
the joint pdf will be the product

φY = 1
2π

e−(x2
1+x2

2)/2 = 1
2π

e−r2/2

Although this only contains r, it remains a joint pdf. If we integrate over
all θ we get a pdf in r alone:

φ′
R =

∫ 2π

0
φY r dθ = re−r2/2 (3.6)

Equations (3.5) and (3.6) give the same result: the pdf found for the trans-
formed variable W = g(R) =p−2lnR for R uniformly distributed matches
that for the radius of the bivariate Gaussian. So we see that taking this
function of a uniformly distributed rv, and then multiplying the result by
the unit vector in a random direction (which is what (cos2πU2,sin2πU2) is)
will produce a pair of Gaussian rv’s.

Another way to get Normal deviates from uniform ones is to note that
if the points are uniformly distributed over the square, they will also be
uniformly distributed over the circle inscribed within it, which they can be
limited to if we remove all pairs for which r2 = x2

1 + x2
2 ≥ 1. Then we form

y1 = x1

r

√
−2ln r2 = x1

√
−2ln r2

r2 and y2 = x2

r

√
−2ln r2 = x2

√
−2ln r2

r2

where the second form requires only one square root. This method avoids
calls to trigonometric functions, and thus is usually faster despite requiring
27% more calls to the uniform random number generator. It is equivalent to
the Box-Muller transform because x1/r and x2/r are equivalent to a sine and
cosine, and will be distributed uniformly in angle, while r2 is also uniformly
distributed, making it a valid replacement for x1.

3.4 Point Processes
The next set of pdf ’s are all used for describing point processes, which we
introduced in Section 1.2; so we start by giving a more formal description
of the Poisson process, which we used as a simple model for geomagnetic
reversals. In this process we suppose that the probability of some event
occurring is equal over all time, and is described by a rate (also called an
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Figure 3.2: Exponential pdf and its cdf.

intensity), which has the dimensions of probability over time. The condi-
tions for a Poisson process with rate λ are that, as a small time interval h
approaches zero:

• The number of events in disjoint time intervals are independent: the
number in (0, t] is independent of (does not affect) the number in (t, t+
h).

• The probability of an event in an interval of length h is, as h → 0,
approximately proportional to h plus a remainder that is o(h). (Re-
member that a function g(h) is o(h) if limh→0 g(h)/h = 0.)

• the probability of more than one event in an interval of length h is
o(h).

The Poisson process is memoryless: what happens at any time does
not depend on earlier history. This makes the Poisson process the simplest
point process, described by only one parameter and fundamentally unpre-
dictable. In earthquake statistics and other areas the Poisson process often
serves as a kind of “least interesting” model, against which we compare
data to see if there is anything more complicated going on.

A more general form of point process is the renewal process, in which
the probability of an event depends on the time since the last event. The
Poisson process might be called a renewal process that isn’t, since in its case
the probability is constant, and the time of the next event is uninfluenced
by the time of the previous one. A renewal process might be appropriate
for geomagnetic field reversals, since we might expect that immediately
following a geomagnetic reversal, while the geodynamo recovers its stable
polarity, a second reversal might be less likely, and short intervals less
probable, than under a pure Poisson model. Conversely, for earthquakes a
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second event is more likely right after one has occurred, so the events are
clustered. Renewal models can imitate both types of behaviors.

3.4.1 Exponential Distribution
For a Poisson process it can be shown that the interval between successive
occurrences has an exponential distribution. The pdf for this is defined
over [0,∞):

φ(x)= e−x = ce−x/c =λe−λx

and the cumulative distribution function is

Φ(x)= 1− e−λx (3.7)

This pdf is peaked towards zero, so even though the probability of oc-
currence does not vary with time, short intervals have a much higher prob-
ability of occurring than long ones do. Figure 3.2 shows this distribution;
again, the dotted lines show the values for Φ equal to 0.05, 0.50, and 0.95:
much less symmetric than the same points for the Normal.

Producing random numbers for this distribution is very easy, and illus-
trates a method that can be applied to some other pdf ’s. We can think of
taking uniformly distributed rv’s and placing them on the y-axis of the cdf;
then if we map these into the x-axis through the inverse cdf function, the
result will have the distribution we want. This result is general; how us-
able it is depends on how easy it is to compute the inverse function for the
cdf. In this case it is easy; from equation (3.7) the inverse cdf function is

Φ−1(y)= − ln(1− y)
λ

= − ln(y)
λ

where the last quality is gotten from the observation that if 1−Y is uni-
formly distributed between 0 and 1, Y will be also. This method depends on
having an easy way to compute the inverse cdf; in Section 3.3.1 we needed
more complicated methods because the cdf for the Gaussian does not have
an easily-computed inverse.

3.4.2 Poisson Distribution
We get another distribution from the Poisson process by considering a dif-
ferent random variable: the number of events, k, occurring in a time inter-
val of length T. The distribution of k(T) is called a Poisson distribution
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Figure 3.3: Poisson distributions for different values of s.

(Figure 3.3); the probability of getting k events is

pk = sk e−s

k!

Here s is the shape parameter; this distribution does not have a scale or
location parameter. For a Poisson process with rate λ, observed over an
arbitrary interval of length T, the shape parameter is s =λT.

This distribution is discrete, so we write the pdf using delta functions:

φ(x)=
∞∑

k=0
pkδ(x−k)

As s becomes large, the distribution starts to look like a discrete version of
the Normal. The expected value (first moment) of the distribution is just
the shape parameter s.

This distribution arises whenever we have a small probability of some-
thing happening in each of a large number of instances, and want to know
the distribution of the number of “somethings” in a given instance. Mag-
netic reversals have a small probability of happening in each of many years;
another example, not arising from a point process, would be deaths from
being struck by lightning; if we took a number of groups of (say) 100,000
people, we would expect the number of such deaths in each group to be
Poisson-distributed.2

2 This has the same structure as the classic example for this distribution: the number
of soldiers, in each corps of the Prussian army, who were killed each year by being kicked
by a horse.
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Figure 3.4: Gamma distributions for different values of s.

3.4.3 Gamma Distribution
A renewal process is often modeled by assuming that the interval lengths
follow a gamma distribution; this has a pdf on [0,∞) that looks rather
like a continuous version of the Poisson distribution:

φ(x)= 1
Γ(s)

xs−1e−x = 1
cΓ(s)

( x
c

)s−1
e−x/c = λs

Γ(s)
xs−1e−λx (3.8)

where the Γ function (used to normalize the distribution) is defined by

Γ(x)=
∫ ∞

0
ux−1e−u du

As in the previous example we have followed the convention for dealing
with point processes and written the scale parameter as λ= c−1. Equation
(3.8) shows that the exponential distribution is a gamma distribution with
s = 1.

Figure 3.4 shows the gamma density function for different values of
s. For a renewal point process governed by this kind of probability den-
sity function, λ describes the rate of events well after each event, while s
controls the shape of the probability function immediately following each
event. Values of s ≤ 1 correspond to an enhanced probability (relative to
a Poisson process with the same value of λ) of another event immediately
following one that has just occurred. Values of s ≥ 1 indicate a diminished
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Figure 3.5: Weibull distributions with different shape parameters.

probability of another event immediately following any given one. For geo-
magnetic reversals, using the renewal model gives s À 1. The physical in-
terpretation of this is controversial: it may be because the geological record
does not record short polarity intervals adequately, or it may reflect some-
thing fundamental about the geodynamo [McFadden, 1984; McFadden and
Merrill, 1984]. Gamma distributions are also used in statistical seismology,
since the existence of aftershocks shows that this is a process with memory,
and an enhanced probability of another earthquake immediately following
any given one. Even after removing obvious aftershocks, earthquakes of-
ten appear to cluster in time, for which one probability model is a renewal
process with interevent times following a gamma distribution with s < 1.

3.4.4 Weibull Distribution

This distribution (Figure 3.5) was invented to describe failure rates, and so
is another choice for modeling renewal processes. The pdf is

φ(x)= xs−1e−xs =
( s

c

)(
x− l

c

)s−1
e−((x−l)/c)s

for x ≥ l

which makes the cdf relatively simple:

Φ(x)= 1− e−(x)s = 1− e−((x−l)/c)s

The shape and scale parameters are sufficient to provide a flexible distri-
bution, so a nonzero location parameter is less often used. The exponential
distribution is a special case for s = 1.
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Figure 3.6: Cauchy distributions of different width.

3.5 Distributions Derived from the Normal
We now consider a collection of pdf ’s which have in common that they apply
to some combination of one or more Normal rv’s. Some of these pdf ’s, are
not much used to represent data; rather, they are part of various statistical
tests which we will discuss in Chapter 6.

3.5.1 Cauchy Distribution
Our first example is, however, meant to represent data – or perhaps we
should say, meant to represent data that we hope we will never see, be-
cause such an rv has such a wide variation that we could not say much use-
ful. In Section 2.11.1 we found the pdf for the sum of two Normal random
variables, namely another Normal. Suppose instead that we consider the
ratio of two Normal variables, making our new random variable Y = X1/X2,
with X i ∼ N(0,σ). It is easy to see that it would be relatively common for
the denominator X2 to be small, and hence for Y to be large; so we would
expect the pdf of Y to be much more heavy-tailed than the pdf of X .

We can use equation (2.27) to get the actual distribution, namely

φ(x)= 1
2π

∫ ∞

−inf
|x|e−y2/2e−x2 y2/2 dx = 1

π

∫ ∞

0
xe−y2(x2+1)/2 dx

A change of variables to u = y2 makes this into the integral of an exponen-
tial in u:

1
2π

∫ ∞

0
e−u(x2+1)/2 du = 1

π(1+ x2)
= c
π(c2 + (x− l)2)

which is the pdf for the Cauchy distribution, shown in Figure 3.6. This
distribution is integrable (it has to be, to be a pdf), but the first and higher



58 Chapter 3. Some Univariate Distributions

moments do not exist (that is to say, are infinite): rv’s with a Cauchy distri-
bution do not have a mean or variance – though they do have a median and
an interquartile range. This pdf has the heaviest tails possible for a pdf; it
shows that shows that it may not always be possible to follow even such a
standard procedure as finding a mean.

3.5.2 Chi-Squared Distribution
If, instead of taking the ratio of Normal rv’s, we take the product, we get
the χ2 distribution, one of several that are mostly used for statistical tests.
We start by squaring a random variable with a normal distribution; that is,
if X is a random variable distributed with a normal pdf with mean 0 and
standard deviation 1 (i.e., X ∼ N(0,1), then the distribution of the random
variable Z = X2 is conventionally written as χ2

1, and is conventionally called
the chi-square distribution with one degree of freedom, 3.

The pdf can be derived by the procedure described in Section 2.11:

Φz(z)=Pr(Z ≤ z)=Pr(−pz ≤ X ≤p
z)

where the second expression comes from using the inverse function to x2,
namely the square root. Rewriting the rightmost expression gives

Φz(z)=Φx(
p

z)−Φx(−pz)

and differentiating with respect to z = x2 using the chain rule gives

φz(z)= dΦ(z)
dz

= 1p
z

(
dΦx(

p
z)

dz
− dΦx(−pz)

dz

)
= 1

2
p

z
(
φx(

p
z)+φx(−pz)

)
And finally, since the pdf for φx is Normal, we get

φz(z)= 1p
2π

e−z/2
p

z

which is a special case of the gamma distribution, with λ= s = 1/2.
Next, consider n random variables Z1, Z2 . . . Zn, which are independent

and each distributed as χ2 with one degree of freedom. The distribution of
Y = Z1+Z2+·· ·+Zn is called the chi-square distribution with n degrees

3 However unevocative you find the “degree of freedom” terminology, it is standard, so
you had best get used to it.
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Figure 3.7: Student’s t distribution for different values of n.

of freedom, denoted χ2
n (that is, Y ∼ χ2

n). Each of the Zi ’s has a gamma
distribution; the sum of n iid rv’s with a gamma distribution (all with the
same λ) is also gamma distributed, so the χ2 distribution with n degrees of
freedom is a gamma distribution with s = n/2 and λ= 1/2:

φ(x)= 1
2n/2Γ(n/2)

x(n/2)−1e−x/2

The expected value of the χ2
n distribution is n, and the variance is 2n.

We will see later that a useful quantity is the reduced chi-square, χ2
n/n,

which has an expected value of one, independent of n.
The χ2 distribution finds widespread application in model fitting. If we

have n observations oi, with predicted values ci and measurement errors
σi, then we can form the standardized residuals

r2
i =

(oi − ci)2

σ2
i

where the “standardized” part, as in the discussion in Section 3.3.1, comes
from scaling the residuals o− c by their errors. Then, if the residuals are
distributed according to a Normal pdf, the sum of squared residuals (ab-
breviated ssr),

∑
i r2

i , has a χ2
n distribution; the reduced ssr, which is the

ssr divided by n, would then be distributed as the reduced chi-square. So
we would hope that the reduced ssr would be close to one – and closer as n
becomes larger, as we discuss in more detail in Section 6.5.2.

3.5.3 Student’s t Distribution
If X is normally distributed (X ∼ N(0,1)), and Z ∼ χ2

n with Z and X inde-
pendent, then the distribution of X /

p
Z/n is the Student’s t distribution
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with n degrees of freedom.4 This has the pdf (Figure 3.7):

φ(x)= Γ[(n+1)/2]p
nπΓ(n/2)

(
1+ x2

n

)−(n+1)/2

so that, as with χ2, the shape factor is an integer. The t distribution is
symmetric about zero. As the number of degrees of freedom, n, approaches
infinity, the t distribution tends to the Normal distribution. The t distribu-
tion is used in testing whether samples have statistically distinguishable
means – we will, again, discuss this fully when we turn to hypothesis test-
ing in Chapter 6, specifically in Sections 6.4.2 and 6.4.3.

3.5.4 F Distribution
Next, suppose X is a random variable distributed as χ2 with m degrees of
freedom; then X /m is a similarly-distributed rv which has been standard-
ized to make its expected value unity. Take Z to be another rv, independent
of X , and distributed as χ2 with n degrees of freedom. Now consider the
random variable Y that is the ratio of X and Z when both have been nor-
malized by their degrees of freedom:

Y = X /m
Z/n

This variable will be distributed according to what is called the F distri-
bution with m and n degrees of freedom, denoted Fm,n. The probability
density function of this is given by

φ(x)= Γ[(m+n)/2]
Γ(m/2)Γ(n/2)

(m
n

)m/2 · xm/2−1
(
1+ m

n
x
)−(m+n)/2

for x over [0,∞). We do not plot this because of the complications of having
two variables. Like the t and χ2 distributions, the F distribution is used,
not as a pdf for modeling data, but rather in testing whether two sets of
data (or, more often, residuals) have meaningfully different variances. This
use comes from the rv Y being a ratio of reduced χ2’s; if the fit of two models
is equally good, we would expect the reduced χ2 for the residuals to be about
the same, and Y to be near one; if Y is not it may indicate than one model
fits better than the other.

4 The name “Student” is the pseudonym that F. S. Gosset used for his statistical pub-
lications, to avoid problems with his employer, the Guinness brewery.
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Figure 3.8: Rayleigh distributions of different widths.

3.5.5 Rayleigh Distribution
Another distribution is for a random variable that is the square of the sum
of squares of two Normal rv’s. An example would be the pdf of the ampli-
tude of a two-dimensional vector, each of whose components was normally
distributed – at the origin this amplitude is zero. We already derived this
pdf in Section 3.3.1; another derivation comes from realizing that the rv
for the square of the amplitude (call this Z) is distributed as χ2

2, with cdf
Φ0(x) = 1− e−z/2. Then, we can find the cdf of X = Z1/2 by the same kind of
procedure as we used in Section 3.5.2; taking Φ(x) to be the cdf of X , we
have

Φ(x)=Pr(X ≤ x)=Pr(Z ≤ x2)=Φ0(x2)= 1− e−x2

so that the pdf is

φ(x)= 2xe−x2 =
( x

c2

)
e−x2/2c2

This is the pdf of the Rayleigh distribution, which is used in the theory
of random walks. Note that if we add two orthogonal vectors described
by normal distributions, the expected value of the result is the origin; but
the pdf of the amplitude is not zero: the most probable amplitude does not
correspond to the most probable location.

3.6 “Normal” Distributions on Other
Intervals

We now turn to another class of distributions related to the Normal, though
only by analogy: these are pdf ’s for rv’s on other intervals than the entire
real line.
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Figure 3.9: Log-normal distributions with different shape factors.

Figure 3.10: Distribution functions for the von Mises distribution, for
different widths.

3.6.1 Log-Normal Distribution

Consider an rv given by Y = eX where X is Normal; Y is said to be log-
normally distributed, since X = lnY . The exponent maps the real line (for
X ) into the positive numbers (for Y ), which is appropriate for variables that
are intrinsically positive. The pdf (Figure 3.9) is

φ(x)= 1

s
p

2π

e−(ln(x))2/2s2

x
= 1

s
p

2π

e−(ln((x−l)/c))2/2s2

x− l
for x ≥ l

By the Central Limit Theorem, the Normal is appropriate if we have an
rv that is the sum of many others; but if we take exponentials, the sum
becomes a product. The log-normal is thus a possibility when we think
the process can be modeled as a series of multiplications (or divisions) of
positive rv’s. For this reason this pdf is sometimes used to model the distri-
bution of sediment grain sizes: the grains are produced by repeated split-
ting of bigger grains. Similarly, volumes of equally-magnetized materials
in rocks might arise from repeated divisions, so the log-normal is used for
the distribution of the magnetization of basaltic rocks.
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3.6.2 von Mises Distribution

The next distribution, though rarely discussed in elementary statistics, is
important for circular data: that is, directions in two dimensions, for
which the variable range is range [−π,π), with the value of the density
function being the same at each end. We can scale the range to make this
distribution apply to any variable which is modulo some number: for exam-
ple, the fractional part of a real-valued quantity, which would fall in [0,1).
The earthquake times of day in Section 1.2 are in this category.

For such rv’s the von Mises distribution (Figure 3.10) is analogous to
the Normal. Its pdf is

φ(x)= 1
2πI0(s)

escos(x−l)

where I0 is a modified Bessel function. Note that in this case the shape
factor modifies the width of the function, as the scale factor does for the
Normal. As s → 0, φ approaches a uniform distribution.

3.6.3 Fisher Distribution

The next distribution is, strictly speaking, for two dimensions, not one: but
the pdf has only one argument. This Fisher distribution is again anal-
ogous to the Normal, but this time for the domain of the random variable
being the surface of a sphere. So it is used for modeling directions on a
sphere, for example namely the distribution of poles found when directions
of rock magnetiation are interpreted as coming from dipole fields with dif-
ferent orientations; this is actually what the distribution was invented for,
The pdf is

φ(∆,θ)= s
4πsinh s

escos∆ = κ

4πsinhκ
eκcos∆

This expression omits a location parameter; or rather, makes it implicit
through the coordinates used for ∆, which is the angular distance from the
maximum of the pdf. The distribution is circularly symmetric about its
maximum, hence there is no dependence on the azimuthal variable θ. The
location of the maximum value, with ∆= 0, is also the expected value of the
rv. Both the Fisher and von Mises distributions have only a shape param-
eter, which determines the width; for the Fisher this is called the concen-
tration parameter. If κ= 0 the distribution is uniform over the sphere; as
κ→∞ becomes large, the pdf (for ∆ small) approximates a Normal rotated
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Figure 3.11: Pareto distributions for different shape factors.

about the maximum. This version of the pdf gives the probability density
over a unit angular area.5

A related distribution is the probability density per unit of angular dis-
tance from the pole, averaged over all values of θ; this pdf is

φ(∆)= κ

2sinhκ
eκcos∆ sin∆

This is analogous to the Rayleigh distribution (Section 3.5.5), and likewise
goes to zero at the origin. Neither of these distributions incorporates possi-
ble variation in azimuth, as might be caused by unequal variances; repre-
senting such variation is possible, but calls for more complicated pdfs.

3.7 Miscellaneous Distributions
We now discuss some distributions that are useful in geophysics but do not
seem to fall into any of the categories above.

3.7.1 Pareto Distribution
The Pareto is a curiosity, since it is both applicable to many geophysical
phenomena but few geophysicists have heard of it. Pareto-distributed vari-
ables range over half of the real line, though the range is [l,∞) not [0,∞).
The most notable feature of the Pareto is that the tail is much heavier than
it is for the Normal or the Exponential, so there is a much higher probabil-
ity of very large values. The pdf (Figure 3.11) is

φ(x)= slsx−(s+1)

5 Angular areas on the sphere are measured in steradians, with the area of the unit
sphere being 4π.
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where s ≥ 0; the location parameter determines the lower end of the range.
Another term for this pdf is “power-law distribution”, for the obvious reason
that the value, for large x, decreases as a power of x.

To see how this leads to a famous geophysical result, we first find the
cdf and its complement

Φ(x)= 1− lsx−s and 1−Φ(x)= (l/x)s

where the complement gives Pr(X > x), this being the way in which the
result was originally expressed by Pareto. Now suppose a dataset has n
occurrences of something, with the values having a Pareto distribution.
Then let n(x) be the number of occurrences greater than x; this number is
an rv with the pdf n[1−Φ(x)]= nlsx−s. Taking the logarithm of this gives

ln[n(x)]= ln(nls)− s ln(x) (3.9)

If we remember that earthquake magnitude M is suppsed to be a logarith-
mic function of earthquake size (ignoring for now what “size” refers to),
we see that equation 3.9 has exactly the form of the Gutenberg-Richter
relationship for the number of earthquakes with magnitude greater than
magnitude M:

log10(n)= a−bM

Thus the “b-value” of a set of earthquakes, something much discussed in
seismicity studies, is related to the shape factor for the Pareto distribution
of earthquake size.

Note that we can show the relationship (3.9) without binning the data,
If we sort the data values to produce rank-ordered data

x(1) ≥ x(2) ≥ x(3) ≥ . . . x(n−1) ≥ x(n)

then x(k) is a value such that k values are greater than or equal to this,
which means that n(x(k))= k. If the data have a Pareto distribution plotting
lnk against ln(x(k)) will give points that fall on a straight line. Showing k
against x (sorted) on a log-log plot, is sometimes called a rank-frequency
plot because it was first used in cases where x was the relative frequency of
occurrence of words in a body of text.6 You should be aware, though, that
such a plot can mislead you into thinking that data are Pareto-distributed
even when they are not [Clauset et al., 2009].

6 This plotting method was pioneered by G. K. Zipf, and the Pareto distribution is
sometimes called “Zipf ’s law”.
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3.8 A General Method for Producing
Random Deviates

We now describe a general method for constructing random variates for any
pdf. If the inverse of the cumulative distribution is easy to compute, we only
need to apply it to uniformly distributed rv’s; but what if this computation
is difficult? Then we can use a general, though less efficient, procedure
called the rejection method.

Suppose we want to produce random variates with a pdf φ1(x). First,
find a function f such that f (x)≥φ1(x) wherever φ1 > 0, with f (x)≥ 0 else-
where. Since f (x) is everywhere zero or positive, normalizing it creates a
pdf φ2(x):

φ2(x)= f (x)∫
f (x)dx

(3.10)

where the limits of the integral are whatever is appropriate for φ1. We
also choose f so its inverse uses only standard functions, so we can easily
generate random variates with pdf φ2(x).

Having found f (x), we generate two random variables: F, distributed
according to φ2 and U , uniformly distributed between 0 and 1. If

U ≤ φ1(F)
f (F)

(3.11)

we accept F as one of our X ’s; if not, we find another F and U , and repeat.
The probability of getting X within a specified range is

Pr[x ≤ X ≤ x+δx]=Pr[x ≤ F ≤ x+δx| accept]

which by Bayes’ theorem is

Pr[accept|x ≤ F ≤ x+δx]Pr(x ≤ F ≤ x+δx)
Pr[ accept]

(3.12)

Now, given the way we defined acceptance in equation (3.11), we have

Pr[ accept|x ≤ F ≤ x+δx]= φ1(F)
f (F)

while the total probability of getting an acceptance is this integrated over
all F; since ∫

φ1(x)dx = 1
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Figure 3.12: In the left panel, the dotted line shows a Gaussian pdf;
the solid red line is the mixture pdf we wish to generate variates for,
and the dashed line is the function used to produce variates for rejec-
tion. The right panel compares the target pdf (again in red) with a
histogram of 50,000 variates produced using the rejection method.

this is
1∫

f (x)dx

Putting all these expressions into equation (3.12), we find

Pr[x ≤ X ≤ x+δx]= φ1(X )
f (X )

φ2(X )
∫

f (x)dx =φ1(X )

by the definition (3.10). The closer we can get f (x) to φ1(x), the smaller the
fraction of trial values that will be rejected.

For example, consider generating random variables for the pdf shown
in Figure 3.12, which is

φ1(x)= .5N(0,1)+ .5
(

e−|x|

2

)
This is a combination of two pdf ’s (what is known as a mixture model),
and is designed to be roughly Gaussian near the center, while having heav-
ier tails. A suitable function for f (x) is 1.33× e−|x|; it is easy to gener-
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ate variates appropriately distributed for this pdf,7 and it is close to φ1(x),
which minimizes the fraction of variates that are not accepted. Figure 3.12
also shows the result for 50000 generated variates, each of which took an
average of 3×1.34 calls to ran to produce. The pdf matches the histogram
very well. Thinking in terms of histograms may help you to see how the
method works: we can think of starting with data whose histogram is that
of a double exponential, and then trimming each bin by the ratio of φ1/ f .

7 Take − ln(1−U) where U is a uniform variate to get an exponential distribution, and
to get a two-sided exponential distribution take a second uniform variate, and change the
sign of the exponential variate if it is less than 1/2.


