
CHAPTER 6

HYPOTHESIS TESTING

The temptation to form premature theories upon insufficient

data is the bane of our profession.

Sherlock Holmes, in Arthur Conan Doyle, The Valley of Fear

(1914).

A phenomenon having been observed, or a group of phenomena

having been established by empiric classification, the

investigator invents an hypothesis in explanation. He then

devises and applies a test of the validity of the hypothesis. If it

does not stand the test he discards it and invents a new one. If it

survives the test, he proceeds at once to devise a second test. And

thus he continues.

G. K. Gilbert (1886), The inculcation of scientific method by

example with an illustration drawn from the Quaternary geology

of Utah, Amer. J. Sci, 136, 284-299.

6.1 Introduction

We now turn from estimating parameters of probability density functions,

to testing statistical hypotheses. In general scientific usage, a hypoth-

esis is some assertion we make about the way the world is. A statistical

hypothesis is more restricted, being an assertion about how a dataset re-

lates to some kind of probability model. We can test either kind, but the

tests for statistical hypotheses are more formalized.

Here are examples of scientific hypotheses and the statistical hypothe-

ses they are related to:

1. As described in Section 1.2, we may hypothesize that there was a

change in the core dynamo between the time of the Cretaceous Super-

chron and the subsequent period of frequent reversals. A statistical
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126 Chapter 6. Hypothesis Testing

hypothesis that formalizes this is that a point process that fits all the

other reversals (that is, a pdf φ(t) for the inter-reversal times) would

be very unlikely to produce so long a time without reversals.

2. We may hypothesize that earthquakes are triggered by earth tides.

The statistical hypothesis to go with this would be that more often

than not earthquakes happen at times related to (say) high and low

tides – as opposed to occurring “at random” relative to the tides.

3. We may want to claim that a new model for seismic velocity in the

Earth is better than an existing one. The statistical hypothesis to go

with this would be that the mismatch between some data (say times

of propagation of seismic waves) and the new model is smaller than it

was for the old model, by an amount “much greater than” the errors

in the measurements.

For each example, we start by formulating a probability model for our

scientific hypothesis; how to do this is not statistical analysis, but requires

informed judgment, both about the particular problem and about the meth-

ods available for deciding if a probability model agrees with the data or not.

In this chapter we discuss some general principles about testing statistical

hypotheses, and also present some of the most frequently used tests.

Statistical tests can keep us from a common error caused by the normal

human propensity is to find patterns even when there are none. A test can

show that what we have observed does not indicate some regular behavior,

but might well have happened by chance.

6.2 Problems and Caveats

We start with some general remarks about this branch of statistics. Thanks

to the range of questions we may try to answer there are many different

hypothesis tests. But some of their diversity arises from long-standing

and fundamental disagreements about the basic principles of testing. In

many cases different principles end up leading to similar results, but these

disagreements make this subject more difficult to learn. Technical issues

aside, it may be that these disagreements have been so hard to resolve

because different approaches are appropriate to different subjects: what

is appropriate in an economic context (where costs and benefits are clear)

is less so when deciding between scientific theories. We shall select what
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seems most useful while admitting that it may have less of a logical basis

than we would like.

There are two general approaches to hypothesis testing:

• The procedures developed by R. A. Fisher, which use tests to deter-

mine if data are consistent with some assumption; as we will see, this

is often done by showing that the data are in fact inconsistent with

the opposite assumption.

• The Neyman-Pearson approach, which seeks to formalize and jus-

tify some of Fisher’s methods by expressing hypothesis testing as a

choice between hypotheses. In this framework it is possible to define

tests which are in some sense “best”: this is rigorous, but may not be

applicable to the kinds of inference we may wish to make.

A third approach has been called the “hybrid“ method, though “bas-

tardized” might be better; this is what is usually taught to non-statisticians

– and this course will be no exception. This approach combines parts of both

the Fisher and Neyman-Pearson procedures to produce a methodology that

is easier to describe, though not logically consistent. But it does satisfy

the aim of inferring no less and (especially) no more from the data than we

should.

6.3 A Framework for Tests

If we have a known pdf φ that describes a random variable X , and also

know that X is an appropriate model for our data, we would know all that

we could, statistically speaking. For example we might know that the data

are modeled by Normal random variables with known mean and variance.

Chapter 5 was devoted to procedures for finding the “best values” of a pdf ’s

parameters. Hypothesis testing is about testing statements about the pdf

of the random variables we use to model the data. One kind of statement

(fundamental to the Neyman-Pearson approach) is which of two statistical

hypotheses we should choose. The Fisherian approach is to say that we can

see if a particular hypothesis is inconsistent with the data: often this can

be quite useful.

Up to a point, the procedures for hypothesis testing are the same either

way, and in fact resemble the procedure used to find how good an estimate

is. As mentioned above, the first step is deciding what statistical hypothesis
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we want to create that will help us evaluate some more general hypothesis

– and this is a matter of judgment. Often, what we need to do is set up

a statistical hypothesis contrary to what we want to show is true; this is

called the null hypothesis, conventionally denoted as H0. Whatever hy-

pothesis we choose includes the stipulation that the data can be modeled

by a specified kind of random variable. But in hypothesis testing we can

allow much more general pdf ’s than we can in estimation; for example, in

the class of tests called “distribution-free” we assume only that the rv’s that

model the data come from a pdf, otherwise unspecified: about as general an

assumption as we could ask for.

Having set up a statistical model we take the following steps:

• We use some procedure to compute a test statistic T(!x) from the data

!x; that is, we take the data and produce some number (or numbers),

analogous to finding an estimate.

• The null hypothesis H0 assumes that the data can be modeled by rv’s

X with a known pdf. Using this assumption, find the pdf of the rv

produced by applying the test procedure to the assumed rv’s. We call

this rv T̂ = T(!X ) with pdf φ(t).

• From φ(t), compute

α=
∫T=−T(!x)

−∞
φ(t) dt+

∫∞

T=T(!x)
φ(t) dt (6.1)

This integral is the area under the tails of the pdf of T̂. (In some cases,

we use the area under only one tail) The tail is the part of the pdf for

which t, the argument of the pdf, is greater in magnitude than the

value T(!x) found from the data. This area, like any other integral of

a pdf, is a probability. It is conventional to call the quantity 1−α the

confidence coefficient, while α is called the significance level.

The value of α is the end result; what we do with it is described in

Section 6.3.2 below.

6.3.1 An Example: Testing Earthquake Times

To show how testing works, we perform a test on the earthquake data

shown in Section 1.2. That data was introduced in the context of a claim

that California earthquakes tend to occur early in the morning, The basis
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Figure 6.1: The left panel shows the summing of unit vectors for the

computation of the Schuster test value, for all earthquakes magnitude

6 and over from 1910 through 2011. The right-hand panel shows the

pdf of the distribution of R for the number of data used; the shaded

area is the probability of getting the value observed, or more, if the

directions of the vectors are uniformly distributed.

for this claim was five events, three of them well-known because damaging:

this is just a few anecdotal cases, not a systematic view. What we think we

know about how earthquakes work suggests no way that large earthquakes

would correlate with local time – so it is therefore reasonable to think that

our anecdotal evidence is a mix of coincidence and selection bias. If we look

at a much larger set of earthquakes, how do we test the hypothesis that

temporal clustering is observed?

In this case our null hypothesis is obviously that there is no clustering,

which is to say that the times of earthquakes are uniformly distributed:

that is, that the random variable modeling the times of earthquakes has

a uniform pdf over [0, 24) (in hours). More formally, if X is the time of

earthquakes, we express the null hypothesis by writing H0 : X ∼U(x).

One possible test statistic1 is given from the n observed times by first

finding

r1 =
n
∑

i=1

cos(2πx/24) r2 =
n
∑

i=1

sin(2πx/24)

and then computing

R =
√

r2
1 + r2

2

1 As we will see in Section 6.5.1, this is not the only one.
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That is, we represent the time of each earthquake, xi, by a unit vector

(r1, r2), whose direction corresponds to the time on a 24-hour clock; then

we add these vectors, and take the distance from the origin to be the test

statistic. Obviously, the more the times are clustered, the bigger R will be.

The left panel of Figure 6.1 shows this procedure applied to all large earth-

quakes in California since 1890, with the individual unit vectors shown

head-to-tail; the large dot is the sum, which turns out to have robs = 13.90.

Geophysicists usually call this procedure the Schuster test, after the

person who introduced it for this very problem; statisticians more often

call it the Rayleigh test. For n large, and the Xi ’s uniformly distributed

(our null hypothesis), the pdf of R is

φ(r) =
2r

ne−r2/n
(6.2)

which is shown on the right panel of Figure 6.1; this is just the Rayleigh

distribution of Section 3.5.5. The shaded region shows the part of the pdf

for which r > robs; the probability of observing R in this region (supposing

the null hypothesis) is α= 0.16. The complementary value gives 1−α= 0.84

for r < robs.

For completeness, if n < 50 a better approximation to α is

α= e−z

[

1+2z− z2

4n
−

24z−132z2+76z3−9z4

288n2

]

where z = R2/n. For n large this becomes α= e−z, the same result as from

integrating 6.2 from r to infinity.

6.3.2 What Do We Do With the Results?

The statistical interpretation of the result is simple: if the null hypothesis

were true, and we could run the test many times, we would get a value of

the test statistic as large as we see, or larger, 9% of the time; we say that

we have a significance level of 0.09.

But this is the point at which simplicity, and consensus, end. Here are

some things we might do:

1. Report the value of α to summarize what we got: suggestive, perhaps

(one chance in six is not that likely), but not conclusive.

2. Take some small value α0, and say that, since α > α0, we cannot re-

ject the null hypothesis. That is, it is reasonable to say that what we
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see could just be chance, and the pattern we started with is just coin-

cidence. If we are going to follow this course, we need to set α0 before

we compute α for the data.

3. Make the stronger statement that because α>α0, the clustering hy-

pothesis is false. The converse, and more common, approach in hy-

pothesis testing comes when we are looking for something more inter-

esting than the null hypothesis; then the stronger statement would

be the claim that the alternative hypothesis is true if α≤α0.

4. Take some action depending on whether α exceeds α0 or not, without

prejudice, as it were, regarding the truth or falsity of the hypothe-

sis. For example, in an industrial setting we might be using a test

to evaluate the quality of our manufacturing, and if α≤ α0 we might

stop a production line or reject a batch of products. It is not so clear

what this approach would entail in doing research: possibilities in-

clude deciding what additional data to collect or what other ideas to

consider.

We have laid out these options because (in our view) more than one is

acceptable, and some are both popular and unwise. All too often, a conven-

tional values for 1−α0 is chosen (usually 0.95 or 0.99) and then only option

(3) is taken, by saying that if this value is reached or exceeded, then H0 is

rejected at (say) a 95% confidence level – and further that the alternative

that we set out to establish is true.

This interpretation of a hypothesis test is unwise. As a form of words

it may be acceptable to say that a hypothesis has been rejected (option 3),

but we should realize that

• There is nothing special about a particular value of α0. In particular,

to view 1−α= 0.94 (say) as being a very different outcome from 1−α=
0.96 is nonsense.

• Likewise, the value of α for different hypothesese does not bear a

clear relationship to how strong the effect assumed by each hypothe-

sis actually is.

• We should not confuse (A) having shown that the data do or do not

support a hypothesis at some level, with (B) having proved anything

about its truth (option 3) – such a result simply makes a strong case –

though remember that one in twenty times we would reach α= 0.05.
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Confusion about the meaning of values of α has been exacerbated by

the custom (fortunately absent from geophysics) of declaring that if results

did not reach some level of significance, they should not be published. This

is much too rigid a way to apply statistics to scientific inference.

For our test on the times of large California earthquakes, the best we

can say is that there is not a strong case for temporal clustering. But it is

important to note that we cannot say it is false; since the strength of the

test depends on the sample size n, it may be that an effect is present, but

at too small a level for this test to show it convincingly.

6.3.3 The Perils of Going Fishing

This is an appropriate place to discuss another error often made in testing,

especially when (as in geophysics) it is impossible to get more data by do-

ing experiments. It is natural to look for patterns in the data, and, having

found one, perform a test of its significance. But then the test is meaning-

less. Our search for a pattern (a “fishing expedition”) amounts to a series

of prior tests, and so violates the assumption that the significance level can

be treated as though we tested only one set of data one time.

An example2 may make this clearer. It is possible that earthquakes

occur more often at times when the stress from earth tides favors the ac-

tual faulting. We collect data on this faulting (“source mechanisms”) for

many earthquakes, and apply a test (modified from the Schuster test) to

see if the data support our hypothesis or not. Since we know so little about

earthquake triggering, it seems reasonable to assume that different modes

of faulting might react to stress changes differently; also, we do not know

which part of the stress tensor might be responsible. So we try the test

for different types of stress and different types of faulting, ending up with

12 possible combinations. For one of these our test gives α = 0.04; since

a standard value for α0 is 0.05, we decide that we have established tidal

triggering for that particular class.

But we have done no such thing. Suppose the null hypothesis is true.

If we choose a significance level of 0.04, the probability of not getting a

significant result becomes 0.96. Then not seeing a result in 12 independent

trials has a probability of (0.96)12 = 0.61, which means that the probability

of getting one such result would be 0.39; hardly unlikely.

2 This comes from Heaton [1982], which updates, corrects, and apologizes for Heaton

[1975].
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There is nothing wrong with using tests to go fishing for a possible re-

sult, so long as we do not claim that whatever result we get is in fact signif-

icant. The order in which we try different things matters: applying a test

to the data, and then stopping, is not the same as trying a number of tests,

and finally doing the same test as the original.3

What do we do if we cannot collect more data? One solution is to divide

the data, in advance and at random, into two sets: one for fishing in, and

one for testing what we find. Another procedure, called the Bonferroni

method, is to set the significance level chosen in advance to α/k, where

k is the number of tests and α the conventional level for one test. For

the tidal-triggering example, this would set the significance level to 0.0033

(0.04/12).

6.4 Specific Tests I: Do Means Differ?

We now put aside the philosophical complexities of statistical testing, and

discuss, in a more “cookbook” way, some common tests. We start with the

simplest kind: tests for differences in means, followed by tests of whether

data conform to a particular pdf. Tests involving variances will be discussed

later, in the context of least-squares fitting.

6.4.1 Means and Variances Known

We start with a slightly artificial case, in which the null hypothesis H0 is

that all the data come from a normal distribution with specified mean µ0

and variance σ2; we test the part of H0 that is about the mean. This test

would not be common in geophysics, but can easily arise in other settings:

for example, in asking if some property of a set of manufactured items is

within a specified tolerance. The usual shorthand notation for this test is

H0 : µ=µ0

Such a statistical hypothesis, in which all the parameters of the pdf are

known, is called a simple hypothesis. When we used the Schuster test in

Section 6.3.1 we were also testing a simple hypothesis, since the pdf for the

null hypothesis had all parameters specified – which is to say, none, since

3 Likewise, we have to decide on the number of data in advance, and not alter this as

we get results – unless, that is, we are using a sequential test, which is designed to cover

exactly this case.
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the pdf was completely specified by the statement that it was uniform over

[0,24).

For this H0, the value we get from the data is the difference between the

sample mean and the and the assumed mean: x̄−µ0. So the test statistic is

T(!X )=
1

n

n
∑

i=1

Xi −µ0 (6.3)

We showed in Section 5.3.1 that the pdf of T, for random variables Xi from

the assumed normal distribution, would be T ∼N(0,σ2/n):

φ(t)=
%

n
%

2πσ2
e−nt2/2σ2

(6.4)

Since H0 would be invalidated if x̄ were either much larger or much smaller

than µ0, we need to include both tails of φ(t) in determining the significance

level; for a given α0 the level is t0 such that (from equation 6.1):

α0 =
∫−t0

−∞
φ(t) dt+

∫∞

t0

φ(t) dt (6.5)

But this means that we can write the level t0 in terms of the cumulative

distribution function Φ(t) for the distribution given by equation 6.3 – or

rather, in terms of its inverse, Φ−1(α); equation 6.5 will be satisfied for

t0 =Φ
−1(α0/2) (6.6)

where the α0/2 comes from the inclusion of both tails of the pdf in 6.4. H0

would thus be rejected, with a confidence of 1−α0, if

|x̄−µ0| >= t0 (6.7)

We naturally think of x̄ as being fixed and µ0 varying; but we can also

view equation (6.7) as saying that H0 should be rejected if µ0 fell outside

the 1−α confidence interval for x̄. This interpretation follows from this

interval being

[x̄+Φ
−1(α/2), x̄+Φ

−1(1−α/2)] (6.8)

This is an example of a more general result, namely that there is a close

relationship between confidence intervals on a statistic, and a test applied

to that statistic. Since both specify intervals within which a pdf integrates

to a specified amount of probability, they have equivalent limits, though

these limits are used differently.
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We can easily extend our treatment to the case of two data sets, which

we call!xA and!xB, with assumed variances σ2 for both, and assumed means

that differ by ∆µ. To test if the difference in sample means is in fact ∆µ, we

compute

t = (x̄A − x̄B)− (∆µ) (6.9)

which would reduces to (x̄A − x̄B) if we are testing to see if the means are

equal. The test statistic T, assuming a normal distribution for both data

sets, is the convolution of the two distributions for µ̂A and µ̂B. So T is

distributed as N(0,σ2(n−1
A

+n−1
b

)). If we use the cdf Φ(t) appropriate to this

distribution, the critical value for the test, t0 is again given by equation 6.6,

with equations 6.7 and 6.8 following as before. This is sometimes called the

z-test.

6.4.2 Testing Against a Known Mean, with Unknown

Variance

A more interesting case is H0 : µ=µ0 with σ2 unknown. Because this in-

volves additional unknown parameters, it is called a composite hypothe-

sis. The test parameter is

t =
x̄−µ0

s/
%

n
(6.10)

where s2 is the sample variance defined in Section 5.3.1; as we showed

there, the statistic T, which is

T =
µ̂−µ0

σ̂/
%

n
=

µ̂−µ0

σ/
%

n

[

σ̂

σ

]−1

is the ratio between an rv with a normal distribution, and an rv distributed

as the square root of a χn −12 random variable. Such a ratio, and hence

the test statistic T, are distributed as Student’s t distribution with n−1

degrees of freedom. So we can use the pdf φ(t) for that distribution to find

critical values t0 for given significance levels α, again using equation 6.6.

(By now we hope you appreciate that all these examples have the same

basic structure; only the pdf changes).

6.4.3 Means Unknown, Equal but Unknown Variances

Next we consider testing if two datasets have different means, assuming

(as usual) normal distributions, and unknown (but equal) variances. Our
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test parameter combines 6.9 and 6.10:

t =
x̄A − x̄B −∆µ

sp

where x̄A and x̄B are the sample means for the data sets A and B. The

difference (minus any assumed difference) is normalized by the pooled

variance

s2
p = sumi(xi − x̄A)2+ sumi

(xi − x̄B)2

nA +nB −2

[

1

nA
+

1

nB

]

where nA and nB are the number of data in datasets A and B. The cor-

responding statistic T is then distributed as Student’s t with nA + nB −2

degrees of freedom.

This is clearly the most general of the tests we have seen so far, since

it requires only that σ2 is the same for both datasets, not that we know

it. Unhappily, if we drop this assumption, and allow the variances to be

unknown and different, the problem becomes much more complicated –

indeed, there is no test for this specific case (called the Fisher-Behrens

problem). But all is not lost, as we will now proceed to show.

6.4.4 A Nonparametric Test for Differences in

Location

All the tests we have described so far assume some form (usually Normal)

for the pdf, and in most cases also assume that we know or can estimate

the parameters associated with that pdf. But there are tests that make no

such assumptions; these are called non-parametric or distribution-free

to indicate that they are independent of a specific pdf.

One such test, which includes testing for differences in means, tests

whether or not two data sets came from the same (unspecified) pdf: H0 :

φA = φB for φ unknown. This is about as general a test for equality of

parameters between two data sets as we could ask for.

How can we do this? Suppose we had (say) 100 data values from set A,

all falling between 0 and 1, and 100 values from B, all between 99 and 100.

How likely is it that they can be modeled as as random variables from a

single pdf? We can imagine a pdf peaked in these two regions – but then

we would expect each dataset to include about equal numbers from each

region. And if the pdf was nonzero anywhere else, we would expect to get

some data outside these regions. So, we can say it is very unlikely.
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Figure 6.2: Two data sets A and B, indicated by the dots. All dots are

numbered by their rank, and the sums for each set are given at the

right.

What is important in this reasoning is that all the xA ’s are smaller than

the xB ’s. We can quantify this behavior using a rank-sum test (other

names are the Mann-Whitney or Wilcoxon test). How this works is

shown in Figure 6.2. Suppose we have four data values in A (for which

we use x’s): x1 = 2.3 x2 = 5.6 x3 = 0.7 x4 = 1.0 and five data values in B (for

which we use y’s): y1 =−2.0 y2 = 4.5 y3 = 3.6 y4 = 0.0 y5 = 10.0. Then, after

sorting all the data together, we get the arrangement shown in the figure.

The x’s are the dots above the axis, and the y’s the ones below it; the num-

bers next to each dot are the ranks of the data, found by sorting. To form

the test parameter we sum the ranks for one dataset; this automatically

gives the sum for the other because these must add up to the sum of the

first n integers, hal f n(n+1) where n = nA+nB is the total number of data.

The figure shows rank sums of 20 for the x’s and 25 for the y’s.4

Given n and (say) the smaller of the rank sums, we can find the prob-

ability of getting this small a value or smaller, which becomes our signifi-

cance level for a test of the hypothesis. If we denote the ranks by ri, then

the two statistics in common use are

S =
nA
∑

i=1

ri and U =
nA
∑

i=1

ri − i

where we have supposed A to have the smaller rank sum. For small n the

pdf of these statistics is complicated, but for n larger than about 20 a good

approximation is (what else?) a normal distribution:

U ∼ N(µU ,σ2) S ∼ N(µS,σ2)

4 If values are tied, they all get the average of the ranks assigned to them; for example,

if there were three identical values that had ranks 3, 4, and 5, they would each be assigned

a rank of 12/3 = 4. Alternatively, if the data have only finite precision (that is, are not

intrinsically integer), simply apply small random perturbations to apparently tied data,

at a level one or two decimal places below the last significant digit.
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Figure 6.3: Illustration of the computation of the Kolmogorov-

Smirnov statistic.

where

µU = 1/2nAnB µS = 1/2nA(n+1) σ2 =
nAnB(n+1)

12

This pdf can be used to find significance levels for a one-sided test (one dis-

tribution less than another) or a two-sided one (one distribution different

from another).

6.5 Specific Tests II: Do We Know the PDF?

The last, nonparametric, test aside, all the tests above assume that the data

can be modeled by rv’s with a normal distribution. But we have seen that

it can be dangerous to assume this, even though the central limit theorem

suggests that we can. Can we test if data can be modeled as Normal –

or more generally, test the assumption that our data can be modeled by

rv’s with some specified pdf? We can, and it is this kind of hypothesis test

that we now discuss; since much statistical theory depends on getting the

model pdf right, this kind of test is very important. The test statistic for

this question, somewhat surprisingly, does not depend on the underlying

distribution having some particular form – though we do, of course, have to

specify the form to make the test.
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6.5.1 Kolmogorov-Smirnov Test

Suppose that we have n data values!x = {x1, x2, . . . , xn} and we want to test

whether they can be modeled as independent random variables !X , each

element of which has a pdf φ(x). A number of tests for this use the empiri-

cal cdf, Sn(x), that we described in Section 2.6.2: a stairstep function that

increases monotonically (though discontinuously) from zero to one. If Sn

is derived from n random variables with cdf Φ, the law of large numbers

guarantees that as n approaches infinity Sn(x) approaches Φ(x).

We want a test statistic for deciding how different Sn(x) and Φ(x) are;

the value of this statistic determines if the data are consistent with a model

using iid rv’s pdf φ. At each step (indexed by i), we define two distances

between Sn and Φ: d+ measured from Φ to the “top of the step”, and d−

measured from Φ to the “bottom of the step”:

d+(i)=
i

n
−Φ(x(i)) d−(i)=Φ(x(i))−

i−1

n

The left-hand panel of Figure 6.3 shows a possible Sn and Φ, with one value

of d− indicated. The right-hand panel shows all the positive values of d+

(pluses) and d− (crosses). The Kolmogorov statistic, d0, is the maximum

deviation between Sn and Φ; it is computed in two steps. First, take the

maximum value over all the d’s

dn = max
1≤i≤n

[

d+(i), d−(i)
]

(6.11)

as shown by the dashed line in the right-hand panel of Figure 6.3. Second,

correct for the value of n:

d0 =
[%

n+0.12+0.11
%

n

]

dn (6.12)

which, for values of α small enough to be interesting, has the following

expression for α:

α=Pr[d > d0]= 2exp(−2d2
0)

This statistic is used in the Kolmogorov-Smirnov test for determining

whether!x, our sample (supposedly modeled by !X ) is in fact compatible with

the model distribution Φ(x); this is the null hypothesis H0. As usual, we

argue that if α is very small, then we are justified in believing that the φ(x)

would be very unlikely to produce rv’s with the distribution shown by the
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data, and hence in rejecting φ as a suitable pdf for modeling !x. If α is not

too small, then the pdf cannot be ruled out.

If in fact H0 is true (φ is the correct pdf to model the data with), we

can find the distribution of the K-S statistic, d̂. Perhaps surprisingly, this

distribution is independent of the form of Φ (and hence of φ). To make this

result more reasonable, we note that, since all cdf ’s are monotone functions,

we can create any Φ from any other Φ by stretching and shrinking the x-

axis appropriately. But such alterations of the x axis have no effect on the

maximum separation between Sn and Φ, as they transform together.

One disadvantage of the K-S test is that we need to know Φ beforehand.

More often, we assume that the data can be modeled by some particular pdf

(perhaps chosen from the collection in Chapter 3), but estimate the param-

eters of the pdf from the data. This is not, strictly speaking, consistent with

the assumption of the K-S test, and it means that our pdf will be more con-

sistent with the data than it would if we did not estimate the parameters.

But this means that our test will be conservative: if we reject the hypothe-

sis, the actual level for rejection will be higher than what we compute.

It is also possible to apply this test to two sample distribution functions

derived from different datasets, so as to test whether the two datasets can

be modeled by random variables with the same distribution – and in this

test we do not even need to know what that distribution function is, so this

is a non-parametric test. The method is to form the same statistic as in

6.11 and 6.12, except that we take the difference between the two cdf ’s Sn

and Sm (assuming n and m to be the number of data in the two datasets).

For the n in equation 6.12, we take

ne =
nm

n+m

Another test for deviation is based on the Kuiper statistic, which is

found from the d’s as

vn = max
1<=i<=n

[

d+(i))
]

+ max
1<=i<=n

[(d−(i)]

followed by a correction for n:

v0 =
[%

n+0.155+0.24
%

n

]

vn

which, for values of α small enough to be interesting, has the following

expression for α:

α=Pr[v > v0]= (8v2
0 −2)exp(−2v2

0)
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Figure 6.4: Empirical cdf’s for the California earthquake dataset

used in Figure 6.1, plotted against the expected cdf for a uniform dis-

tribution, for two different choices of where to start the Sn – which

may be anywhere because this is defined on a circle.

That is, we find the maximum deviation up and down separately, and sum

them. The statistic v̂ is sensitive to departures of Sn from Φ in different

ways than d̂ is. Most importantly, if we have data defined on a circle, v̂ is

invariant for different starting values of x, which the K-S statistic would

not be. It is therefore suitable for testing, for example, if data are uni-

formly distributed around a circle or not. Figure 6.4 shows the comparison

between Φ and Sn for the California earthquake dataset, assuming φ to be

uniform, and taking two possible starting times. The K-S statistic dn is not

the same, but the decrease in d− in going from a start time at 0h to one at

7h is exactly compensated for by the increase in d+, leaving vn unchanged.

The α for this test and this dataset is 0.07 – again, tantalizingly close to

being “conventionally” small enough to reject the hypothesis of uniformity.

6.5.2 χ2 Test for Goodness of Fit to Φ(x)

Another widely used quantitative test for goodness of fit to a particular dis-

tribution is based on the chi-square statistic (not the same as the chi-square

distribution, though of course closely related). This statistic is based on the

histogram, and the idea that if we know the underlying distribution we can

predict how many observations will be expected on average in each bin or

cell of the histogram. This is well suited for problems in which observa-
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tions naturally fall into discrete groups or cells, but is also widely used for

continuous random variables – but should not be, given that the tests we

just described do not require binning.

The general idea of this test is to compare the number of observations

that fall within a given cell or interval with the number to be expected for

the theoretical probability distribution Φ. If the two numbers are close then

Φ is a good model, if they are very different then one might have grounds

for rejecting Φ as a model for the data. Pearson’s χ2 statistic is given by,

for n cells

T =
n
∑

i=1

(oi −Ei)
2

Ei

where oi is the number of observations in cell i, and Ei is the number

expected for the theoretical distribution. It can be shown that, when the

model is correct, the sampling distribution of T̂ is approximately the χ2

distribution, with m degrees of freedom, where m = n− p−1 p being the

number of independent parameters fitted. The approximation by a χ2 dis-

tribution improves as the number of counts in each cell increases; fewer

than five counts per cell is usually regarded as inadequate.

6.6 Specific Tests III: Are Variables

Correlated?

The last tests we discuss are to test the hypothesis that there is or is not

a correlation between two sets of random variables, !X and !Y , each with n

elements. One diagnostic statistic is the size of ρ, the correlation coefficient.

The standard estimate of ρ for n pairs of numbers (xi, yi) is

r =

∑n
i=1(xi − x̄)(yi − ȳ)

√

∑n
i=1(xi − x̄)2

√

∑n
i=1(yi − ȳ)2

(6.13)

with x̄ and ȳ being the mean of the xi ’s and yi ’s respectively. If the variables

X and Y are jointly normally distributed, then the standard deviation of r

is

σr =
1− r2

%
(n−1)



6.6. Specific Tests III: Are Variables Correlated? 143

and −1 < r < 1. We want to decide if r is significantly different from r = 0,

the case of no correlation. This is done using

t =
r
%

(n−2)
√

(1− r2)
(6.14)

which is t-distributed with N −2 degrees of freedom. This is perhaps the

most abused test in all of statistics, since it assumes that the data can

be modeled by random variables with a bivariate normal distribution, an

assumption that is often overlooked by those who use it – sometimes, as we

saw in Section 1.4, with deplorable results.

A more general test for correlation that does not rely on this assumption

can be gotten by replacing the data with their ranks, and then computing

the Spearman rank-order correlation coefficient.

This test is almost exactly the same as the previous test, except that we

replace the n pairs of values (xi, yi) by their ranks, to form pairs (rx
i
, r

y
i
).

Then we find

rs =

∑n
i=1(rx

i
− r̄x)(r

y
i
− r̄ y)

√

∑n
i=1(rx

i
− r̄x)2

√

∑n
i=1(r

y
i
− r̄ y)2

(6.15)

with, for example, r̄x being the mean of the ranks for the x’s. But since the

sum of the ranks is just the sum over the first n integers, this is the same

for both x and y, as are the sums in the denominator. If we make use of

n
∑

k=1

k =
n(n+1)

2

n
∑

k=1

k2 =
n(n+1)(2n+1)

6

we find that the denominator is

n(n2−1)

12

We can simplify 6.15 even further if we sort the pairs so the y values

are in increasing order, so that r
y
i
= i, as illustrated in Figure 6.5. Then the

numerator becomes

−
(

(n+1)

2

)2

+
n
∑

k=1

krx
k

and the total expression can be written as

rs = 1−
6

n(n2−1)

n
∑

k=1

(rx
k −k)2



144 Chapter 6. Hypothesis Testing

Figure 6.5: Example data set for computing correlations, using both

ranks and values.
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which, like r, is between −1 and 1; it will reach a value of 1 only if the

ranks for the x’s and y’s are the same. Continuing in parallel with 6.14, the

statistic

t =
rs

%
(n−2)

√

(1− r2
s)

is also approximately distributed as Student’s t with n−2 degrees of free-

dom, the approximation being adequate for nge30; for smaller n, an exact

expression for φ(rs) is available. Given how often actual data depart from

bivariate normality, you should begin with this test if you want to test for

correlation.

6.7 The Neyman-Pearson Approach to

Hypothesis Testing

We finish with what we might have begun with, which is a sketch of the

Neyman-Pearson approach to testing. The formal procedure is not often

used in geophysics, but it underlies many discussions of testing, and pro-

vides, as the ideas of efficiently and bias did for estimators, a framework

for comparing tests.

The Neyman-Pearson approach explicitly frames the test as one be-

tween two hypotheses, the null hypothesis H0 and an alternative hy-

pothesis, H1, that we are said to be testing H0 against. A simple example

would be if we had data modeled by random variables that are normally

distributed with known variance and a mean that is either µ1 or µ2; the

null hypothesis H0 could be µ=µ1, and our test would be against the alter-

native hypothesis, H1, that µ=µ2.

Although this is a very different approach than the significance testing

we have discussed up to now, much of the formal procedure is the same: we

decide whether to reject H0 in favor of H1 on the basis of a test statistic

t = T(!x), using the distribution of the test statistic t̂ = T(!X ), where the

distribution of the random variables !X is part of the null hypothesis H0.

The set of values for which H0 is accepted and rejected are, respectively, the

acceptance region and rejection regions of the test. And, exactly what

ranges of the parameters these regions cover depends on the value of α, the

significance level, which in this framework is always chosen beforehand, at

least implicitly.
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If we think of testing two hypotheses we can see that we can have two

kinds of error:

1. Type I error: we may reject the null hypothesis H0 even though

it is valid. For our earthquake example, this error would be deciding

that the distribution of times is nonuniform even though it is actually

uniform. Because of the significance level, we expect exactly this to

happen if we do the test many times; it should happen a fraction α of

the time. The probability of a Type I error is therefore just α – and we

can (in principle) choose this to be as small as we like. For the more

complicated case in which H0 is composite, the probability of a Type

I error generally depends on which particular member of H0 (that is,

which parameter) we choose, and the significance level is defined to

be the maximum of these probabilities.

2. Type II error. This is where we accept H0 even though it is false. For

our earthquake problem, this error would be deciding that the times

were uniformly distributed even though they were in fact distributed

according to H1. The probability of this occurring is denoted by β. We

are probably more interested in the reverse, the probability that H1

is rejected when it is false; this quantity, 1−β, is called the power of

the test. Clearly we want β to be as small, and the power as large, as

possible: an ideal test would have a power of one, so we would always

reject a false H0. If H1 is composite then β depends on the particular

parameters of H1.

Thus to compare tests we can ask which one, for a given α, has the

smallest β – that is, is the more powerful. Ideally we could have a power

of 1 with α = 0; in practice this can never be achieved. Also for any given

number of data, n, it is always true that decreasing α, will increase β. As

indicated above, usually we fix the significance level in advance at a rather

small number (typically 0.05 or .01), and then try to find a test yielding a

small value for β.

Given a fixed α and n, β will depend on the test procedure, and so com-

parison of powers gives us a means of comparing tests.

You should realize that the power can depend, not only on the nature of

the test, but also on the alternative hypothesis H1, which is usually called

what the test is “testing against”. For example, the Schuster test is most

powerful when testing the hypothesis H0 (a uniform distribution) against

H1, when H1 is that the pdf for the times is unimodal (a single peak); it
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is not difficult to see that this test would do a poorer job of discriminating

between a uniform distribution and one with two peaks 12 hours apart.

This can be quantified by keeping H0, α, and n the same, and comparing β

for different H1. For some tests, H1 can be “anything other than H0”; this is

true of the Kuiper test described above, which tests a uniform distribution

on the circle against any alternative. What we lose by employing such a

general test is likely to be that α will be larger for a given β than it would

be for a test against a more specific H1.

This behavior is quite similar to the tradeoff experienced with estima-

tors: an estimator that works well for a wide range of pdf ’s will be less

efficient than a one designed around a specific pdf, always assuming that

this pdf is appropriate: for a Normal, the mean is more efficient than the

median, but the latter does better over a wide range of pdf ’s. Similarly, we

may be willing use a test with lower power if this is consistent over a wider

range of alternative hypotheses.


