SIO 231 Geoelectromagnetism

Problems set 1, due 1/18/2022

1. What are the SI units for **B**, **H**, **E**, **D**, **J**, σ , and ϵ_0 ? Show that the unit $Tm A^{-1}$ is equivalent to $H m^{-1}$ for μ_0 , and express the units in terms of another pair of SI quantities.

Estimate and rank in decreasing order: (a) the magnetostatic energy stored in space around a 10g permanent magnet; (b) the chemical energy stored in 10g of cornflakes; (c) the gravitation potential energy in a 10g pencil sitting on your desk; (d) the kinetic energy of a 10g bullet moving at the speed of sound; (e) the mass energy released by fission of 10g of ^{235}U .

As we learned in Lecture 1, the status of the kilogram was recently redefined. Explain why this results in a change in μ_0 , and show that the relationship $1/(\mu_0\epsilon_0) = c^2$ still holds.

My rankings are below.

(e) From (http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_7/4_7_1.html), the fission of one atom of ^{235}U generates 202.5 MeV = 3.24×10^{-11} J, which translates to 19.54 TJ/mol, or 83.14 TJ/kg. Yield for 10g is 0.8314 TJ, aka 8.314×10^8 kJ. Here T stands for Terra or 10^{12} not Tesla.

(b) chemical energy in 10g of cornflakes: Courtesy Google, 10g of cornflakes yield 36 calories. Actually, by long standing convention, these are kcal and conversion to Joules gives 150kJ.

(d) the kinetic energy of a 10g bullet moving at the speed of sound; $KE = \frac{1}{2}mv^2$ $m = 0.01 \ kg$, $v = 343 \ m/s = 588.25$ Joules or 0.6 kJ.

(a) magnetostatic energy in 10g magnet $U = \frac{1}{2\mu_0} \int_V B^2 dV = \frac{1}{2\mu} \int_V H^2 dV$. Taking a simplistic approach (for more see e.g., Lovett & Patterson, IEEE Transactions on Magnetics, Vol. 35(1), 1999) I used an Alnico magnet (strongest available before development of rare earth magnets), with densities around 7000 kg/m³, maximal energy density expressed in terms of BH_{max} of 44 T.A/m. Volume of 10g is 1.43×10^{-6} m³, yielding energy of $U_B = \frac{BH_{max}V}{2\mu_0} = 25J = .025$ kJ.

(c) the gravitation potential energy in a 10g pencil sitting on your desk at height h; U = mgh Assume h = 0.7m, $g = 9.8 m.s^{-2}$, m = 0.01 kg yields gravitational energy of 0.065 Joules aka 6.5×10^{-5} kJ.

2. The radial component of the magnetic field is $B_r = \hat{\mathbf{r}} \cdot \mathbf{B}$. Show that $\nabla^2(rB_r) = 0$, that is rB_r is also harmonic outside of S(a).

We know already that we can write $\mathbf{B} = -\nabla V$ and $\nabla^2 V = \nabla \cdot \mathbf{B} = 0$. Using the ever useful and compact summation notation we write

$$\begin{aligned} \nabla^2 (rB_r) &= \partial_i \partial_i (r_j B_j) \\ &= \partial_i (\partial_i r_j B_j + r_j \partial_i B_j) \\ &= \partial_i (\delta_{ij} B_j + r_j \partial_i B_i) \\ &= \partial_i B_i \\ &= \nabla \cdot \mathbf{B} = 0 \end{aligned}$$