
CHAPTER 5

PARAMETER ESTIMATION

5.1 Introduction

Perhaps the most common data analysis in geophysics is estimating some

quantities from a collection of data. We gave an example in Section 1.1.2,

where we sought a good value for the distance between two points. Section

4.9 gave another example: we assumed that measurements of distance x

for a falling body at different times could be modeled by a random variable

Yi ∼φ(x− 1/2gt2
i ) (5.1)

with φ being some known pdf, assumed the same for all the measure-

ments. The point estimation problem would then be, given actual data

x1, x2, . . . , xn, at times t1, t2, . . . , tn, to find the “best” value of the param-

eter g – and, though this is a more subtle problem, what range we think

it might lie in. Note that because data have some definite value, we treat

them as conventional variables and represent them by lowercase letters

such as x. Also note that we use lowercase n for the number of data, in part

to distinguish this from N, the dimension of a multivariate rv.

5.2 A Simple Example: Three Sets of

Estimates

We start with the example from Section 1.1.2, We assume that the n data,

x1, x2, . . . , xn, can be modeled by a random variable X with a single pdf;

it is just because X is random (varying) that we can use one X to model

many xi. We take the pdf of X to be one that has only two parameters: the

location l and the spread c:

X i ∼φ

(

x− l

c

)
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96 Chapter 5. Parameter Estimation

so our goal is to estimate these two parameters. We start by describing

some conventional (and often useful) ways to do so.

5.2.1 The Method of Moments

One possible estimate of l is the arithmetic average, or mean, often called

the sample mean:1

x̄=
1

n

n
∑

i=1

xi analogous to µ=
∫∞

−∞
xφ(x) dx (5.2)

where the equation after “analogous to” describes the similar operation, but

performed on a pdf – in this case, to get the first moment (expected value).

If we use the same analogy for the second moment, we get, as an estimate

of the variance, the sample variance:

s2 =
1

n

[

n
∑

i=1

(xi − x̄)2 −
1

n

(

n
∑

i=1

xi − x̄)

)2]

analogous to σ2 =
∫∞

−∞
(x−µ)2φ(x)dx

(5.3)

The expression for s2 contains two summations; while the second one would

be identically equal to zero in an exact computation, using it in a computa-

tion subject to roundoff error improves the accuracy for large n [Chan et al.,

1983].

Equations (5.2) and (5.3) are examples of an estimation procedure called

the method of moments. We showed in Section 2.12.1 that a pdf (includ-

ing its parameters) is completely specified if we know all its moments. So,

in principle, we can estimate the pdf by estimating the sample moments

from the data, which is computationally easy. But in practice we cannot

find the moments exactly; unless we are quite sure of the form of the pdf,

this procedure can be very misleading. We do not recommend it as a way

of finding parameters directly from data, though it can be valuable, as we

will see below when we come to the Monte Carlo and bootstrap methods.

The GPS data illustrate the danger of applying this procedure blindly,

since equations (5.2) and (5.3) give x̄ = −0.0234 and s2 = 0.407 (s = 0.638).

1 The term “sample” comes from the idea that there is a large (potentially infinite)

collection of random variables, from which we have chosen a sample of n values. However

appealing this image may be for the many cases in which such a population exists, the

population concept is not appropriate for many parts of geophysics. We shall continue to

say, instead, that we model data by random variables, and use the idea of a population as

little as possible.
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If we compare the distribution of the data (Figure 1.3) with the moments

we may feel that something has gone badly wrong, at least with the second

moment, which seems much too large. There is a simple reason for this:

almost all of the data, as shown in Figure 1.1, are between −1 and 1; but

there is one value at −10.32, one at −1.56, and one at 6.34. Including these

in equation (5.2) does not much affect the sample mean; but these three

outlying values increase s2 substantially.

5.2.2 Order Statistics

Are there estimation procedures that are less affected by the values of a

very small fraction of the data? The answer is yes; we have already alluded

to such procedures, the technical term for which is robust. A good many

robust procedures start by sorting the data into increasing order:

x(1) ≤ x(2) ≤ x(3) . . . x(n−1) ≤ x(n)

where the parentheses on the subscripts is the standard notation for a

sorted set of values. Procedures that make use of sorted data are called

order statistics.2

One order statistic, which provides an estimate of the location parame-

ter l, is the sample median

xmed = 1/2[x(n/2) + x(n/2+1)] analogous to

∫xmed

−∞
φ(x)dx=

∫∞

xmed

φ(x)dx

where the definition given for xmed is for n even (true in the case of these

GPS data, with n = 386); for n odd, xmed = x(n/2). For the spread, we can

use the sample interquartile range, which is just x(0.75n) − x(0.25n); again,

this is analogous to the definition (Section 2.7) for the pdf. For a normal

distribution find that the IQR is 1.349σ. For the GPS data the IQR is 0.14,

giving 0.10 for the estimate of the equivalent of σ. This is a much more

satisfying representation of the spread in Figure 1.1.

5.2.3 Trimmed Estimates

While the median and IQR are certainly unaffected by a few outlying val-

ues, it is fair to ask if these procedures make full use of the data. For

2 As we discuss in more detail in Section 5.3.1, the word “statistic” has multiple mean-

ings, largely for historical reasons; here it is equivalent to “estimate”.
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example, in finding the median, the actual values of all but one or two data

are irrelevant, except to set the midpoint. So an intermediate approach is

sort the data, remove data from the two ends of the sorted set, and com-

pute the mean and variance using what is left: these estimates are called

the trimmed mean and trimmed variance. The 10% trimmed mean and

trimmed variance are

x̄10% =
1

0.9n

0.95n
∑

i=0.05n

x(i) and s2
10% =

1.64

0.9n

0.95n
∑

i=0.05n

(x(i) − x̄10%)2

where the constants (0.9 and 1.64) apply for large n and a Normal pdf.

For the GPS data x̄10% = −0.0125 and s2
10%

= 0.112, which are close to the

estimates from the median and IQR.

But, all this is ad hoc, and leaves us unable to decide if one method is

better than another, either in general, or for a particular case. So we now

discuss how to compare different estimators.

5.3 Three Ways to Test an Estimator

We have to begin with some terminology. An estimator is a procedure for

finding the value of some parameter; we have described six such procedures

for two parameters. When applied to data, an estimator produces an esti-

mate. Using these terms, we would say that our aim is to find methods

of evaluating the relative performance of different estimators. We describe

three such methods: the classical one, using analytic procedures; Monte

Carlo methods; and the bootstrap. (The reasons for these cryptic names

will become clearer). Each method has advantages and disadvantages. To

make the discussion more concrete, we continue to use the GPS data, and

consider estimators for the location and spread of the pdf that we use to

model these data.

5.3.1 The Classical Method of Evaluating a Statistic

The title of this subsection may seem confusing: we were just promising

to evaluate estimators, and now are talking about “a statistic”, which at

first sight would appear to be the singular of the field, statistics, we are

studying. But in fact a statistic3 is yet a particular kind of random variable:

3 Blame where blame is due: this unfortunate terminology is due to R. A. Fisher,

whose policy seems to have been never to coin a name from Greek or Latin if a common
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one that we use in evaluating an estimator.

Suppose that we have n data x1, x2, . . . , xn that we model by n random

variables X1, X2, . . . , Xn, which are described by their joint probability dis-

tribution:

φ(x1, x2, . . . , xn,θ1, θ2, . . . , θp)

where the values of the parameters θ1, θ2, . . . , θp are to be estimated from

the data. Note that we use lower-case letters (for example, x1) to denote

both data and the arguments to the pdf for the X ’s. Since the observations

are not used as arguments in the pdf, this should not cause confusion.

You need to appreciate that the above problem, of estimating the θ’s

given the x’s, is quite different from the problems we have studied in prob-

ability theory. In those problems, we assume we know the parameters

θ1,θ2, . . . ,θp and can use the function φ(x1, x2, . . . , xn, θ1, θ2, . . . , θp) to tell us

the probability of obtaining values of the random variables X1, X2, . . . , Xn

that fall within specified ranges.

In estimation we instead know the data of x1, x2, . . . , xn, and try to make

statements, perhaps using the pdf φ(x1, x2, . . . , xn, θ1, θ2, . . . , θp) about the

“best values”, and range of reasonable values, for the different parameters

θ1, θ2, . . . , θp. Estimation is thus a kind of “inverse” to probability theory –

except that in this framework the parameters are not random variables, so

we cannot make probability statements about them.4

How do we express what the data tell us about the parameters, when

the latter are not random variables? We introduce a random variable that

“looks like” a parameter. To keep the discussion as simple as possible, as-

sume that we have only one random variable X , and one parameter θ,

so the pdf of X is φ(θ). We assume that X is a model for all the data

x1, x2, . . . , , xn; again, there can be n data even if there is only one X .

Next, consider some estimator (for example the average, the median, or

the trimmed mean); this will supply us, given data, with a value that is our

estimate of the parameter θ. Now, imagine applying this estimator (which

is just an algorithm), not to the data, but to the random variable we are

English word could be used instead – the difficulty being that such words already had

a meaning somewhat at odds with the new one. However, considering such coinages as

“homoscedasticity”, perhaps his choice was understandable.
4 We say “in this framework” because there is another way to look at the problem,

namely the Bayesian approach, in which we take the parameters to indeed be modeled

by random variables, with the meaning of the associated probabilities usually being our

degree of belief in a particular range of values. This methodology certainly deserves more

than a footnote!
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using as a model. Performing this algorithm on n random variables X will

give us a new random variable, symbolized by θ̂, and called the statistic

corresponding to θ. The pdf of this is a function of θ̂(X1, X2, . . . , Xn); this

is called the sampling distribution5 of θ̂,6 The pdf for θ̂(X1, X2, . . . , Xn)

depends on all three of

1. The way the estimate is computed: that is, the estimator.

2. The pdf of X , the rv we assume models the data.

3. And the number of data n.

Because the statistic is a random variable, but is tied to something we do

with data, it is the basis for evaluating different estimation procedures.

And finally, we symbolize the estimate, which is the result of apply-

ing the estimation procedure to actual data, by θ(x1, x2, . . . , xn); this is a

conventional variable.

To see how the statistic is used to evaluate an estimate, suppose we

have n data, and assume that they can be modeled by an rv X whose pdf

is a Normal distribution with mean µ and variance σ2. Note that we do

need to know the functional form of the pdf, but do not need to know what

the values of µ and σ actually are. If our estimator is given by the aver-

age (equation (5.2), we apply it to the n rv’s X to produce another random

variable, the statistic µ̂:

µ̂=
1

n

n
∑

i=1

X i

All the X i ’s, by assumption, have the same pdf and are independent. Then,

by the results of Section 2.12, the pdf of the rv7 µ̂ is the convolution of

n normal pdf ’s, divided by n: which is another Normal pdf with expected

value µ and variance σ2/n, So, if we are justified in our assumption that we

can model the data by random variables with the normal distribution, we

have found that: (1) the expected value of the statistic is equal to the actual

value of the parameter; and (2) the variance of the statistic decreases as the

number of data, n, increases.

Suppose instead we used the median as our estimator. If we apply the

procedure for finding the median to the n rv’s X i (again with a Normal

5 This term comes from the idea of sampling from a population.
6 Notation alert We use θ̂ to denote both a random variable and the function that

produces its pdf; what sets these apart is their arguments.
7 That is, the sampling distribution of this statistic.
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distribution) we get a different random variable, µ̂med. It can be shown the

expected value of µ̂med is also µ, while the variance is approximately

V [µ̂med]=
πσ2

2(n+2)

[

1+
π

2(n+4)

]

(5.4)

which for large n is 1.57 times the variance of the sample mean, µ̂.

You might think that both estimators look satisfactory, since for both

the expected value of the statistic is the actual value of the parameter,

while both variances go to zero as n goes to infinity. This view is correct,

but before exploring these properties further in Section 5.5 we describe

some other ways to determine the behavior of an estimator by finding the

behavior of the associated statistic.

5.3.2 Monte Carlo Methods

A terse description of the method of the previous section would be, for n

random variables with known pdf’s (assumed to model the data), find the

pdf of some combination of them corresponding to an estimator. Doing this

analytically, as we did for the average, gives the most rigorous result; but if

we cannot, we can replace analysis with computation, using what is called

a Monte Carlo evaluation. The term comes from the famous gambling

center. There are actually lots of Monte Carlo methods; we refer only to

those in statistics. We should also note that it is common to call any method

that uses computed random numbers a Monte Carlo method, which makes

the bootstrap (discussed below) such a method. We have taken a more

restricted meaning here.

The basic Monte Carlo procedure is simple:

1. Generate n random variables with the assumed pdf.

2. Compute an estimate (call it θ̂1) from these imitation data.

3. Repeat steps 1 and 2 a total of k times, to get estimates θ̂1, θ̂2, . . . , θ̂k.

4. Find the first and second moments of the θ̂’s:

θ̄ =
1

k

k
∑

i=1

θ̂i σ̂2
θ =

1

k

k
∑

i=1

(θ̂i − θ̄)2

and take these to be the first and second moments of the pdf of the statistic

θ̂. We may be interested in other properties of the pdf (e.g., the bounds
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within which 95% of the mass lies); these can also be found from the θ̂’s.

Note that we can be certain that our imitation data X have the distribution

we want – after all, we computed them.

The parallel with the analytic procedure should be clear:8 we assume

we can represent the data by random variables, from which we form a

statistic. But rather than trying to find the distribution of this statistic

analytically, we do it through lots of computation, generating a large num-

ber of (simulated) statistics and then looking at their distribution.

How does this method compare with the classical approach?

1. The assumptions involved are the same: we assume the pdf of the rv’s

used to model the data, an assumption that may or may not be valid.

(In the next section we see how to eliminate this assumption).

2. Monte Carlo evaluation demands many fewer analytical skills. Given

an algorithm for generating appropriate random variables, and an-

other for finding the estimates from data, we can proceed – and we

must have the latter, else how could we compute an estimate? Given

a novel estimation procedure Monte Carlo methods may often be the

quickest way to find out the sampling distribution (the pdf) of the

statistic.

3. However, replacing the analytical determination of the pdf by step (4),

finding it empirically, can be a disadvantage: we may need to have k

very large to determine this pdf well. If we only want the expected

value and variance (the first two moments) a relatively small value of

k will usually suffice. But sometimes we want to reliably determine,

for example, the limits within which 95% of the sampling distribution

lies; since this is making a statement about the tails of the pdf, we

need a large value of k to do so reliably.

But the biggest problem with Monte Carlo methods is that while they

can answer the question, “How good is this estimator?”, they cannot answer

the question, “Is this estimator the best possible (optimal)?” We still need

analytical methods to answer this second question.

We certainly suggest that you consider using Monte Carlo methods –

but they should, in general, be your second choice, after some attempt to

find an analytical result for the sampling distribution of the statistic. If

8 And here the idea of sampling from a population makes perfect sense.
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Figure 5.1: Histograms of the statistic µ̂, the estimate of the mean,

for Monte Carlo simulations of (left to right) the average, the median,

and the 10% trimmed mean. The simulated rv’s have a mean of −0.01

and a variance of 0.0144; remember, that what is being shown here

is not that (the distribution of the data), but of the statistic, µ̂, for

n = 386.

you have derived your own analytical result, we strongly suggest doing a

Monte Carlo computation as a check!

Figure 5.1 shows an example of a Monte Carlo calculation, for the sam-

ple mean, median, and 10% trimmed mean, using simulated normal ran-

dom variables with the mean and standard deviation taken from the trimmed

estimates for the GPS data. As expected, the distribution of the sample me-

dian is somewhat broader than that of the sample mean; in fact, the ratio

of the variances is 1.55, very close to the 1.57 expected for this large a value

of n. The Monte Carlo method easily handles the 10% trimmed mean, the

variance of which is nearly the same as the σ2/n of the sample mean.

5.3.3 Lifting Ourselves by Our Bootstraps

Our final procedure for evaluating an estimator is also computationally in-

tensive, and very like the Monte Carlo procedure, with one big exception:

instead of assuming we know the distribution of the random variables that

we use to model the data, we assume that the data themselves can be used

as the model random variables – so we do not need to compute such vari-

ables at all. This seems so much like getting something for nothing – or

at least, more than we ought to get – that it provoked the inventors of the
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method to refer to the image used as the title of this section. For this reason

such an approach is known as a bootstrap method, a bit of jargon now

firmly embedded in the statistical lexicon.

To find the sampling distribution of a statistic using the bootstrap we

do the following:

1. Generate n random variables, whose distribution is uniform over the

integers from 1 to n; denote these variables by j1, j2, . . . , jn. Note that

some of these n variables will, almost certainly, be identical – since

otherwise we would have managed to select n values from a uniform

distribution that happen to include each possible value once and once

only.

2. Use, as imitation random variables, the data indexed by these inte-

gers (that is, x j(i)); again, some of these values will be the same data

values, taken more than once – for which reason this procedure is

called sampling with replacement. (Imagine taking data values out

of a container at random, and putting each one back after you record

it).

3. Compute an estimate (call it θ̂1) from these imitation random vari-

ables.

4. Repeat steps 1 through 3 a total of k times, to get estimates θ̂1, θ̂2, . . . , θ̂k.

5. Find the first and second moments of the θ̂’s, or whatever other prop-

erty we are interested in.

The parallel with the Monte Carlo method should be clear; like that,

the bootstrap can be done only if we can perform significant amounts of

computation – for which reason these methods were developed relatively

recently. The method is certainly straightforward, and its major strength

is the paradoxical feature that we do not need to select a pdf – this is done

for us, as it were, by the data; But the bootstrap has the same disadvan-

tage as Monte Carlo: a large number of iterations (large k) may be needed

to determine some aspects of the sampling distribution. If the number of

data n is not large, it is possible that the k we need might may be large

enough to exhaust all possible arrangements of the data – in which case

the randomness of the selection is less clear.

Figure 5.2 shows the bootstrap applied to the GPS data, with k = 4000,

for the same three estimators as were used in the Monte Carlo procedure
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Figure 5.2: The sampling distribution of the statistics correspond-

ing to three estimators, found by applying the bootstrap to the actual

GPS data. The histogram for the median looks odd because the orig-

inal data, one of which will form the median value, are only given to

multiples of 0.01; so every other bin is empty.

in Section 5.3.2. The presence of a few outlying values makes a huge dif-

ference in the behavior of the different statistics: the mean is much more

variable than either the median or the trimmed mean. The lowest vari-

ance is for the 10% trimmed mean, which has 0.72 of the variance of the

median. The bootstrap method shows clearly that the trimmed mean is the

preferred estimator given the actual data distribution. The Monte Carlo

simulation in Section 5.3.2 shows that even if the data were Normal, the

trimmed mean has a variance nearly the same as that of the mean – so

there is no disadvantage to the trimmed mean for data without outliers,

and a clear advantage if these are present.

The biggest danger in using the bootstrap is that the data might not in

fact obey one of the restrictions that are required for the method to work.

For example, the theory requires that the values be independent – some-

thing easy enough to assure if we are creating random variables on a com-

puter, but less easy to be sure about for actual data.9

What we have described here as “the bootstrap” is actually just one

kind of bootstrap method; there are others. For example, we might use the

Monte Carlo method of Section 5.3.2; but, instead of assuming a priori the

9 The GPS data are not independent, though not so much so that the results given

here are vitiated.
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parameters of the pdf for our computed random variates, estimate them

from the data10 This is called a parametric bootstrap since we are us-

ing the data, though not directly but through a simulation using a known

pdf but parameters determined from the data. This approach might be

preferable to the regular bootstrap if we had so few data that the number

of simulations would be so large as to exhaust the possible combinations of

the data.

5.4 Confidence Limits for Statistics

So far we have looked only at the first two moments of the sampling dis-

tribution of a statistic: that is, at the expected value E [θ̂] = θ̂ and the vari-

ance V [θ̂]. If we define σ̂θ
def=

√

V [θ̂], then it is conventional to say that our

estimate θ(~x) has a standard error of σ̂θ, and we write the result, again

conventionally, as being θ± σ̂θ.

This is often interpreted as being a statement about the range within

which θ, the true value, is likely to fall – but if we look at this statement

carefully, we can see that this is nonsense. Any statement that includes

something like “is likely” is a probabilistic one; but we cannot make prob-

abilistic statements about something (θ) that is represented by a conven-

tional variable and not a random one. Furthermore, a statement like “x±σ”

is not even a statement of probability, because it contains no information

about a pdf besides the first two moments.

How can we make this more sensible and more precise?

The answer is what are called confidence limits. These arise by broad-

ening our view from the question of finding a single value for a statistic

(a point estimate of a parameter), to finding the probable range for the

statistic (an interval estimate). Note that we said “a statistic” so we can

talk about probability, since a statistic is a random variable.

To make the discussion more concrete, suppose that the sampling dis-

tribution of θ̂ is normal. Then, 0.95 (95%) of the area under the pdf will lie

between ±2σ̂θ, relative to the center of the pdf. But, the center of the pdf

is at θ̂ = E [θ̂(~X )]. Let us further assume that E [θ̂] = θ (that is, the statistic

is unbiased – we discuss this in more detail in the next section). Then the

probability statement we can make is

Pr[θ−2σ̂θ ≤ θ̂ ≤ θ+2σ̂θ]= 0.95 (5.5)

10 Actually, we did this in our Monte Carlo example.
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Figure 5.3: On the left, the shaded area under the pdf is 0.95 of the

probability, and so defines the length of the 95% confidence interval.

The right-hand plot shows the intervals we might get from 50 differ-

ent data sets: 95% of them include the true value.

This is not a statement about what interval the true value θ will be in, but

rather a statement about how often the random variable θ̂ will fall into an

interval around the true value θ. This is not very satisfying, since we do

not know θ.

But, we can make a probabilistic statement, by instead considering the

random interval [θ̂−2σ̂θ, θ̂+2σ̂θ], which is called a 95% confidence in-

terval. Then equation 5.5 implies, through the distribution of θ̂, that this

interval will cover (that is include) the true value 95% of the time; we write

this as

Pr[θ̂−2σ̂θ ≤ θ ≤ θ̂+2σ̂θ]= 0.95 (5.6)

You might think that in this equation we have just done what we said we

shouldn’t: making a probabilistic statement about θ, by giving a proba-

bility that it lies between two limits. However, there is in fact no problem

(though some chance of confusion) because the limiting values are now ran-

dom variables, not conventional ones. Expressions like equation (5.6) are

standard in the statistical literature; they should be taken to be a prob-

ability statement about an interval around θ̂, not a statement about the

probability of θ.11

Figure 5.3 illustrates the concept of a random interval. On the left we

show a pdf for the random variable with the 95% range shaded in; this

range gives the size of the random interval. On the right we show 50 exam-

ples of an estimate, with the error bars indicating the range of the random

11 We should note one slight ambiguity in the idea of a confidence interval: the interval

is not uniquely determined by the requirement that it contain a certain fraction of the

probability, since this is possible for different limits – so usually the interval is taken to be

the shortest one that satisfies the probability requirement.
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interval at the same level of confidence (0.95, or 95%), along with the true

value. We see that three of the intervals do not cover this value; we would

expect two to three. Given a single dataset from which we find a single es-

timate and confidence interval, it is relatively improbable that the interval

would not include the true value: so we have high confidence that the true

value lies within the interval,

Having explained what a confidence interval is, we now explain how to

find it. A random interval is defined by two values for the random variable,

θ̂, θ̂1 < θ̂2, such that, for the given pdf of θ̂,

Pr[θ̂1 ≤ θ ≤ θ̂2]= 1−α

For a 95% interval, α= 0.05: in general a smaller α means a longer interval.

Again, this is a statement about the random interval [θ̂1, θ̂2] compared to

the true value θ, and one that can be broken down into two statements of

the reverse case, namely that θ̂ lies outside an interval:

Pr[θ ≤ θ̂1]=α1 Pr[θ ≥ θ̂2]=α2 with α1 +α2 =α (5.7)

Usually we take α1 = α2, and choose the shortest interval consistent with

the probability statement 5.7. Let the pdf for θ̂, be φθ̂, with cumulative

distribution function Φθ̂; if the pdf is symmetric about the expected value

E [θ̂], the confidence limits will be given by the inverse of the cdf, and the

interval will be

[Φ−1(0.5)+Φ
−1(α/2),Φ−1(0.5)+Φ

−1(1−α/2)]

where we have used the result that for a symmetric pdf, the expected value

has Φ(E (θ̂)) = 0.50. (We can add the values since Φ
−1(α/2)< 0 for a normal

distribution).

5.4.1 Confidence Limits for the Mean, Variance

Unknown

We now use these results to find the confidence limits for the mean when

the variance is not known, but has to be estimated. We have to assume a

pdf for our data, and choose the Normal distribution – which, you should by

now appreciate, is both a common assumption and a potentially risky one.

We assume the pdf of the data has mean µ and variance σ2; we do not know

these, but the whole point of our derivation is to make this irrelevant. We
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use equations (5.2) and (5.3) to estimate the mean x̄ and the variance s2. As

we described in Section 5.2.1, our assumptions lead to the result that the

statistic µ̂ for x̄ is distributed as a normal random variable with variance

σ2/n.

The statistic for s2 is related to the sum of the squares of a set of

normally-distributed random variables, and so turns out to be distributed

as χ2
n−1

: a chi-squared variable with n−1 degrees of freedom. To show this

we first note that the variable

1

σ2

n
∑

i=1

(X i −µ)2 =
1

σ2

n
∑

i=1

[(X i − µ̂)+ (µ̂−µ)]2 (5.8)

is exactly a sum of squares of normal random variables, and so will be

distributed as χ2
n. But if we compute the square in equation (5.8), the cross-

product term
n
∑

i=1

2(X i − µ̂)(µ̂−µ)

vanishes by the definition of µ̂, and equation (5.8) becomes

1

σ2

n
∑

i=1

(X i −µ)2 =
1

σ2

n
∑

i=1

(X i − µ̂)2 +
n(µ̂−µ)2

σ2

It can be shown that µ̂ is independent of any of the X i ’s. The second term

on the right-hand side is the square of a normally distributed rv, and so is

distributed as χ2
1
. The left-hand side is distributed as χ2

n. The sum of a ran-

dom variable distributed as χ2
n−1

, and an independent variable distributed

as χ2
1
, is distributed as χ2

n; this is somewhat obvious from the construction

of χ2 from sums of rv’s. Therefore, the distribution of

σ̂2

σ2
=

1

σ2

n
∑

i=1

(X i − µ̂)2

is, as stated before, χ2
n−1

.

Having established the distribution of the sample mean and variance,

we construct a scaled (“standardized”) variable by subtracting the true

mean (we don’t know this, but don’t worry), and scaling by the square root

of the estimated variance divided by n.12 The result,
x̄−µ
s/
p

n
, has the sample

distribution of the random variables

µ̂−µ

σ̂/
p

n
=

(µ̂−µ)

σ/
p

n

[

σ̂2

σ2

]−1/2

12 This is sometimes called Studentizing.
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The first part of this is distributed as a normal random variable with zero

mean and unit variance. The second part (inside the brackets) is dis-

tributed as n−1 times the square root of χ2
n−1

. By the results of Section

3.5.3, the product has the pdf of Student’s t distribution with n degrees

of freedom. We may use the cdf of this distribution to produce confidence

limits for the sample mean, using only the sample mean and the sample

variance.13 The t distribution is symmetric, so the confidence limits are

also. We can write

Pr

[

Φ−1(α/2)≤
µ̂−µ

σ̂/
p

n
≤Φ

−1(1−α/2)

]

= 1−α

giving the confidence interval expression

Pr
[

µ̂+ (σ̂/
p

n)Φ−1(α/2)≤µ≤ µ̂+ (σ̂/
p

n)Φ−1(1−α/2)
]

= 1−α

We may interpret this as a statement that the confidence limits are ±σ̂Φ−1(1−
α/2)/

p
n. The inverse cdf values are what are usually given in a “Table of

the t Distribution”.

Since finding confidence intervals requires that we know the complete

pdf of the sampling distribution, not just the first and second moments,

they are more difficult to determine than the variance – though if we can

demonstrate (or choose to assume) that the sampling distribution is Nor-

mal, the variance and mean determine the pdf, and so give the confidence

limits directly.

We conclude with two points about how to present confidence limits in

tables and plots. It is conventional to always assume that the ± values

in tables refer to “standard errors”, that is to say
p
σ2. There is a further

implication that the pdf that goes with these numbers is Normal. If your

± values are confidence limits, you should say so. There is no universal

convention for what error bars in a plot refer to; so you should always state

what your error bars mean. We suggest that if possible you should show

95% confidence limits, since the purpose of the error bars is to indicate

where the true value almost certainly is.

5.5 Desirable Properties for Estimators

Next we consider how to evaluate different estimators: what properties are

especially desirable, and which ones are less important.

13 This what the Student’s t distribution was invented for.
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5.5.1 Unbiasedness

We say that an estimator is an unbiased estimator14 for θ if the expec-

tation of the statistic θ̂ is θ: that is, if E (θ̂) = θ for all θ. If this is not so,

then the estimator is biased, and the bias is b(θ̂) = E (θ̂)− θ. Usually, n,

the number of data, affects the pdf of θ̂, including its expected value, and

hence also affects the bias b(θ̂). If b(θ̂) → 0 as n → ∞ then θ̂ would be

called asymptotically unbiased, where “asymptotically” refers to what

happens as the number of data increases to infinity. Many theorems about

estimators are about their asymptotic properties; this is not because we

necessarily have large amounts of data, but because asymptotic properties

are a minimum expectation: we would like our estimate to get better as we

get more data. An estimator that was (for example) biased asymptotically

would not be a good one, though a biased estimator may be useful so long

as it is asymptotically unbiased.

Of the estimators described in Section 5.2, x̄ is an unbiased estimator

for µ, since

E [x̄]= E

[

1

n

n
∑

i=1

X i

]

=
1

n

n
∑

i=1

E [X i]=
1

n

n
∑

i=1

µ=µ

14 Terminology alert: strictly speaking we should say “unbiased statistic,” but we blur

(as is common in the statistical literature) the distinction between an estimator and the

statistic it produces.
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but this is not true for s2:

E [s2]=
1

n
E

[

n
∑

i=1

(X i − x̄)2

]

=
1

n
E

[

n
∑

i=1

(X2
i −2X i x̄+ x̄2)

]

=
1

n
E

[

n
∑

i=1

(X2
i −2µX i +µ2+ x̄2 +2µX i −2X i x̄−µ2)

]

=
1

n
E

[

∑

i

(X i −µ)2 +nx̄2 +2µ
∑

i

X i −2
∑

i

X i x̄−nµ2

]

=
1

n
E

[

∑

i

(X i −µ)2

]

−E [x̄2 −2µx̄+µ2]

=
[

1

n

∑

i

(X i −µ)2

]

−E [(x̄−µ)2]

=
1

n
V [

∑

i

(X i −µ)]−V [x̄−µ]

=σ2 −
σ2

n
=σ2

(

1−
1

n

)

(5.9)

So s2 is always biased to be smaller than σ2, although it is asymptotically

unbiased. It is then obvious that the unbiased estimator for σ2 is

ŝ2 =
1

n−1

n
∑

i=1

(xi − x̄)2

But equally obviously, the bias in equation (5.9) is small unless n is small

– in which case ŝ2 will have such a large variance that the bias will not

matter much.

5.5.2 Relative Efficiency

An efficient estimator is one that produces an efficient statistic θ̂A ,

relative to some other statistic θ̂B. What “efficiency” means in statistics

has nothing to do with its meaning in engineering or physics; rather, the

relative efficiency of estimators is given by the ratio of the variances of the

sampling distributions of the two statistics. Assuming that the statistics
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θ̂A and θ̂B are both unbiased, the relative efficiency is

Relative efficiency=
[

V (θ̂A)

V (θ̂B)
×100

]

where the factor of 100 is conventional so that the result can be given as a

percentage.

If the relative efficiency is less than 100%, V (θ̂A) < V (θ̂B); and clearly

we should prefer the more efficient estimator θ̂A, since the probability that

θ̂A lies in some interval around the true value θ (say, in [θ−ǫ, θ+ǫ]) will be

higher than the probability of finding θ̂B (which is more spread out) in the

same interval.

Can we find estimators that make V (θ̂) arbitrarily small? No, because

there is a lower bound to the variance of the sampling distribution of any

unbiased estimate of a parameter θ. We discuss the value of this lower

bound (which is given by the Cramer-Rao inequality) in Section 5.6.1. This

lower bound allows us to evaluate the absolute efficiency of an estimator;

if this is 100%, meaning that the variance of θ̂ achieves this lower bound,

the estimator is called a fully efficient estimator for θ, or alternatively a

Minimum Variance Unbiased Estimator (MVUE).

For data modeled by a Normal distribution, equation 5.4 shows that

the sample median is a less efficient estimate of the mean than the sample

mean is – a result confirmed by the Monte Carlo simulations in Section

5.3.2. However, this result depends very much on the pdf we assume for

the random variables that we use to model the data. To take an extreme

case, if the appropriate pdf was a Cauchy distribution, the variance of x̄

would be infinite, but the variance of the sample median is finite, namely

V [xmed]= (4π2)/n: so the median is infinitely more efficient.

For the slightly heavy-tailed distribution of the GPS data, the bootstrap

evaluations of Section 5.3.3 show that the median is much more efficient

than the sample mean – and the 10% trimmed mean is even better. This

shows, again, that in practice the most important behavior of an estimator

is not full efficiency under restricted assumptions, but nearly full efficiency

under less restrictive ones.

5.5.3 Mean Square Error Criterion

If two estimators θ̂1 and θ̂2 are biased, variance alone does not provide a

useful measure. A more general criterion is mean square error, which
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includes both variance and bias:

M2(θ̂)=E [(θ̂−θ)2]

=E [[(θ̂−E (θ̂))+ (E (θ̂)−θ)]2]

=E [(θ̂−E (θ̂))2]+ [E (θ̂)−θ]2 +2(E (θ̂)−θ)E [θ̂−E (θ̂)]

(5.10)

and since E [θ̂−E (θ̂)]= 0 this becomes M2(θ̂)= V [θ̂]+b2(θ̂) Among competing

biased estimators; we would choose the one with the smallest M2. For

unbiased estimators M2(θ̂)= V (θ̂): the mse reduces to the variance, and we

are back to the relative efficiency.

5.5.4 Consistency

Consistency is yet another “good attribute” that we can apply to an esti-

mator. A consistent estimator is one for which, as the sample size increases,

the estimator converges to the true value: this covers (asymptotically) both

bias and variance. Defining consistency requires a probabilistic statement:

θ̂ is a consistent estimator for θ if θ̂ → θ in probability as the sample size

n →∞.

What do we mean by θ̂→ θ “in probability”? This is called convergence

in probability, and is defined as follows. Suppose we have a random vari-

able X whose pdf φ(x) depends on some parameter p. Then we say that “X

converges in probability to x as p approaches some value pl” if, for arbi-

trarily small positive values of the variables ǫ and η, there exists a value of

p (denoted by p0) such that

Pr[|X − x| < ǫ]> 1−η for all p in [p0, pl] (5.11)

In this case, the parameter p is n, the sample size, and the limiting value

is infinity; so n0 is a value such that, for all larger values of n, the pdf of

X is arbitrarily closely concentrated around x. If V (θ̂) → 0 as n →∞ and

b2(θ̂)→ 0 as n →∞, then M2(θ̂)→ 0 as n →∞ and θ̂ will be consistent. For

a normal distribution the sample mean is a consistent estimator: x̄ → µ as

n increases.

Consistency is a stronger property than asymptotic lack of bias or high

efficiency, since it involves the entire pdf of the statistic, not just its first two

moments. A consistent estimator is guaranteed to give better and better

results with more data; an inconsistent one does not, and so should be

avoided if possible. Note that all the estimators we have discussed so far

have variances that decrease as n−1, and so are consistent.
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5.6 The Method of Maximum Likelihood

We now have desirable properties for estimators, what we need is a recipe

for constructing good ones. We discuss two very important estimation pro-

cedures that can be applied to many specific problems: maximum likelihood

and (in less detail) least squares. We restrict the discussion almost entirely

to the univariate case and discuss estimating one parameter, namely the

location parameter for a univariate distribution. This simplification allows

us to focus on the principles of what we are doing. We leave until later the

very important case of estimating many parameters.

The method of maximum likelihood was developed by R. A. Fisher in

the 1920’s and has dominated the construction of estimators ever since,

because (in principle) it can be applied to any type of estimation problem,

so long as we can write the joint probability distribution of the random

variables which model the observations.

Suppose we have n observations x1, x2, . . . , xn which we assume can be

modeled as random variables X with a univariate pdf φ(x,θ); we wish to

find the single parameter θ. The joint pdf for n random variables, ~X =
(X1, X2, . . . , Xn) is, because of independence,

φ(~X ,θ)=φ(X1,θ)φ(X2,θ) . . . φ(Xn,θ)

In probability theory, we think of φ(~X ,θ) as a function which describes the

X ’s for a given θ. But for estimation, what we have are the x’s – that is to

say, the actual data: so we think of φ(~x,θ) as a function of θ for the given

values of~x. When we do this, φ is called the likelihood function of θ:

L (θ)
def= φ(~x,θ)

This function has values that will be like those of the pdf, but we cannot

integrate over them to get probabilities of θ, for the simple (but subtle)

reason that θ is, we remind you again, not a random variable.

We use the likelihood function to find an estimate in the following way:

if φ(~x,θ1) > φ(~x,θ2) we would say that θ1 is a more plausible value for θ

than θ2; because φ is larger: θ1 makes the observed ~x more likely than θ2

does. The maximum likelihood method is simply to choose the value of

θ that maximizes the value of the φ for the actual values of ~x; that is, we

find the θ which maximizes L (θ) = φ(~x,θ), because this would maximize

the probability of getting the data we actually have.

Since φ is a pdf, it, and hence L (θ), is everywhere positive; so we can

take the logarithm of the pdf function. Because the log function (we use
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natural log, ln) is single-valued, the maximum of the log of the likelihood

function will occur for the same value of θ as for the function itself:

max
θ

L (θ)=max
θ

φ(~x,θ)=max
θ

[

ln[φ(~x,θ)]
] def= max

θ
ℓ(θ)

We take logs because the log-likelihood function, which we write as ℓ(θ), is

often more convenient to use, because we can replace the product of the φ’s

by a sum:

ℓ(θ)=
n
∑

i=1

ln
[

φ(xi,θ)
]

This sum is much easier to differentiate than the product would be. For

later use, note the following relationship between derivatives:

∂ℓ

∂θ
=

1

L

∂L

∂θ
(5.12)

As a concrete example, consider finding the rate of a Poisson process

from the times between events. As described in Section 3.4.1, the interevent

times for a Poisson process have a pdf φ(x)=λe−λx. Then the log-likelihood

is

ℓ(λ)=
n
∑

i=1

ln(λ)−λxi = n ln(λ)−λ
n
∑

i=1

xi = n ln(λ)−λxs

where xs is the sum of all the interevent times – which is to say, the time

between the first and the last event. Taking the derivative with respect to

λ and setting it to zero gives the maximum likelihood estimate (MLE):

λ̂=
n

xs

Note that this implies that all we need to get our estimate is the total

span xs and number of events n; the ratio of these is called a sufficient

statistic because it is sufficient to completely specify the pdf of the data: no

additional information or combination of data can tell us more. Obviously,

establishing sufficiency is valuable, since it tells us that we do not need

more information.

For another example of an MLE, with equally banal results, consider

estimating the mean of a normally-distributed random variable, X . The

pdf is

φ(x)=
1

(2πσ2)
1/2

exp

(

−1/2

[x−µ

σ

]2
)
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which makes the log-likelihood

ℓ(µ)= n ln

[

1

(2πσ2)
1/2

]

−
n
∑

i=1

(xi −µ)2

2σ2

Taking the derivative gives

∂ℓ

∂θ
=

1

σ2

n
∑

i=1

(xi −µ) (5.13)

which is zero for µ= x̄ (equation 5.2).

These are simple examples for which the algebra is easy; but in general

the MLE may not have a closed-form solution. However, given a pdf, and a

set of data, we can always find the MLE using numerical techniques to find

the maximum of the function.

But does the MLE have properties that make it a “good” estimator in

the senses we described in Section 5.5.1? Yes, but to show this we need to

take a slight detour.

5.6.1 Cramer-Rao Inequality

In Section 5.5.2 we described one desirable characteristic of an estimator:

having a high efficiency, meaning that the sample distribution of the asso-

ciated statistic had a small variance. We now show that there is a lower

bound to this variance, called the Cramer-Rao bound. Very importantly,

this bound is reached by certain maximum likelihood estimators, making

them fully efficient.

Consider a function τ(θ), and let τ̂ be an unbiased statistic for τ. Then,

by the definition of bias,

E [τ̂]= τ(θ)=
∫

· · ·
∫

τ̂L (~X ,θ) dn~X

Note that while we are writing the pdf as a likelihood function, we are

integrating this function over the random variables. Taking the derivative

(and taking it inside the integral, which we shall always assume we can

do), we get
∂τ

∂θ
=

∫

· · ·
∫

τ̂
∂ℓ

∂θ
L (~X ,θ) dn~X (5.14)

where we have made use of 5.12. Now, since L is a pdf, the integral
∫

· · ·
∫

L (~X ,θ) dn~X = 1
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and hence the derivative of this is zero:
∫

· · ·
∫

∂ℓ

∂θ
L (~X ,θ) dn~X = 0

which, when we multiply it by τ(θ) and subtract it from 5.14, gives us

∂τ

∂θ
=

∫

· · ·
∫

(τ̂−τ(θ))
∂ℓ

∂θ
L (~X ,θ) dn~X = 0

We now make use of the Cauchy-Schwarz inequality, which states that for

any two functions a and b

[∫

ab

]2

≤
∫

a2

∫

b2 (5.15)

with equality occurring only if a and b are proportional to each other. Set-

ting

a= τ̂−τ(θ) b =
∂ℓ

∂θ

then gives us

[

∂τ

∂θ

]2
def= [τ′(θ)]2

≤
(∫

· · ·
∫

[τ̂−τ(θ)]2
L dn~X

)(∫

· · ·
∫[

∂ℓ

∂θ

]2

L dn~X

)

But since the integrals are of something times the pdf L over all X , they

just give the expected values, so this inequality becomes

[τ′(θ)]2 ≤ E [(τ̂−τ(θ))2] ·E
[(

∂ℓ

∂θ

)2]

def= E [(τ̂−τ(θ))2] · I(θ)

where I(θ), which depends only on the pdf φ, is called the Fisher informa-

tion. Noticing that the term multiplying it is the variance of τ̂, we obtain,

finally, the Cramer-Rao inequality:

V [τ̂]≥
[τ′(θ)]2

I(θ)

Looking at the MLE for the mean of a normal pdf (equation 5.13), we

see that
∂ℓ

∂µ
=−

n
∑

i=1

xi −µ

σ2
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but also, τ(θ) = µ, so τ̂−τ(θ) = µ̂−µ. But then it is just the case that the

two elements of the Cauchy-Schwartz inequality (5.15) are proportional to

each other, and the inequality becomes an equality. The variance of the

sample mean thus reaches the Cramer-Rao bound, so that the statistic x̄ is

an unbiased and fully efficient statistic for µ. Also

V [x̄]=
1

I(θ)
=

σ2

n

5.6.2 Some Properties of MLE’s

Besides the philosophical appeal of choosing θ̂ corresponding to the highest

probability, maximum likelihood estimators are asymptotically fully effi-

cient. That is, for large sample sizes they yield the estimate for θ that has

the minimum possible variance. They can also be shown to be asymptot-

ically unbiased, and consistent – so they have most of the desirable prop-

erties we want in an estimator. Note that these asymptotic results do not

necessarily apply for n finite.

It can also be shown that for large n, the MLE becomes normally dis-

tributed; more precisely, under certain smoothness conditions on φ, the

variable
√

nI(θ0)(θ̂−θ0)

is distributed with a normal distribution with zero mean and unit variance;

θ0 is the true value of θ, which of course we do not know. Since the MLE is

unbiased for large n, it is safe (and standard) to use θ̂ as the argument for

I. The confidence limits then become those for a normal distribution; for

example, the 95% limits become

±
1.96

√

nI(θ̂)

5.6.3 Multiparameter Maximum Likelihood

We touch briefly on the extension of the maximum likelihood method to

estimating more than one parameter. We have the likelihood function

φ(~x,θ1,θ2, . . . ,θp)

which is now a function of p variables; the log-likelihood is

ℓ(θ1,θ2, . . . ,θp)= ln
[

φ(~x,θ1,θ2, . . . ,θp)
]
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The maximum likelihood estimates θ̂1, θ̂2, . . . , θ̂p are obtained by maximiz-

ing ℓ with respect to each of the variables – that is, by solving

∂ℓ

∂θ1

= 0 ,
∂ℓ

∂θ2

= 0 , . . .
∂ℓ

∂θp

= 0

For example, suppose we want to estimate both µ and σ2 from x1, x2 , . . . , xn,

assuming that these can be modeled by random variables with a normal

distribution. As before,

φ(~x,µ,σ2)=
1

(2πσ2)n/2
exp

[

−
1

2σ2

n
∑

i=1

(xi −µ)2

]

yielding

ℓ(~x,µ,σ2)=−
n

2
ln2π−

n

2
ln(σ2)−

1

2σ2

n
∑

i=1

(xi −µ)2 (5.16)

If we now find the maximum for the mean, we have

∂ℓ

∂µ
= 0

which implies
1

σ2

n
∑

i=1

(xi − µ̂)= 0

giving the sample mean as the maximum likelihood estimate for µ:

µ̂=
1

n

n
∑

i=1

xi = x̄

For the variance, the derivative is

∂ℓ

∂σ2
= 0

which implies, from 5.16, that

−
n

2σ̂2
+

1

2σ̂4

n
∑

i=1

(xi − µ̂)2 = 0

giving the result that the MLE is

σ̂2 =
1

n

n
∑

i=1

(xi − µ̂)2 =
1

n

n
∑

i=1

(xi − x̄)2
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So the maximum likelihood estimates of µ and σ2 are the sample mean and

sample variance, equations 5.2 and 5.3. But note that the sample variance

σ̂2 is the biased version, since it uses n instead of n−1 in the divisor. This

is not untypical of MLE estimators: their properties of unbiasedness and

full efficiency are guaranteed asymptotically, not for finite n.

5.6.4 Least Squares and Maximum Likelihood

Estimating parameters using least squares, a procedure developed by Gauss

and others in the early nineteenth century, is perhaps the most widely used

technique in geophysical data analysis, How does it fit in with what we

have discussed? We will describe the full least-squares method in a later

chapter; for now we simply show how it relates to maximum likelihood. Ba-

sically, these are equivalent when we are trying to estimate a mean value

of a random variable with a normal distribution.

As a specific problem, consider the estimation problem given by equa-

tion 5.1. We can write the pdf that we use to model the data x1, x2, . . . , xn

as

φ(x)=
1

p
2πσ

e−(x−1/2gt2
i
)2/2σ2

(5.17)

from which the likelihood function for g is

L (g|~x)=
n

∏

i=1

1
p

2πσ
exp

(

−(xi − 1/2gt2
i
)2

2σ2

)

so the log-likelihood is

ℓ(g)=−n ln[
p

2πσ]−
1

2σ2

n
∑

i=1

(xi − 1/2gt2
i )

2

which has a maximum if we minimize the sum of squares of residuals,

n
∑

i=1

(xi − 1/2gt2
i )

2

The derivative of the log-likelihood is

∂ℓ(g)

∂g
=

n
∑

i=1

t2
i (xi − gt2

i )
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and setting this to zero gives the solution

ĝ =
∑n

i=1
xi t

2
i

∑n
i=1

t4
i

which of course would reduce to the sample mean (equation 5.2) if all the

t i ’s were one.

One further generalization of this is worth noting at this point namely

the case of different errors for each observation. Instead of equation (5.17)

the pdf of the i-th observation is then

φi(x) =
1

p
2πσi

exp

(

−(x− 1/2gt2
i
)2

2σ2
i

)

from which the likelihood function for g is

L (g|~x)=
n

∏

i=1

=
1

p
2πσ

exp

(

−(xi − 1/2gt2
i
)2

2σ2

)

which makes the log-likelihood

ℓ(g)=−
n
∑

i=1

ln[
p

2πσ]−
n
∑

i=1

(xi − 1/2gt2
i
)2

2σ2
i

Again taking the derivative, we get

∂ℓ(g)

∂g
= 2

n
∑

i=1

t2
i

2σ2
i

(xi − 1/2gt2
i )

which makes the maximum likelihood estimate equal to

ĝ =
∑n

i=1
xi t

2
i
σ−2

i
∑n

i=1
t4

i
σ−2

i

which if all the t i ’s were one becomes the weighted mean

µ̂=
∑n

i=1
xiσ

−2
i

∑n
i=1

σ−2
i

which is a particular case of a weighted least squares solution, meaning

that different observations are weighted differently. As these equations

show, this differential weighting may arise from different errors being as-

signed to different data, the structure of the problem (as the t2 dependence

between g and x) or both. We will explore all this much more completely in

a later chapter.
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Figure 5.4: Graphical display of how the L1 norm is minimized for

finding the location parameter (the median)

5.6.5 L1-norm Estimation

Least squares estimation operates by minimizing the sum of the squares

of the difference between a model and some data; this is often called min-

imization of the L2 norm. We close this section by showing how a differ-

ent model for errors would correspond to minimizing a different norm, and

what estimator this would correspond to in a simple case.

Suppose our model for the data is that the pdf is a double exponential:

the X i ’s are each distributed with a pdf

φ(x)= 1/2e−|x−µ|

where we have assumed a scale factor of 1. This distribution is, obviously,

more heavy-tailed than the normal. It is immediately clear that the log-

likelihood for µ is

ℓ(µ)=−
n
∑

i=1

|xi −µ| (5.18)

so that the MLE for µ will be that value of µ that minimizes the sum of

the absolute values of the differences between µ and all the observations

xi; this is known as minimizing the L1 norm.

If we consider the individual terms in 5.18, we see that each one, gives

rise to a V-shaped function of µ, with the tip of the V being at µ = xi, with
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value 0; the slope is −1 below this and 1 above it, as shown in Figure 5.4.

The slope of the sum (heavy line in the figure) will thus be the number

of x’s below µ, minus the number above µ, so this sum will be a minimum

when the slope is zero, or changing from −1 to 1. This will happen when the

number of x’s on each side of µ is the same – so, the L1 norm is minimized by

taking µ to be the median, which is thus the maximum likelihood estimator

for the location parameter of a double-exponential distribution. Figure 5.4

shows this for eleven data points, indexed as sorted into increasing order.

Viewing the median as an estimate that minimizes the L1 norm allows

us to generalize it to settings, such as data on the circle and the sphere,

in which the idea of sorting does not make sense. The circular median

minimizes the sum of angles from the median point to all the data; the

spherical median minimizes the sum of angular distances on the sphere

from the median point to all the data. Unlike the median on a line, neither

the circular or spherical medians will necessarily coincide with one of the

data values. But both are robust measures of location.


