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Today’s Class
• Reminder that the MagnetoHydroDynamics (MHD) approximation gives us the magnetic 
induction equation  for changing magnetic field in Earth’s core

• Look at 2 end member cases - i. diffusive decay; ii. the frozen flux approximation (FFA)- 
FFA provides us with properties that are invariant with time and lets us look (in part) at 
surface flow in Earth’s core.

• In between case allows interaction between poloidal and toroidal fields that are essential to 
dynamo operation.

• Numerical dynamo simulation lets us look in detail inside the core if we can predict  the 
flow u.  Need a force balance equation.

• An example of merging numerical dynamo simulations with initial condition from field 
modeling to infer gyre driven geomagnetic decay of Earth’s dipole



Recall the magnetic induction equation describing temporal changes in B 
for the geodynamo 

 

with , the magnetic viscosity analogous to kinetic viscosity in ordinary fluid flow. 

The two terms on the RHS correspond to advection and diffusion and we will explore  
end member scenarios in which each one of them is dominant.

∂B
∂t

= ∇ × (u × B) + η∇2B

η =
1

μoσ

Recall that estimates for  range from 0.4 -2.0 m /sη 2



Recall the magnetic induction equation describing temporal changes in B 
for the geodynamo 

 

with , the magnetic viscosity - analogous to kinetic viscosity in ordinary fluid flow. 

The two terms on the RHS correspond to advection and diffusion and we will explore  
end member scenarios in which each one of them is dominant.

∂B
∂t

= ∇ × (u × B) + η∇2B

η =
1

μoσ

advection diffusion



Magnetic Reynolds Number in the Core

• Recall from our hypothetical dynamo that Rm is the ratio of two time scales: the magnetic diffusion 
time  and the circulation or overturn time .  

• Let’s assume that in Earth’s core, 
the velocity field has a characteristic magnitude U; 
magnetic field has characteristic magnitude B; 
length scale over which field  changes is L. 

• Then the ratio of the terms on the RHS of the induction equation will be 

 

For global motion in Earth’s core we can take L as outer core thickness (2260 km), U~ 2 mm/s, , 
then Rm ~ 4000,  easily larger than the  critical value for dynamo action (~ 40). Earth’s dynamo is 
strongly supercritical.

τmag = d2/η τcirc = d/v

|∇ × (u × B) |
η∇2B

=
UB/L
ηB/L2

=
τmag

τcirc
=

UL
η

= μ0σUL = Rm

η ∼ 1



Diffusion of the Magnetic Field-1

• Sustaining the geomagnetic field requires some balance between the advection and 
diffusion terms in the geomagnetic induction equation. Let’s look at these 
individually. 

• We start with  (corresponding to low Rm). Without fluid flow we expect 

the field will decay over time from its initial amplitude  with characteristic decay 
time . In a simple plane wave this would look like: 

  

We need the solution in a sphere for both poloidal and toroidal parts of the field. 
Fortunately in the low Rm limit there is no interaction between them. 

∂B
∂t

= η∇2B

B0
t0

B(x, t) = B0e2πixe−t/t0



Diffusion of the Magnetic Field -2
Recall the poloidal/toroidial decomposition of the field (Slide 11, Lecture 14) 

When Rm  is small each scale potential obeys its own diffusion equation, and the toroidal and poloidal field 
scalars will diffuse independently. 

 

Slowest decay term in P  is the dipole and for a core of uniform conductivity we find the solution in a sphere of 
radius c involves the spherical Bessel function order 1, , and 

 

with dipole decay time  ~ 20-50 ky for  corresponding to current views of core conductivity. 

Dipole moment in free decay obeys an equation like that for P, so . 

 

∂T
∂t

= η∇2T
∂P
∂t

= η∇2P

j1

P(t) = P0 j1(πr/c)cos θ(e−t/tdip)

τdip =
c2

π2η
η

m = m0e−t/τdip

Recall that since B is solenoidal (e↵ectively r ·B = 0) we can always write

B = r⇥A

Now consider a sphere of radius c (Earth’s core) surrounded by an insulator.
When J does not vanish in r < c, we need two scalars, not one to describe B
completely.
We divide the vector potential into parts parallel to and perpendicular to r by
writing

A = Tr + rP ⇥ r = Tr + r⇥ (Pr) (92)

where T and P are scalar functions of r, known as the defining scalars of the
toroidal and poloidal fields.
To find B we take the curl:

B = r⇥ (Tr) + r⇥r⇥ (Pr) = BT + BP (93)

and BT is called the toroidal part of B, while BP is the poloidal part. This
decomposition for B is unique and can always be done for all solenoidal vector
fields (those with r · F = 0).

Conventionally, the scalars are always restricted to a class of functions whose
average value over every sphere is zero, that is

0 =

Z

S(r)
T (rr̂) d2r̂ =

Z

S(r)
P (rr̂) d2r̂

With this property, the scalars become unique in (92), which means that if BT

vanishes, then T = 0, and similarly for BP .
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This verifies we really do need a mechanism to continually regenerate the geomagnetic field  for it to survive for several Ga.



  

Perfect Conductivity: Frozen Flux

● Consider the case in which the second term on the right hand side is negligible 
(i.e. perfect conductivity), then

Using the standard vector calculus relation,

∇×(u×B)=(B⋅∇)u−(u⋅∇)B since ∇⋅u=0 and ∇⋅B=0

∂B
∂ t

=∇×(u×B)

∂B
∂ t

+(u⋅∇)B=(B⋅∇ )u or
D B

Dt
=(B⋅∇)u

Advection of magnetic
field along with flow

Stretching of magnetic
field by shear of flow

Alfvén's theorem: 
Magnetic field lines move
with a perfectly conducting
fluid as though frozen to it.

Now lets look at pure advection - just fluid flow



Now consider a material  patch of outer core fluid with surface area A oriented by a  
normal  unit vector . 

The total magnetic flux  must obey the important condition 

  Alfvén’s Theorem 

Total magnetic flux within the path is conserved in time. Magnetic flux moves as  
though frozen into the conductor.

n̂

Φ

dΦ
dt

=
d
dt ∫ (B . n̂)dA = 0

Shape of the contour evolves with time but the total  
flux is invariant.



  

Perfect Conductivity: Frozen Flux

d

dt
∫
S

B⋅d S=∫
S

∂B
∂ t

⋅d S+∮
C

B⋅u×d l=

=∫
S

∂ B
∂ t

⋅d S−∮
C

u×B⋅d l

=∫
S
( ∂ B∂ t −∇×(u×B))⋅d S=0

The total flux enclosed by a material surface cannot change with 
time even if the shape of the contour evolves : FLUX IS FROZEN

Why is this at all useful? 
If can identify patches on the 
core surface maybe we can detect 
Ohmic diffusion. 

Frozen-flux approximation is the  
starting point for attempts to map 
fluid flow at the core surface.



gufm1 field model at Core-mantle Boundary

Does the Frozen Flux Approximation (FFA) work? 
Number of null flux curves and integral of  through each should remain constant over time.
This can be tested if our maps of  at the CMB are sufficiently accurate.

Br
Br

FFA  relies on high Rm and ability to ignore magnetic diffusion. We expect this to be a better approximation at  
large spatial scales and over short time intervals. 



In the perfect conductor limit of the induction equation (no magnetic diffusion) 

 

For the radial component of the rate of magnetic change just below the CMB we can 
write a tracer equation for   

 

where the H refers to the horizontal component of the flow and we have supposed 
that the radial component of u can be neglected (fluid can’t pass through the CMB). 

∂B
∂t

+ (u ⋅ ∇)B = (B ⋅ ∇)u

Br

∂Br

∂t
+ (uH ⋅ ∇)Br = − Br(∇H ⋅ u)

Tracking core surface flow under FFA



Tracking core surface flow under FFA

In the perfect conductor limit of the induction equation (no magnetic diffusion) 

 

For the radial component of the rate of magnetic change just below the CMB we can write a trace 
equation for   

 

where the H refers to the horizontal component of the flow and we have supposed that the radial 

component of u can be neglected. If we know  it is possible to recover  provided we 

supply some additional constraints to resolve the two horizontal velocity components..

∂B
∂t

+ (u ⋅ ∇)B = (B ⋅ ∇)u

Br

∂Br

∂t
+ (uH ⋅ ∇)Br = − Br(∇H ⋅ u)

Br and
∂Br

∂t
uH

advective transport Intensity changes in Br due to horizontal divergence of outer core flow



  

Calculation of Fluid Flow Models at the Surface of the Core

Figure 4.5.3.1 - notes

Core surface velocity orthogonal to null flux curves 
(places where ) in IGRF 1980. These velocities 
can be determined uniquely from the positions of the  
null flux curves if they are known.  

Components parallel to the curves are unknown, because 
 parallel to  contours, and under FFA there is  

no secular variation there.  

Additional constraints used to recover both components  
of  everywhere under FFA could be: 
• steady state flow 
• purely toroidal flow 
• tangentially geostrophic or quasi-geostrophic 
• columnar flow 
• helical flow.

Br = 0

∇H ⋅ u = 0 Br

uH



What do the additional constraints mean?

• steady state - no change in u  with time 

• toroidal flow - horizontal divergence of velocity,  or  -  reasonable if expect stable 
stratification in   layer of outer core 

• tangential geostrophy - geostrophic force balance to tangential components of flow leads to  

• columnar flow constraint -  

• helical flow assumes tangential divergence of the flow, , is spatially correlated with the radial component 
of the vorticity  - expect this for  dynamo and strongly helical flow due to influence of Coriolis 
acceleration

∇H ⋅ u = 0 ur = 0
E′ 

∇H ⋅ (u cos θ) = 0

∇H ⋅ u =
2 tan θ

c
uθ

∇H . u
(∇ × u)r α2



Note the large counterclockwise gyre in the  
southern hemisphere beneath the southern ocean,  
high latitude vortices around the intense flux patches. 
These are common to almost all frozen flux inversions.

FF image of flow near top of core with columnar constraint



Independent Checks on FFA

Length of day variations predicted from core flow - due to changes in angular momentum in the core transmitted to the mantle. 



Back to the full induction equation and 
the in-between case of finite but large Rm

Poloidal, P, and toroidal, T,  potentials and fields will interact. In terms of radial field and velocity,  
respectively,  with  it can be shown that 

,            ** 

where  

. 

** can be thought of as being like a heat transport equation for poloidal field, with the 2nd term on the RHS a 
magnetic field production term involving both toroidal and poloidal terms. There is a similar equation for the 
toroidal field.  

Poloidal field is transported and diffuses much like temperature, but production is proportional to both 
potentials and also to the fluid radial velocity. Coupling can amplify the poloidal field through interaction 
with fluid u. Note that when  there is no coupling. 

Radial fluid motion is needed to generate the poloidal magnetic field in the core. Horizontal motions are not 
sufficient, although they do affect the field structure.

Br, ur
rur = r ⋅ u

∂
∂t

rBr + (u . ∇)rBr = η∇2rBr + (BT + BP) ⋅ ∇(rur)

rBr = r . B = r ⋅ ∇ × ∇ × (rP)

ur = 0



Ingredients needed for a dynamo

• large electrically conducting fluid in planetary interior

• energy supply (for convection)

• planetary rotation (swirls the field around)

We started with



Additional needs for dynamo regeneration

• supercritical Magnetic Reynolds number, Rm 

• fluid motion with helicity to produce an  effect  

• fluid motion with shear for -effect 

• Ohmic dissipation contributes much more to 
energy loss than viscous friction, so kinetic/
magnetic energy exchange is extremely 
important. 

α

ω

Energy Pathways in self-sustaining dynamo system

Figure 3.24, Earth’s Core



Then alpha effect drives helicity from overall rotation

Helicity is defined as the correlation between the fluid  
velocity, , and its vorticity, :  

 

In an  dynamo the  effect is parametrized as a linear   
relationship between the helicity induced emf and the toroidal  
field     

u ∇ × u

H = u ⋅ ∇ × u

α2 α

ℰ = u × B = αBT



Both toroidal and poloidal magnetic fields are needed to make a self sustaining dynamo 
- for example

alpha-Ω model 
Ω effect transforms large scale poloidal field into toroidal field 



  

Equations governing core dynamics

● Ingredients of core dynamics

(Modified from Aurnou, 2007)

Not just the magnetic induction equation



  

Equations governing core dynamics

● The Navier-Stokes equation

Force due
to pressure
gradient

Viscous
force on
fluid 

Advection of
flow momentum
along with fluid 

Rate of change of 
flow momentum 
w.r.t. time 

ρ
∂u
∂ t

+ρ(u⋅∇)u=−∇ P+ρν∇ 2
u

We start with

But that’s not all  - there are more forcing terms



  

Equations governing core dynamics

● Adding rotation: The Coriolis Force

Coriolis force 
due to rotating 
reference frame

Centrifugal acceleration
is added to pressure gradient, 
so P is effective pressure in 
the rotating frame.

ρ
∂u
∂ t

+ρ(u⋅∇)u+2ρ(Ω×u)=−∇ P+ρν∇ 2
u



  

Equations governing core dynamics

● The Buoyancy force

Temperature differences 
produce a change in density
and so a buoyancy force.

ρ0

∂u
∂ t

+ρ0(u⋅∇)u+2ρ0(Ω×u)=−∇ P−ρ0 αT g+ρ0 ν ∇2
u

● The effects of the buoyancy forces are most easily taken into account using the 
Boussinesq Approximation:

- The fluid is assumed to have constant background density ρ0 with a background 

temperature field T0, and perturbations T evolving as:

- Viscous and Ohmic heating effects neglected.

- Only dynamic effect of T is through gravity g acting on density perturbations ραΤ 
as described in the buoyancy force.

∂T
∂ t

+(u⋅∇)T 0=κ ∇ 2
T



  

Equations governing core dynamics

● The Lorentz force

Lorentz force:
Force due to magnetic
field acting on electric
currents in fluid.

ρ0

∂u
∂ t

+ρ0(u⋅∇)u+2ρ0(Ω×u)=−∇ P−ρ0 αT g+(J×B)+ρ0 ν∇ 2
u



  

Equations governing core dynamics

● These are the equations of convection-driven, rotating 
magnetohydrodynamics under the Boussinesq approx.

ρ0

∂u
∂ t

+ρ0(u⋅∇)u+2ρ0(Ω×u)=−∇ P−ρ0 αT g+(J×B)+ρ0 ν∇ 2
u

∂T
∂ t

+(u⋅∇ )T
0
=κ∇ 2

T

∂ B
∂ t

=∇×(u×B)+η∇ 2
B

∇⋅u=0

∇⋅B=0

These equations are used in numerical dynamo simulations…… usually they are non-dimensionalized first. 



 

Heimpel and Evans (2013)

Dynamo Simulations: Pros

Radial magnetic field, core-mantle boundary 
(snapshot)

Radial magnetic field, core-mantle boundary 
(time-average)



 

 

 

 

Dynamo Simulations: Cons

 

Navier Stokes Eq’n

Temperature Eq’n

Magnetic Induction Eq’n

Dimensionless Numbers: 
E = Ekman number; Pr  = Prandtl  number; Ra = Rayleigh number; Pm = Magnetic Prandtl number



 

 

Dynamo Simulations: Cons

Roberts and King (2013)

• Parameters are far from geophysical reality  

(Note Pm ~ 1 in figure to right) 

• Initial conditions are generally arbitrary 

• Outputs are dimensionless and need to be rescaled



A long-standing problem in geophysics is the origin of the
ongoing decay in the strength of the dipolar part of
the Earth’s magnetic field1–3. Direct measurements of the

field intensity, available since the time of Gauss4,5, indicate that
the dominant axial component of the dipole field, parallel to the
planetary rotation axis, has been decreasing at a mean rate6 of
16 nT yr! 1—see Fig. 1. The decay rate exhibits surprisingly large
fluctuations on relatively short decadal time scales; the field was
decaying twice as fast in 1980 as it is today. The physical process
responsible for the dipole decay must, therefore, also evolve on
fast decadal time scales. The Earth’s magnetic field is generated by
a dynamo operating within the liquid metal outer core. Here fluid
motions stretch, twist, and transport magnetic field lines7–9

converting kinetic energy into magnetic energy, driving the
evolution of the field and maintaining it against Ohmic
dissipation. Improved understanding of the mechanism of
dipole decay thus requires study of the motions taking place
within the core and determining how these produce the observed
diminishing.

The obvious explanation of a free Ohmic decay process,
resulting from the finite electrical conductivity of the core, is
untenable as it is about 20 times too slow. Free decay of the dipole

would take B55,000 years based on the latest estimates of
core conductivity10,11, whereas if the mean decay rate6 between
1840 and 2010 of 16 nT yr! 1 were to continue, the axial dipole
would reach zero within 1,900 years. Furthermore, free decay is
incompatible with the accelerations in the rate of decay observed
during the past 2,000 years12. Two alternative mechanisms, both
driven by fluid motions within the core, have therefore been
proposed. The first is the growth by magnetic diffusion of
reversed flux features at the core–mantle boundary via toroidal
flux expulsion2,13. It is, however, difficult to conclusively
demonstrate that growth of reversed flux patches is occurring at
the rate required to explain the observed dipole decay and its
fluctuations14. A second possibility is that flow in the core acts, on
average, to transport normal magnetic flux towards the equator12

and reversed flux poleward2,15. This meridional flux advection
mechanism operates even in the absence of magnetic diffusion,
and involves the transfer of magnetic energy from the axial dipole
to other field components, rather than a direct loss to heat via
Ohmic dissipation.

The detailed morphology of the large-scale geomagnetic
field and its rate of change is now well established thanks to 15
years of magnetic observations from low-Earth orbit satellites16.
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Figure 1 | Observed and modelled decay of the geomagnetic axial dipole. Axial dipole magnitude g0
1

!! !! since 1840 (inset, red line, units: nT) and its rate of

decay dg0
1 =dt (red shaded area shows one standard deviation uncertainties, units: nTyr! 1), from the COV-OBS6 geomagnetic field reconstruction.

Comparable dipole decay rates are produced by a prototype gyre acting on an asymmetric field (green dot–dashed line, see also Fig. 2a), and by a more
realistic filtered gyre flow, acting on the observed field averaged over 2000–2010 (purple star, see also Methods section and Fig. 2c). The solid black line
with dots is the retrieved axial dipole decay rate from a series of 3D inversions for the field and flow within the core, based on geodynamo model
multivariate statistics22 (see also Methods section and Figs 3 and 4). Each dot represents an independent inversion for the core state; these inversions are
equally spaced in time. For the 3D inversion results, the dipole decay rate can be decomposed into its advective (dark blue line with dots) and diffusive
(light blue line with dots) components. The grey area shows the 1 s.d. spread of an ensemble of 40 geodynamo model forward calculations, initialized using
the estimated core state22 in 2010, with randomized realizations of small scales; the ensemble mean is shown by the black dot–dash line. Corresponding
ensemble mean advective and diffusive contributions are given by the dark and light blue dot–dashed lines. The latest values for the axial dipole and its
decay rate in 2014, as determined using the data from ESA’s Swarm satellite constellation39, are marked by the gold diamonds.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10422

2 NATURE COMMUNICATIONS | 7:10422 | DOI: 10.1038/ncomms10422 | www.nature.com/naturecommunications

Dynamo simulations are sometimes initialized 
with states  considered representative of the  
geomagnetic field.

Finlay et al., 2016, https://www.nature.com/articles/ncomms10422



decay, what then is the role of the magnetic diffusion that we have
neglected in the above simple examples? Determining the role
of diffusion in geomagnetic field evolution is challenging as it
requires knowledge of the magnetic field structure within the
core. In numerical geodynamo models8, the equations of
conservation of momentum, magnetic induction and heat
transport are time-stepped throughout the core, for prescribed
values of control parameters. Since the magnetic fields and
velocity fields are completely known, the role of magnetic
diffusion can be fully assessed; whether or not the resulting
kinematic processes are relevant to the Earth depends largely on
the magnetic Reynolds number Rm¼UL/Z, whether U is a typical
velocity, L is a typical length scale and Z is again the magnetic
diffusivity; typical estimates11,30 for the Earth’s core are in the
range 1000–1500.

It has recently been demonstrated that multivariate statistics
(linear correlations between fields) collected during a numerical
dynamo forward calculation may be used as prior information in
an inversion to estimate a complete field and flow state within the
core that is consistent both with geomagnetic observations and
that numerical dynamo22. We have examined a series of such
inversions22 based on the COV-OBS6 geomagnetic field model
and taking prior information from a specific numerical
dynamo, hereafter referred to as the coupled earth or CE
dynamo31, with a relatively large Rm¼ 942 that generates a
planetary gyre similar to that indicated by the observations. Fig. 1
presents the axial dipole rate of change obtained from these three-
dimensional (3D) inversions (black line with dots), including a
decomposition into the respective advective (dark blue line with

dots) and diffusive (light blue line with dots) contributions. The
fluctuations in the observed rate of dipole decay are closely
tracked by fluctuations of the advective component. The
contribution of magnetic diffusion to dipole decay is on the
other hand almost constant at about 5 nT yr" 1. We conclude that
meridional advection of flux is usually responsible for majority of
the dipole decay, especially when the rate of decay is rapid. For
example in 1980 more than 80% of the decay rate can be
attributed to advective processes, with maps of " 3/2m0 uysinyBr
showing an enhanced contribution to dipole decay by very strong
equatorward flux transport south-west of Australia. In addition to
the decrease in the magnitude of the axial dipole over the past 170
years, the dipole tilt angle has also simultaneously decreased29,
meaning that the equatorial dipole is decreasing even faster than
the axial dipole; this is also likely to be a primarily advection-
driven process26.

Geodynamo model forward calculations. In a further step, we
started an ensemble of numerical dynamo forward runs starting
from the inferred core state22 in 2010 (see Methods section). The
resulting predictions are delimited by the grey region in Fig. 1 and
show a continuing decay of the geomagnetic axial dipole.
A visualization of an example of the 3D field and flow
estimated within the core in 2015, from one of these dynamo
forward calculations, is presented in Fig. 3. Strong equatorward
flow in the eastern limb of the gyre at the core surface is seen to
be connected with vigorous underlying columnar convection. The
estimated magnetic field within the core is arranged into large-
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Figure 4 | Gyre-driven dipole decay as inferred using the CE dynamo. Maps of the core surface showing (a,c) core surface flow (arrows) acting
on the radial magnetic field Br (units: mT) and (b,d) the associated maps of contributions to axial dipole moment (ADM) change from core surface
meridional flux transport " 3/2m0 uysinyBr, units As" 1. (a,b) Here the situation in 2015 is shown, for the same 3D state presented in Fig. 3, derived from a
forward run of the CE dynamo model31 estimated from the inverted core state22 in 2010. (c,d) The same quantities for the inverted 3D core state in 1980
are shown, when the magnitude of dipole decay was twice as large as in 2015. Note that magnetic diffusion has been taken into account when deriving the
flows presented here, which was not the case for the results presented in Fig. 2.
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written as12,25,26

dmz

dt
¼ " 3

2m0

Z
uy sinyBr dSþ 3Z

2m0

Z
ẑ $r2BdV : ð2Þ

The first term on the right denotes the contribution from the
meridional transport of flux by advection, while second
describes the contribution from magnetic diffusion. By mapping
" 3/2m0 uysinyBr, it is therefore possible to pinpoint locations
where advective processes contribute most to axial dipole
moment changes12,26.

Results
Simple illustrations of gyre-driven dipole decay. In Fig. 2a,b, we
present a prototype example of our proposed gyre-driven mechan-
ism for dipole decay. The essential ingredients are a departure of the
field from axial symmetry and meridional flows that, on average,
transport normal flux equatorward and reversed flux poleward. In
Fig. 2a, starting with a negative axial dipole field as for the Earth
today, this is achieved by placing strong normal field where there is
equatorward flow and reversed field where there is poleward flow.
Fig. 2b shows the resulting map of " 3/2m0 uysinyBr, which has a
net positive value when integrated over the core surface, indicating
the magnitude of the (negative) axial dipole is decaying. The max-
imum flow speed in this example is 19 km yr" 1, the assumed
magnitude of the axial dipole field at Earth’s surface is " 30,000 nT,
the imposed radial field asymmetries are ±0.8 mT at the core
surface, and the resulting rate of axial dipole decay is 13.6 nT yr" 1

(green line, Fig. 1). Despite its simplicity, this demonstrates how a
gyre with an Earth-like flow speed27, acting on a reasonable field
asymmetry, can produce the observed magnitude of axial dipole
decay.

Fig. 2c,d presents a more realistic scenario involving the known
large-scale radial field at the core surface6, acted on by a recent

observation-based quasi-geostrophic core flow19, that
has been filtered to leave only the planetary gyre structure
(see Methods section). Both this filtered gyre flow and the
earlier prototype flow from Fig. 2a are equatorially symmetric,
as required by the Taylor–Proudman theorem for rotation-
dominated flows17. Both field and flow in Fig. 2c have been
averaged over the decade 2000–2010 during which there are
excellent observational constraints, thanks to the availability of
magnetic data from the CHAMP and Øersted satellites and an
extensive network of ground observatories. The integrated value
of " 3/2m0 uysinyBr mapped in Fig. 2d is again positive, so
meridional flux transport once more causes dipole decay (purple
star, Fig. 1). In this case there is little net contribution to dipole
decay from the northern hemisphere, where intense normal
flux is advected both poleward (under North America) and
equatorward (under Asia). The dipole decay instead originates in
the southern hemisphere, in agreement with the findings
of previous observational studies2,28, due to the vigorous
equatorward transport of intense normal flux south-west of
Australia that is not balanced as there is a lack of intense normal
flux (and presence of some reversed flux) in the region beneath
South America where the flow is poleward. It is this asymmetry in
the southern hemisphere magnetic field, that also results in the
South Atlantic Anomaly29 at Earth’s surface, which enables
the gyre to drive the present dipole decay. Fluctuations of the
meridional flow, particularly in the eastern equatorward limb
of the gyre, can in this configuration easily generate rapid
fluctuations in the dipole decay rate. Fig. 2e presents the
quasi-geostrophic flow averaged over 2000–2010 without
filtering; as shown in Fig. 2f, it produces similar patterns of
meridional flux transport.

Three-dimensional core state inversions. If meridional flux
advection is capable of producing the observed rate of dipole

210–1–2
mT

–40 km yr–1

Figure 3 | Estimated field and flow within the core in 2015. Volume visualization of the estimated magnetic field and flow within Earth’s core in 2015
from a numerical geodynamo31 model forward run initialized with an inferred core state22 for 2010. Orange and blue contours show the intensity of
the radial magnetic field, azimuthally averaged in a meridional plane within the shell, and at the core surface in the inset. The red and dark blue iso-surfaces
are of constant axial flow velocity and illustrate intense columnar convection at the eastern meridional limb of the gyre, as also seen in the inset core
surface flow plot. Field lines within the shell have thickness proportional to their magnetic energy. The inner core is black and the core–mantle boundary is
transparent. The 3D view faces longitude 90! E, with a cutaway between 90! and 180! E.
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