
8-1 Total Least Squares and Robust Methods Version 1.3

Chapter 8

Total Least Squares and Robust Methods

In discussing least squares estimation we have been rather conservative in the assumptions we made about

the errors in our observations, preferring to deal with the standard statistical model rather than introducing

additional complications. Last time we did deal with the data covariance problem for the case of normally

distributed data errors by supposing that the problem can be transformed into one in which Cyy = σ2I . Now

we look at a few issues related to violations of the assumptions used so far.

8.1. Total Least Squares and the Bootstrap

We began LSE with the assumption that the variablesX are independent, and ~Y is dependent, with the form

~Y = X~θ +~e (1)

The X’s were supposed fixed and all the randomness or statistical aspects are introduced through ~e. But it

might be quite unrealistic to assume that X can be pre-ordained in this way. How would we go about this

if both X and Y are random?

First we have to replace the fixed design matrix X with a random matrix Ξ. We retain the notation X as a

particular realization of this random matrix. Thus we write

X =


~x1
~x2
~x3
...
~xn

 Ξ =


~ξ1
~ξ2
~ξ3
...
~ξn

 (2)

Our original model yi = ~xiθ + ei with ~xi fixed and ei random with zero mean and variance σ2 now becomes

E
[
~Y |ξ = X

]
= X~θ and V ar[Y |ξ = X] = E

[
(~Y −X~θ)2|ξ = X

]
= σ2 (3)

With both Ξ and Y having random attributes we have a new model of the data as n independent random

vectors (Y1,~ξ1), (Y2,~ξ2), . . . , (Yn,~ξn) drawn from a multidimensional joint distribution. The previous model

is a conditional version of the new model, and our old analysis technique is conditional on the observed

values ~x1, ~x2, ...., ~xn.

What are the consequences for this new model on determining the statistical properties of our estimates for

θ? Under the old conditional model we had that θ was an unbiased estimate, now expressed in the following
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way

E(θ̂|Ξ = X) = θ (4)

We proceed in the same way for the new model writing another expectation (the outer bracket in the following

equation) with respect to the distribution of Ξ

E(θ̂) = E(E(θ̂|Ξ))

= E(θ)

= θ,

(5)

and discover that the least squares estimate is unbiased under the new model too. The variance is less

obvious. Recall that for the conditional variance and LS estimate of the last chapter we have

V ar[θ̂i|Ξ = X] = σ2(XTX)−1
ii

In the unconditional case we find

V ar[θ̂i] = V ar[E(θ̂i|Ξ)] + E[V ar(θ̂i|Ξ)]

= V ar[θi] + E[σ2(ΞT
Ξ)−1

ii ]

= σ2E[(ΞT
Ξ)−1

ii ]

(6)

This is a highly non-linear function of the random vectors ~ξ1, ~ξ2, . . . ,~ξn, and in general quite difficult to

evaluate analytically.

The above tells us that the new model is still unbiased, but has different covariances. We can use the bootstrap

to evaluate the variability of one of the θ̂j under the new model or to evaluate some other property of the

model, such as E[Y |ξ = x0] or the correlation coefficient in linear regression. If we know the probability

distribution of the random vector (Y, ξ) we just use a Monte Carlo simulation to draw a large number (say

M) from this distribution. For each (Ym, ξm) with m = 1, . . . ,M we calculate an estimate for θ and use

this collection as an approximation to the sampling distribution of θ̂. From this we can get an approximate

value for the standard error in θ, etc. This is sometimes called a parametric bootstrap technique. Of course

if the distribution of (Y, ξ) is unknown we can use the empirical distribution in the same way as described

in section 5.2.3.

1:1 Total Least Squares - A Simple Example

In Numerical Recipes by Press et al. there is a nice discussion (and code supplied) for fitting a straight line

by total least squares. This is well worth a read if you have this kind of problem. Here we treat our simplest
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LS problem as an illustration of the ideas. Recall that at the beginning of chapter 7 we considered pairs of

observations (xi, yi) where i = 1, 2, . . . , n. Once again we suppose that a reasonable model is of the form

y = β0 + β1x, (7)

but now we allow for the fact that there is iid zero mean Gaussian noise of variance σ2 in both x and y (see

Figure 8.1)

x

y

Figure 8.1: The total least squares problem for a straight line. Note that in the illustration the uncertainties

in x and y are equal.

In ordinary LS estimation we would find the βi that minimize the sum of the squares of the vertical distance

between the line and the data. The analogous estimator for total least squares (TLS) puts the cloud of

measured (xi, yi) as close as possible to the line y = β0 + β1x, using a different measure of distance, in this

case the perpendicular distance Ri, which we can write as

Ri = ∆yicosθ =
∆yi√

1 + tan2 θ
=

∆yi√
1 + β2

1

(8)

where we have identified the slope of the desired line as β1 = tan θ, and ∆yi as the usual LS vertical residual.

With this notation we find that the TLS estimator of β0 and β1 is found by minimizing

R(β0, β1) =
∑
i

R2
i

=
1

1 + β2
1

∑
i

(yi − β0 − β1xi)2
(9)
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which differs from ordinary LS only in the premultiplier.

Now we proceed as usual and look for the stationary points of R. For β0 we get

0 =
∂R

∂β0
=

1
1 + β2

1

∑
i

−2(yi − β0 − β1xi). (10)

So for the TLS solution

β0 =
1
n

[∑
i

yi − β1

∑
xi

]
= ȳ − β1x̄ (11)

As in ordinary LS the TLS solution must pass through the center of mass (x̄, ȳ) of the data cloud. For β1 we

get

0 =
∂R

∂β1
=

1
1 + β2

1

∑
i

−2(yi − β0 − β1xi)xi −
2β1

(1 + β2
1)2

∑
i

(yi − β0 − β1xi)2. (12)

Now we can eliminate β0 by substituting the result from (11) into (12). Cleaning up yields a quadratic in β1

0 = c2β
2
1 + c1β1 + c0

with coefficients
c2 =

∑
i

(xi − x̄)(yi − ȳ)

c1 =
∑
i

[(xi − x̄)2 − (yi − ȳ)2]

c0 = −
∑
i

(xi − x̄)(yi − ȳ)

Generalizing to the case with unequal weights for different data pairs is straightforward, but if the variances

in x and y are different one needs to choose a different distance measure, so that the direction with larger

variance contributes less to Ri.

2. Robustness

In Chapter 5, we got our first flavor of the differences between parametric and non-parametric methods when

we discussed Monte Carlo methods and the bootstrap. In parametric methods we assume a functional form

for the pdf of the observations. It is often the case that we want to find the parameters in that function,

and we have spent a fair amount of time discussing optimal methods for doing this. In non-parametric

methods the goal is to make minimal assumptions about the pdf for the observations. We might for example

be prepared to assume that the observations are iid or that the underlying distribution is continuous and has a

density function. One might think of non-parametric problems in the same light as problems with an infinite

number of unknown parameters: in other geophysical contexts, these are often known as inverse problems.
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In robust data analysis one usually assumes a functional form for the probability distribution, but worries

about whether the procedure is sensitive to small departures from that basic form. In a rather loose

mathematical sense, when we talk of a robust method we mean one that works well over a collection of

distributions that lie in the neighborhood of, and also include, the assumed family.

There are a number of reasons why we need robust methods, ranging from gross blunders in measurement

or recording of data, to intrinsic limitations in precision, or perhaps just implicit reliance on the central limit

theorem to justify assumptions about underlying distributions. An example of a robust method that we have

already seen in section 5.1.3 involves using the 10% trimmed mean to minimize the influence of erroneous

data on estimates for the mean. Robust data processing methods have been in use for a long time: some of

the first geophysical examples involved assuming mixtures of normal distributions with different variances,

usually low level contamination by a small fraction of outliers from a distribution with large variance. The

L1 norm minimization (as opposed to least squares) that is associated with maximum likelihood estimation

from a Laplacian distribution is another early example.

There are several important questions to address in developing robust methods: Is the procedure sensitive to

small departures from the model? A more quantitative question would be the following: To 1st order what

is the sensitivity to departures from assumptions? And perhaps the most important issue is: How far can

one depart from the model before real trouble arises?

The last of these questions is concerned with the breakdown point for the method, and may be addressed

by considering what fraction of the data we need to change before the method breaks down. This gives rise

to the idea of developing methods that are resistant to bad data. For example if we consider the mean of a

collection of observations, xi, i = 1, . . . , n we find that a single bad datum can destroy the estimate. Since

we have

x̄ =
1
n

n∑
i

xi (13)

the breakdown point is 1
n

. But the situation is much better if one uses the α- trimmed mean

x̄α =
1

kh − kl + 1

kh∑
i=kl

x(i) (14)

with kl + n− kh = αn, and x(i) the ith order statistic.

2:1 Loss and Influence Functions

Many robust methods rely on the idea of the influence function which is essentially the derivative of a loss
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function like the ||~r||2 minimized in least squares estimation (LSE). Let us suppose that we can write our

parametrized model of interest as

yi =
p∑
j=1

θjcj(xi) + εi = g(xi) + εi i = 1, . . . , n (15)

or in matrix form

~y = C~θ +~ε (16)

The LSE minimizes a quadratic loss function and if the εi are Gaussian, the MLE and LSE are equivalent.

That is

max
θ̂
l(θ̂) = min

θ̂

n∑
i=1

r2
i (17)

The residuals ri depend on θ̂ and the distribution of εi, so let us replace the quadratic form in (17) by a more

general loss function ρ. Following a maximum likelihood kind of approach we can write

ρ(ε) = − ln[L(ε, θ̂)]

with an implicit dependence on θ and find the values for θ̂ that minimize this new loss function. L(ε, θ̂)

is the likelihood function for θ as introduced in Section 5.5 in the context of estimating parameters for a

specific statistical distribution. The necessary condition for the minimum is
n∑
i=1

cj(xi)ψ(εi) = 0 j = 1, 2, . . . , p (18)

where ψ(ε) = ρ′(ε) is proportional to something known in the statistical literature as the influence function,

and is implicitly dependent on the choice of the parameters θ̂. In (18) the cj(xi), j = 1, . . . , p form the rows

of the design matrix C.

For a normal distribution with both ML and LS estimates we have ρ(ε) = ε2 and ψ(ε) = ε, while with

Laplacian or exponentially distributed uncertainties and maximum likelihood estimation we would have

ρ(ε) = |ε| and ψ(ε) = sgn(ε). These loss and influence functions are illustrated in Figure 8.2, from which

you can see that in the Gaussian case the influence of a data point rises linearly with its deviation or residual

from the model prediction g(xi). In contrast the exponential error gives equal influence to all data regardless

of how far they lie from the model. It’s easy to see why this is the case when you consider the median as an

estimate of scale. One chooses the mid point of the ordered data, and it is irrelevant how far the rest of the

observations lie from the median - each data point has an equal influence on the estimate.

Robust estimation makes substantial use of the idea of the influence function. If we think again of the

trimmed mean, the influence function is linear in the central 1−α fraction of the observations, then drops to
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Figure 8.2: Loss and influence function for ML estimation with Gaussian and exponentially distributed
noise. Robust M-type loss and influence functions for Huber’s t-function with t = 1.5, and Tukey’s biweight
with t = 4.5.

zero. There is a whole class of robust estimates known as M-type (for maximum likelihood type) estimates

that make use of the loss function minimization formulation. The idea is to make ρ(ε) increase less rapidly

than
∑
r2
i so that the parameter value we estimate can be resistant to a few gross outliers in an otherwise

well-behaved distribution. Some examples of robust influence functions are also shown in Figure 8.2.

Two widely used examples are Huber’s t-function with

ψ(ε) =
{
ε, |ε| < t
t, |ε| ≥ t (19)

And Tukey’s biweight function

ψ(ε) =
{
ε(1− ε2/t2)2, |ε| < t
0, |ε| ≥ t (20)

It is readily seen that while Huber’s t limits the influence of outlying data, it still allows them to contribute

in the fitting process, while Tukey’s biweight is a redescending function, that rejects any influence from data

lying further than t from the model. The choice of t is in both cases somewhat ad hoc and must be made

cautiously.

An outstanding piece of business is how we should solve equation (18) for the θj . (18) is in general

non-linear, so we resort to iterative methods. We can use Newton’s method: we start with an initial guess

for θ̂ (the LS estimate would do fine), call this θ̂0 and then iterate from there using

∂(l(θ̂))
∂θ̂

=
∂l

∂θ̂

∣∣∣∣
θ̂0

+
∂2l

∂θ̂2

∣∣∣∣
θ̂0

(θ̂ − θ̂0) = 0. (21)
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But it’s not always obvious how to evaluate ∂2l
∂θ̂2 , so a commonly used alternative is to resort to iteratively

reweighted least squares. To do this we go back to (18), and rewrite it as

n∑
i=1

cj(xi)
ψ(εi)
εi

εi = 0 j = 1, 2, . . . , p (22)

Now we let g0(xi) be the model prediction for g based on θ̂0, an initial guess at the solution and

wi0 =
{

ψ(εi)
εi

= ψ(yi−g0(xi))
(yi−g0(xi))

yi 6= g0(xi)
lim yi → g0(xi) otherwise.

(23)

This transforms (18) to a weighted LS problem with

CTWkCθ̂k = CTWk~y k = 0, 1, . . . (24)

with Wk the diagonal matrix of weights, (w1k, w2k, . . . , wnk), at the kth iteration. The problem is re-solved

until it converges to a solution. Note that convergence is only guaranteed in the regime where the loss

function is convex, that is if ψ(ε) is non-decreasing.

For much more on the topic of robust estimation see the book by Hampel et al. (1986), or alternatively the

brief discussion in Press et al.. An application of some of these ideas can be found in Constable (1988,

Parameter estimation in non-Gaussian noise, Geophys. J. Int. Vol 94,131–142). In that paper the form

for the loss function is inferred by an iterative procedure using the distribution of residuals and M-type

estimation.
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