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Average Radial Magnetic Field from 1860 -2016 - clues to core dynamics
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= Paired northern and southern
= hemisphere high intensity flux

r=a
patches suggest columnar structure
to magnetic field inside the core.
'» What is origin of reverse flux
B . . . .
o patches 1n both Atlantic and 1nside
the TC near the poles?
r=C

What about Southern Hemisphere
intense equatorial flux patches?
Are they connected to high
intensity Antarctic flux?

outline of tangent cylinder (TC)



Today’s Class

 What 1s a planetary dynamo??

 Moving into the dynamo source region in Earth’s core: another encounter with non-
uniqueness

 Reminder on important vector identities

* Toroidal and Poloidal Field decomposition of a solenoidal vector field

e a and £

* Induction in a moving conductor; Ohm’s law in a changing reference frame
 The Magnetohydrodynamics (MHD) approximation

 The magnetic induction equation for changing magnetic field in Earth’s core.

 Two end member cases - 1. diffusive decay; 11. the frozen flux approximation



What is a planetary dynamo?

A dynamo 1s any device or system that converts mechanical energy into
electromagnetic energy - electric currents are induced by relative motion between
an electrical conductor and a magnetic field.

e In the geodynamo (along with other planetary dynamos) electric and magnetic
fields are induced by motions of electrically conducting fluid 1n the liquid outer
core.

e The geodynamo 1s self-sustaining as long as the fluid motions continue to support
electric and magnetic fields in face of inevitable Ohmic decay. No external sources

of J or B are required.



Why do we need to invoke a self-sustaining geodynamo?

e Earth’s magnetic field 1s global scale and has a deep internal origin.
e External fields are too weak to produce the global field.
e The core 1s too hot to sustain remanent magnetization.

e The internal field changes continuously on a wide range of temporal and spatial
scales

e The geodynamo polarity has changed many times 1n the past, ~200 reversals are
recorded 1n the magnetic anomaly record which extends to about 160 Ma.

e The field has been present for most of Earth history which extends to 4.6 Ga.



Three Ingredients needed for a Dynamo

e Large volume of highly electrically conducting fluid.

e Energy source to promote fluid motion that balances resistive decay of
electric currents.

e Planetary rotation -
1. iInfluences interaction between poloidal and toroidal magnetic fields;
11. tidal forces and precession can excite fluid motions 1n the outer core.



A Hypothetical Dynamo ,
Fig 3.15, The Core
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Step 1: Apply an external magnetic field to a rotating conducting fluid (A)
and stir to induce electric currents and magnetic fields (B).
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Threshold between (B) and (C) 1s
the critical state

Step 2: Remove the external magnetic field in (A) and wait to see if dynamo 1s subcritical
(B) or supercritical (C).



Critical State depends on magnetic Reynolds number

Key dimensionless parameter Rm = pyovd.

Magnetic diffusivity 7 = (1,0) !, units length squared over time.

Rm 1s effectively the ratio of 2 time scales: free decay time of electrical currents and magnetic fields due to
electrical resistance 7, ., and characteristic time for circulation of outer core fluid 7.,

mag> circe
d’ d vd
Umag = 7 Leire = ; so  Rm = Tmag/Tcirc -~

Need a large Rm for a self-sustaining dynamo: 1.e. 7,,,, >> 7.,

In the core 6 ~ 4 — 20 X 10° S/m so # ~ 0.4 — 2 m?/s, d is large and v smallish. Need Rm > Rm ... ~ 40 for

buoyancy driven dynamo action in core

crit

Lab dynamos use large v to get large Rm.



Useful Vector Identities: A 1s a vector, s,f are scalars

V- (V X A) = 0 Divergence of a curl of a vector 1s zero (H)

V x(Vs)=0 Curl of a scalar field is zero (12)

V(st) — sVt + tVs Product rule for vector gradient of scalars (13)

V:-(sA)=A -Vs+ sV -A Product rule for divergence (I4)

V x (sA) = sV x A+ Vs x A Product rule for curl (I5)

Dot productrule V(A -B)=(A-V) B+ (B- V) A+ A XV xB+BxV xA (I6)
V-(AxB)=B-VxA-A-VxB (I7)

Cross productrules |\ % (A x B)=AV-B—-BV-A+(B-V)A-(A-V)B (I8)
VXxVxXxA=V(V-A)—-V?A Curlof curl (19)

A xB=[A,B, — A.B,, A,B, — A,B, , A,B, — A,B,]


https://en.wikipedia.org/wiki/Vector_calculus_identities#Divergence_of_gradient_is_Laplacian

Toroidal and Poloidal Magnetic Fields

Recall that since B is solenoidal (effectively V - B = 0) we can always write

B=VxA A is a vector potential

Now consider a sphere of radius ¢ (Earth’s core) surrounded by an insulator.
When J does not vanish in r < ¢, we need two scalars, not one to describe B
completely.

We divide the vector potential into parts parallel to and perpendicular to r by
writing

A=Tr + VPxr=Tr + V x (Pr) (92)

where 1" and P are scalar functions of r, known as the defining scalars of the
torotdal and poloidal fields.
To find B we take the curl:

B=Vx(Tr) + VxVx(Pr)=Br + Bp (93)

and Br is called the toroidal part of B, while Bp is the poloidal part. This

decomposition for B is unique and can always be done for all solenoidal vector
fields (those with V - F = 0).



A Physical/ Mathematical constraint added

Conventionally, the scalars are always restricted to a class of functions whose
average value over every sphere is zero, that is

0 = / T(rt) d°t = / P(rt) d°t
S(r) S(r)

With this property, the scalars become unique in (92), which means that if By
vanishes, then T' = 0, and similarly for Bp.



We can’t see the toroidal magnetic field from outside the core

* The toroidal magnetic field has no radial component:

BTZ(V/%r)T—rXVT:—rXVT - - B =0

o B, vanishes outside the conducting sphere. Hence the toroidal part of B 1n
Earth's core 1s invisible outside the core and only the poloidal part, B, , has any
detectable influence at the Earth's surface;



The toroidal magnetic field has no radial component. The lines of force lie on
spherical surfaces and are thus confined to the interior of the conducting sphere.

If we think of the sphere as Earth’s core, and say that outside the core we have
J = 0 then

B=-VVU, with VU =0. (96)

Now B is continuous at S(c) and since r - By = 0 just inside we conclude that
r - B is also zero just outside the core. But the equivalent source theorem tells
us that any harmonic function with internal sources and vanishing radial com-
ponent on S(c) is identically zero outside. By vanishes outside the conducting
sphere. The toroidal part of B in Earth’s core is invisible outside the core and
only the poloidal part, Bp, has any detectable influence at the Earth’s surface.

Typical Bp field lines Typical By field lines




Both toroidal and poloidal magnetic fields are needed to make a self sustaining dynamo
- for example

alpha-{2 model
Q) effect transforms large scale poloidal field into toroidal field




Then alpha effect drives helicity from overall rotation

3.3 The geodynamo process 99

FIG. 3.21 Production of poloidal magnetic field Bp from a toroidal magnetic field By by a
helical convective eddy. Flow in the eddy consists of two parts, a convective upwelling v, in

g y | (A) and a quasigeostrophic circulation around the upwelling v, in (B) with vorticity in the same

\3 (‘ / direction as the upwelling, generating positive kinematic helicity. Positive helicity induces an

D> d o e.m.f. £ antiparallel to By, and a loop of poloidal magnetic field with the polarity indicated
— by the filled arrows.

(®) /5\8 »

Helicity 1s defined as the correlation between the fluid
velocity, v, and 1its vorticity, V X v:

H=v-VXv



Reversals and excursions are the most extreme variations in the geomagnetic field, but it is hard to get detailed records

We use both direct and paleomagnetic observations of the field and physics based numerical simulations
to infer core fields and their changes - the latter are 1llustrated here.

Lett hemispheres are poloidal, right are toroidal, all are longitudinal averages

Glatzmaier & Roberts, 1995,
doi: 10.1038/377203a0
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https://doi.org/10.1038/377203a0

Toroidal and poloidal fields

* We can make a similar decomposition for the current flow 1n core:

VXB=u,J
V-J=0

J=J . +J,

o J-and J, are the toroidal and poloidal current flow 1n core;

Uy J=VXB=VXVX(Tr)+VXVXVX(Pr)=u,(J+J;)



Another physical norm that can be used for regularization

Ohmic Heating Norm
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Getting into the Physics of the Core

Fundamentals of Electromagnetism and the Induction Equation

* Induction by a moving conductor:

To begin, let us consider what happens when an electrical conductor 1s pulled through
a magnetic field:

3 eftects result:

(1) An electrical current 1s induced 1n the
conductor.

D (2) This current causes a magnetic field
that adds to the original field, such that
the conductor appears to drag the field
along with it.

(3) The combined magnetic field interacts
with the current resulting 1n a Lorentz

C — force that acts on conductor, opposing its

motion.

N

Interaction of a magnetic field and a moving wire loop.

(Davidson, 2001)



Ohm's law 1n a moving reference frame

 Ohm's law 1s an empirical law stating the experimentally observed
relation between the electric fields and electric current density.

 For stationary conductors 1t takes the form:

J=0FE where o is the electrical conductivity (Q ™' m™")

* When considering a moving electrical conductor, the effective
electric field 1n the frame moving with the conductor must be used:

J=0(E+E')=0(E+uxB)

* For Earth's core (predominantly liquid Fe at high P, T) the electrical
conductivity is thought to be large ~0.5x10°Q 'm'



The Magnetohydrodynamic (MHD) Approximation of Electrodynamics

* For moving conductors (Where u” < c¢*) and considering slow changes
in the EM fields ((// 7:) [ < 1) then the evolution of the magnetic
fields and electric currents are specified by:

V-B=0

VX E= OB
Ot

VXB=u,J

J=0(E+uxB)

Note 1: Only time-derivative of the magnetic field remains.
Note 2: Neglect of the displacement current means we no longer
need to consider the Gauss's electrostatic equation.

Often referred to as:
“the magnetohydrodynamic (MHD) approximation of electrodynamics™



The Magnetic Induction Equation

» Recall the equations governing electrodynamics under the
MHD approximation:

e Substituting from (4) into (3) gives

1
Uy O

(VXB)=E+uxB (5)

» Take the curl of this and using the magnetic diffusivity n=1/u, o

Vx(nVXB)=VXE+Vx(uxB) (6)



The Magnetic Induction Equation

* Next, substituting from (2) into (6) and rearranging,

%_f:VX(uXB)—VX(WVXB) (7)

* I[f 1= constant then, we can use a standard vector calculus 1dentity
together with (1) to re-write the last term as

Vx(nVxB)=nVx(VxB)=n(V(V-B)-V’B)=—nV’B

e Substituting this into (7) we arrive at the Magnetic Induction equation:

* Thus, under the MHD approximation, 1if we know the motion of the
conductor and the present magnetic field, we can calculate how the field
evolves 1n time.



Magnetic Reynolds Number

* Assume that the velocity field has a characteristic magnitude U

* Assume that the magnetic field has a characteristic magnitude B
* Assume that the lengthscale over which both fields change 1s L

* Then the ratio of the magnitudes of the terms on the RHS will be:

\Vx(uXB)\: UBIL_UL
nV’B nBIL’ 'l

=u,oU L=R

e R 1s known as the magnetic Reynolds number.

* For global motion in Earth's core (L 1s the core diameter and U=2mm/s)

R, ~2%x10°xX7x10°/1.6=8800



Diffusion of the Magnetic Field

Suppose that R 1s small and neglect the advection term, then

[ &s\VB [=(nlc) | &’sB
R R

- The longest characteristic decay time:
clmn = 7.7x10" s =55,000 years

Really do need a mechanism to continually re-generate the geomagnetic field



Perfect Conductivity: Frozen Flux

* Consider the case in which the second term on the right hand side 1s negligible
(1.e. perfect conductivity), then

Alfvén's theorem:
OB Magnetic field lines move
a7 =V X (ll X B) with a perfectly conducting
fluid as though frozen to it.

Using the standard vector calculus relation,

VX(uxB)=(B-V)u—(u-V)B since V-u=0 and V-B=0

OB
W+(u-V)B:(B-V)u or =(B-V)u

Advection of magnetic Stretching of magnetic
field along with flow field by shear of flow



Now consider a material patch of outer core fluid with surface area A oriented by a
normal unit vector n.

The total magnetic flux ® must obey the important condition

dd d .
= — J(B .n)dA =0 Alfvén’s Theorem
dt  dt

Total magnetic flux within the path 1s conserved in time. Magnetic flux moves as
though frozen into the conductor.

FIG. 3.17 Tllustration of magnetic field intensification by fluid motion in the frozen flux (perfect conductor)
limit. Stretching of an incompressible perfectly conducting cylinder containing magnetic flux @ = A;B,; att; and
conserves @ at t, but intensifies the magnetic field according to B,/B; = L,/L, = A,/ A,.

Shape of the contour evolves with time but the total
flux 1s invariant.




t=t;

Perfect Conductivity: Frozen Flux

%fB-dS:fé—B-dSﬂSB-uxdl:
S
fgﬁ 45 —§uxB-dl
S

-d§ =0

0B
! Py X (uXB)

The total flux enclosed by a material surface cannot change with
time even 1if the shape of the contour evolves : FLUX IS FROZEN
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