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GEOMAGNETISM AND ELECTROMAGNETISM

I.ecture 10

Core field modeling and regularization.
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Today’s Class

e What’s a model?

e Kinds of data - Geomagnetic Elements

e A bit about Uniqueness

e Constructing Geomagnetic Field Models
e least squares
e regularization

e some results - IGRF 2020 & regularized core field models


https://doi.org/10.1029/2021EO153457

Geomagnetic Field Modeling

Observations are measurements of the magnetic field at specific times and places.
What about locations where we have no measurements?

We can combine our observations to provide a model, a mathematical description in
functional form of the Global Geomagnetic Field.

Spherical Harmonic representations are the common language of magnetic field models.

We measure various elements of B, and use them to estimate the SH coefficients in the
potential, W.

Then the gradient of ¥ can be used to give us the “best” estimate of the magnetic field
at any desired altitude, latitude, and longitude. We need to decide what *‘best” means.



Geomagnetic elements depend on coordinate system

Geodetic vs Geocentric vs Geomagnetic coordinates
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Latitude used in geographic coordinates 1s geodetic latitude.
Geodetic coordinates are a type of curvilinear orthogonal
coordinate system used 1n geodesy based on a reference ellipsoid.
They include geodetic latitude (north/south) A, longitude (east/
west) ¢, and ellipsoidal height / (also known as geodetic
heightll).

Similarly, geodetic altitude 1s defined as the height above the
ellipsoid surface, normal to the ellipsoid; whereas geocentric
altitude 1s defined as the distance to the reference ellipsoid along a
radial line to the geocenter.

In geomagnetic coordinates, commonly used in external field

studies, the geomagnetic colatitude 1s measured relative to the best
fitting dipole axis, and geomagnetic latitude 1s measured relative to
the dipole equator.


https://en.wikipedia.org/wiki/Curvilinear_coordinate_system
https://en.wikipedia.org/wiki/Orthogonal_coordinate_system
https://en.wikipedia.org/wiki/Orthogonal_coordinate_system
https://en.wikipedia.org/wiki/Geodesy
https://en.wikipedia.org/wiki/Reference_ellipsoid
https://en.wikipedia.org/wiki/Longitude
https://en.wikipedia.org/wiki/Geodetic_coordinates#cite_note-National_Geodetic_Survey_(U.S.)._National_Geodetic_Survey_(U.S.)_1986_p._107-1

What are the Geomagnetic Elements?

In local geographic or geodetic coordinates

F (or B) - magnitude of total field B

X - north component
Y - east component
Z - vertical component, +ve down

D - declination, +ve east
| H - horizontal component
Zy T [ - inclination, +ve down

________________________________

In geocentric coordinates

B,., positive radially outward
By, positive southward on reference sphere
By, positive eastward on surface sphere




If we are prepared to assume Earth is a sphere, then for

X, Y, Z - orthogonal components of the geomagnetic field in local coordinate system
B, B, B;— orthogonal components in geocentric reference frame
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Note, the spherical approximation does lead to detectable errors in accurate field models.



Construction of Field Models

* Spherical harmonics can be used to define a global geomagnetic field model.

* From this model we can determine any magnetic component at any location of
interest (outside source regions).

* But, how do we determine the Gauss coetficients defining the spherical
harmonic model best fitting observations?
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Can we determine the field uniquely?

Suppose we specialize to the case of internal field only

It we know B, exactly everywhere on a spherical surface, we can find a
unique representation of the field everywhere Laplace’s equation holds
(exterior Dirichlet Boundary Value Problem or BVP).

But IBI 1s not enough - unlike the gravity case ambiguity about the sign 1s
enough to cause problems (George Backus, in 1968 published an example.
This led to launch of MAGSAT, the first vector magnetic satellite).

Nor does knowing B, the direction of B, everywhere determine B to within
a scalar multiple.

In any case we do not know B either everywhere or exactly - this produces
fundamental non-uniqueness 1n the results of any modeling activity.



A slightly more realistic view of data gathering and impact on uniqueness
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Uniqueness of a magnetic field recovered from partial information within a current-carrying shell.
In this special case relevant to geomagnetism, it is assumed that any source can lie below r = a
(internal J(r < a) sources), and above r = c (external J(r > c) sources), no sources can lie within
the lower subshell (a < r < b, the neutral atmosphere), a spherical sheet current can lieatr = b
(the E-region J;(r = b) sources), and only poloidal sources can lie within the upper subshell (b <
r < ¢, the F-region ionosphere). The knowledge of B on a sphere r = R in the upper subshell (as
provided by, e.g., a satellite) and of enough components of B on the sphere r = a (as provided by,
e.g., observatories at the Earth’s surface), is then enough to recover the field produced by most
sources in many places (see text for details)
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Construction of Field Models

* Spherical harmonics can be used to define a global geomagnetic field model.

* From this model we can determine any magnetic component at any location of
interest (outside source regions).

* But, how do we determine the Gauss coetficients defining the spherical
harmonic model best fitting observations?
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Last time we introduced Least Squares Estimation

Data vector d = (d,ds,ds, ..., dM)T Uncertainty estimates o = (01, 09, ..., UM)T
Prediction of data based on forward function f, d — f(x, m)
model vector m, and observation position X, ’
_ 1
x = (21, %2, T3, ..., Tar) m = (mq, ma, ..., my)

Least Squares Estimation finds m that minimizes the sum of the squared residuals
M

X° = Z%[dz _f(xiam)}Q

in matrix notation

x> =[[W(d - d)|[* = [[Wd - W f(m)||*= |[Wd - WFm|?

W =diag(1l/01,1/02,....1/0pr) and when fis linear we can write it as the design matrix, F.



Construction of Field Models via Least Squares fit to Spherical Harmonic expansion (SHE)

Back to the fully normalized SHE for the internal part of the field
We now truncate the expansion at some degree L - presumed large enough to accommodate all relevant field structure.

and we measure

B=-VVU. (61)

and we want to find the 0" by least squares estimation.



Construction of Field Models via Least Squares fit to Spherical Harmonic expansion (SHE)

Suppose we measure all three orthogonal components of the field B,., By, By
at P locations, a set of M = 3P observations of magnetic elements at sites
r, = (7p, ép, ép), the vector field is written B(r,),p=1,..., P.

let S,,, for ¢ = 1,...,3 be the unit vector along one of the orthogonal (r, 8, ¢)
directions at location r;,
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Note that we have allowed for uncertainty in each observation through ;.
We can write a prediction for our observations d; as a matrix equation.

d=Gb + e (63)



We need an indexing scheme for:

d=Gb + e (63)
d and e € RM,

b € R" is a vector containing an ordered list of the spherical harmonic coeffi-
cients b/". K, is given by the truncation level: K = L(L + 2)

G is an M x K matrix that tell us how to predict the observations based on
their positions r; and the various Y, (0, ¢).
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Least squares estimation involves finding the values for b that minimize ||e||* =

|d — Gb||*

the LS solution vector b can be written in terms of the solution to the normal
equations:

b=(GTG)"'GTd. (65)

The least squares solution is the best linear unbiased estimate (BLUE) available
- the resulting coefficients have the smallest variance amongst such estimates.

Also
Elllel]”] = (M - K)o* (66)

This 1s an overdetermined LS problem with M > K, and uncertainty in the
resulting parameter estimates will be proportional to v M — K




Least squares produces results like the IGRF which since 1965 extends to SH degree n=13

g/h Deg Ord DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF DGRF IGRF SV

n m 1965.0 1970.0 1975.0 1980.0 1985.0 1990.0 1995.0 2000.0 2005.0 2010.0 2015.0 2020.0 20-25
g 1 0 —30334 —30220 —30100 —29992 —29873 —29775 —29692 —29619.4 —29554.63 —29496.57 —29441.46 —29404.8 57
g 1 1 —2119 —2068 —2013 —1956 —1905 —1848 —1784 —1728.2 —1669.05 —1586.42  —1501.77 —14509 74
h 1 1 5776 5737 5675 5604 5500 5406 5306 5186.1 5077.99 4944.26 4795.99 4652.5 —25.9
g 2 0 —1662 —1781 —1902 —1997 —2072 —-2131 —2200 —22677 —2337.24 —2396.06 —244588 —24996 —11.0
g 2 1 2997 3000 3010 3027 3044 3059 3070 3068.4 3047.69 3026.34 3012.20 2982.0 —7.0
h 2 1 —2016 —2047 —2067 —2129 —2197 —2279 —2366 —24816 —259450 —270854 —284541 —29916 —30.2
g 2 2 1594 1611 1632 1663 1687 1686 1681 1670.9 1657.76 1668.17 1676.35 1677.0 —21
h 2 2 14 25 —68 —200 —306 —373 —413 —458.0 —515.43 —575.73 —642.17 —734.6 —22.4
g 3 0 1297 1287 1276 1281 1296 1314 1335 1339.6 1336.30 1339.85 1350.33 1363.2 2.2
g 3 1 —2038 —2091 —2144 —2180 —2208 —2239 —2267 —2288.0 —2305.83 —2326.54 —2352.26 —2381.2 —5.9
h 3 1 —404 —366 —333 —336 —310 —284 —262 —2276 —198.86 —160.40 —115.29 —82.1 6.0
g 3 2 1292 1278 1260 1251 1247 1248 1249 12521 1246.39 1232.10 1225.85 1236.2 31
h 3 2 240 251 262 271 284 293 302 2934 269.72 251.75 245.04 2419 —11
g 3 3 856 838 830 833 829 802 759 714.5 672.51 633.73 581.69 525.7 —12.0
h 3 3 —165 —196 —223 —252 —297 —352 —427 —491.1 —524.72 —537.03 —538.70 —543.4 0.5
g 4 0 957 952 946 938 936 939 940 932.3 920.55 912.66 907.42 903.0 —1.2
g a4 1 804 800 791 782 780 780 780 786.8 797.96 808.97 813.68 809.5 —1.6
h a 1 148 167 191 212 232 247 262 272.6 282.07 286.48 283.54 281.9 —01
g 4 2 479 461 438 398 361 325 290 250.0 210.65 166.58 120.49 86.3 —5.9
h 4 2 —269 —266 —265 —257 —249 —240 —236 —231.9 —226.23 —211.03 —188.43 —158.4 6.5
g a 3 —390 —395 —405 —419 —424 —423 —418 —403.0 —379.86 —356.83 —334.85 —309.4 5.2
h 4 3 13 26 39 53 69 84 97 119.8 145.15 164.46 180.95 199.7 3.6
g a4 4 252 234 216 199 170 141 122 111.3 100.00 89.40 70.38 48.0 —5.1
h 4 4 —269 —279 —288 —297 —297 —299 —306 —303.8 —305.36 —309.72 —329.23 —349.7 —5.0
g 5 0 —219 —216 —218 —218 —214 —214 —214 —218.8 —227.00 —230.87 —232.91 —234.3 —0.3
g 5 1 358 359 356 357 355 353 352 3514 354.41 357.29 360.14 363.2 0.5
h 5 1 19 26 31 46 47 46 46 43.8 4272 44.58 46.98 47.7 0.0
g 5 2 254 262 264 261 253 245 235 222.3 208.95 200.26 192.35 187.8 —0.6
h 5 2 128 139 148 150 150 154 165 171.9 180.25 189.01 196.98 208.3 25
g 5 3 —31 —42 —59 —74 —93 —109 —118 —130.4 —136.54 —141.05 —140.94 —140.7 0.2
h 5 3 —126 —139 —152 —151 —154 —163 —143 —133.1 —123.45 —118.06 —119.14 —121.2 —0.6
g 5 4 —157 —160 —169 —162 —164 —165 —166 —168.6 —168.05 —163.17 —157.40 —151.2 1.3
h 5 4 —97 —91 —83 —78 —75 —69 —b56 —39.3 —19.57 —0.01 15.98 32.3 3.0
g 5 5 —62 —56 —49 —48 —46 —36 —17 —12.9 —13.65 —8.03 4.30 13.5 0.9
h 5 5 81 83 88 92 95 97 107 106.3 103.85 101.04 100.12 98.9 0.3
g 6 0 45 43 45 48 53 61 68 72.3 73.60 72.78 69.55 66.0 —0.5
g 6 1 61 64 66 66 65 65 67 68.2 69.56 68.69 67.57 65.5 —0.3
h 6 1 -1 —12 —13 —15 —16 —16 —17 —17.4 —20.33 —20.90 —20.61 —19.1 0.0
g 6 2 8 15 28 42 51 59 68 74.2 76.74 75.92 72.79 72.9 0.4
h 6 2 100 100 99 93 88 82 72 63.7 54.75 4418 33.30 251 —1.6
g 6 3 —228 —212 —198 —192 —185 —178 —170 —160.9 —151.34 —141.40 —129.85 —121.5 1.3
h 6 3 68 72 75 71 69 69 67 65.1 63.63 6154 58.74 52.8 —1.3
g 6 4 4 2 1 4 4 3 —1 —5.9 —14.58 —22.83 —28.93 —36.2 —1.4
h 6 4 —32 —37 —41 —43 —48 —52 —58 —61.2 —63.53 —66.26 —66.64 —64.5 0.8
g 6 5 1 3 6 14 16 18 19 16.9 14.58 13.10 13.14 13.5 0.0
h 6 5 —8 —6 —4 -2 —1 1 1 0.7 0.24 3.02 7.35 8.9 0.0
g 6 6 - —-12 —1M —108 —102 —96 —93 —90.4 —86.36 —78.09 —70.85 —64.7 0.9
h 6 6 -7 1 L 17 21 24 36 43.8 50.94 55.40 62.41 68.1 1.0

The time dependence of these parameters is modeled as piecewise linear, and is given by

gn (t) =gn' (Ly) + (. —13)g)" (1),

Alken et al. Earth, Planets and Space (2021) 73:49
https://doi.org/10.1186/s40623-020-01288-x



B. for the IGRF in 2020

Radial field at r=a

Non-dipole radial
field at r=a

Downward continued
radial field at r=c

IGRF 2020 Radial field Br at r=c
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Regularization — an Alternative to Least Squares

* In many geophysical inverse problems:

(1) Models can be very complex, especially those arising from the
discretization of continuous physical fields, and may possess large ‘null
spaces’ not constrained by data.

(11) Data are contaminated by large errors or parts of the model are very
sensitive to data noise.

Then model are problems:

1.e. Many models can fit the data within the error estimates and
minimizing the least squares criteria alone will not necessarily yield the
most plausible model.



Recall the discussion of interpolation from Lecture 7

e We used cubic splines to “regularize” time variations by minimizing complexity as
measured by the integrated second derivative in time of interpolating function.

e Making a static model of the geomagnetic field 1s sitmilar to interpolation or fitting
a function to data in time, but now we’re interested 1n filling 1n the spatial domain.

e For a snapshot of the field in time we can instead minimize spatial complexity in
the field represented by our SH model.



Splines are piecewise degree j polynomials in time used to make a continuous function and up to degree (j-71) derivatives
at knot points where they join

Example: cubic spline interpolation

12 |

Minimize the objective functional  » ( f ( ¥ ) B .)2 Xy d2 smoothest curve
U= 5 + S| ax connecting the points
j=1 O; v | odxT (RMS second derivative)
. o (f(x)=p)
SU.bJ ect to Z > =7 )\ is a Lagrange multiplier chosen to make this true
interpolation Smoothing Spline - allows mistfit
L o }Tk:l:ﬂ'k




Limitation of Least Squares

* We don’t know how we should choose L. Truncation may exclude parts of the
model that are needed.

* Misfit can be specified by a target value tor chi-squared by choosing K - the

normalized sum of squares of residuals- but it includes both measurement error and
model error

* What model property would it make most sense to minimize? e.g., total energy
stored 1n the field for r>a



Regularizing Magnetic Field Models

Regularization provides a tradeoff between misfit to the observations and some
property of the field model.

Maisftit can be specified by a target value for chi-squared - the normalized sum ot
squares of residuals

What model property would 1t make most sense to minimize? €.g., total energy
stored 1n the field for r>a



An Objective Functional for Magnetic field Modeling

* In the spline case we trade off misfit against minimizing the norm given by the
second derivative of the function f(¢) 1in time

* Misfit can be specified by a target value tor chi-squared - the normalized sum of
squares of residuals

*  What model property would 1t make most sense to minimize? e.g., total energy
stored 1n the field for r>a



Many interesting field spatial complexity properties can be written in the form of sums of SHE squared coefficients

Regularization — an Alternative to Least Squares

00 [
2 __ m |2
”BHW_ZWI Z |b1 ’ WZ>O
[=1 m=—1
Penalty functions:
f ‘ b ‘2 d i r W :( [+ 1 ) total energy in field outside of Earth radius
r=>a
f (a) B-Bd’F w, :< 21+1 ) ( [+1 ) spatial power spectrum on Earth Surface
Sla

These are examples of norms, specific measures of the size of the geomagnetic field model b.

Where did these expression come from? See equation 70-79 in ch10.pdf for examples using information from the
Table of SH Lore.



For the Magnetic Field

Least squares estimation involves finding the values for b that minimize

le|| = [|d — Gb[*

As with the splines regularized field models trade off misfit against a property

that minimizes Complexity Note we’ve gone back to / = oco!

/ It will need to be large to allow for any
o0 necessary complexity.
U(b) = ||d — Gb|[> + A ) w|b]"[?, w; > 0

[=1

or more compactly

U(b) = ||d — Gb||” + Al[b][,

subject to

ld—Gb||*=T



Regularization - An Alternative to Least Squares (2)

Some more examples of norms for the field model of the form

00 [
HBH?U:Z wy Z b"%,  w; > 0.
[=1 m=—I

the w; functions penalize short wavelength structure in the field model with
successively heavier weight for large (:

1
/ Vit -B)*dt w =11 + 1)*(1 + 5) surface gradient of B,
S(a)

/ Vit -B)]*d*t w; =1°(l + 1)* surface Laplacian of B,
S(a)

/ Jr-Jrd’r  w;~ (I + 1)(20 + 1)*(2l + 3) minimum toroidal current in Earth’s outer core
r<a



Regularization

Example of core surface field trade-off curve
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Regularization

Solution on the trade-off curve

Damping parameter A = 11077 [T

100 -8 B -dl -2 r o
B, at Core Surface / 10° n'T
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Regularization

Solution on the trade-off curve

Damping parameter A = 1.107°° [T

B, at Core SBurface f 10° nT



Regularization

Solution on the trade-off curve

Damping parameter A = 1-107% [rT]™

10 g f il 7 0 .
B, at Core Surface / 10° nT

10




Regularization

Solution on the trade-off curve

Damping parametar A = 1. 107" [rT]™

10 o z 4 ? 0 2
B, at Core Burface / 10" nT




Regularization

olution on the trade-off curve

Damping parameter A = 1. 10711 [T

10 -8 -B -d X [ 8
B, at Core Burface / 10° nT
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