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Today’s Class

* Reminder that the MagnetoHydroDynamics (MHD) approximation gives us the magnetic
induction equation for changing magnetic field in Earth’s core

* Look at 2 end member cases - 1. diffusive decay; 11. the frozen flux approximation (FFA)-
FEA provides us with properties that are invariant with time and lets us look (in part) at
surtace flow 1n Earth’s core.

* In between case allows interaction between poloidal and toroidal fields that are essential to
dynamo operation.

 Numerical dynamo simulation lets us look 1n detail inside the core 1f we can predict the
flow u. Need a force balance equation.

* An example of merging numerical dynamo simulations with initial condition from field
modeling to infer gyre driven geomagnetic decay ot Earth’s dipole



Recall the magnetic induction equation describing temporal changes in B
for the geodynamo
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with 1 = , the magnetic viscosity analogous to kinetic viscosity in ordinary fluid flow.
HoO

The two terms on the RHS correspond to advection and diffusion and we will explore

end member scenarios 1n which each one of them 1s dominant.

Recall that estimates for # range from 0.4 -2.0 m?/s



Recall the magnetic induction equation describing temporal changes in B
for the geodynamo

diffusion

— =VX(uXxDB)+
ot
with 1 = , the magnetic viscosity - analogous to kinetic viscosity in ordinary fluid flow.
HoO

The two terms on the RHS correspond to advection and diffusion and we will explore
end member scenarios in which each one of them 1s dominant.



Magnetic Reynolds Number in the Core

e Recall from our hypothetical dynamo that Rm 1s the ratio of two time scales: the magnetic diffusion

time 7, , = d*/n and the circulation or overturn time 7, . = d/v.

8 Irc

e [et’s assume that in Earth’s core,
the velocity field has a characteristic magnitude U;
magnetic field has characteristic magnitude B;
length scale over which field changes 1s L.

e Then the ratio of the terms on the RHS of the induction equation will be
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For global motion in Earth’s core we can take L as outer core thickness (2260 km), U~ 2 mm/s, n ~ 1,
then Rm ~ 4000, easily larger than the critical value for dynamo action (~ 40). Earth’s dynamo 1s
strongly supercritical.



Diffusion of the Magnetic Field-1

e Sustaining the geomagnetic field requires some balance between the advection and
diffusion terms in the geomagnetic induction equation. Let’s look at these
individually.

oB
o We start with — = 1 V2B (corresponding to low Rm). Without fluid flow we expect

the field will decay over time from its initial amplitude B, with characteristic decay
time f,. In a simple plane wave this would look like:

B(.X, t) — BOeZﬂixe—t/tO

We need the solution 1n a sphere for both poloidal and toroidal parts of the field.
Fortunately 1n the low Rm limit there 1s no interaction between them.



Ditftusion of the Magnetic Field -2

Recall the poloidal/toroidial decomposition of the field (Slide 11, Lecture 14)

B=Vx(Tr) + VxVx(Pr)=Br + Bp

When Rm 1s small each scale potential obeys its own diffusion equation, and the toroidal and poloidal field
scalars will diffuse independently.

— =y VT a—P=;7V2P
ot ot

Slowest decay term 1n P 1s the dipole and for a core of uniform conductivity we find the solution 1n a sphere of
radius c involves the spherical Bessel function order 1, j;, and

P(t) = Py j,(rr/c)cos O(e ")
2

with dipole decay time 7;;, = —— 20-50 ky for # corresponding to current views of core conductivity.
|

Dipole moment 1n free decay obeys an equation like that for P, so m = moe_’/ Fdip

This verifies we really do need a mechanism to continually regenerate the geomagnetic field for it to survive for several Ga.



Now lets look at pure advection - just fluid flow

* Consider the case 1n which the second term on the right hand side 1s negligible
(1.e. perfect conductivity), then

Alfven's theorem:
Magnetic field lines move

OB
5 V X(uxB) with a perfectly conducting

fluid as though frozen to it.

Using the standard vector calculus relation,

VX(uxB)=(BV)u—(u-V)B since V-u=0 and V-B=0

OB
W+(u-V)B:(B-V)u or =(B-V)u

Advection of magnetic Stretching of magnetic
field along with flow field by shear of flow



Now consider a material patch of outer core fluid with surface area A oriented by a
normal unit vector n.

The total magnetic flux ® must obey the important condition

dd d .
= — J(B .n)dA =0 Alfvén’s Theorem
dt  dt

Total magnetic flux within the path 1s conserved in time. Magnetic flux moves as
though frozen into the conductor.

FIG. 3.17 Tllustration of magnetic field intensification by fluid motion in the frozen flux (perfect conductor)
limit. Stretching of an incompressible perfectly conducting cylinder containing magnetic flux @ = A;B,; att; and
conserves @ at t, but intensifies the magnetic field according to B,/B; = L,/L, = A,/ A,.

Shape of the contour evolves with time but the total
flux 1s invariant.




t=t;

Perfect Conductivity: Frozen Flux
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The total flux enclosed by a material surface cannot change with

time even 1f the shape of the contour evolves : FLUX IS FROZEN
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Why 1s this at all usetul?
If can 1dentify patches on the

core surface maybe we can detect
Ohmic diffusion.

Frozen-flux approximation 1s the
starting point for attempts to map
fluid flow at the core surface.



Does the Frozen Flux Approximation (FFA) work?
Number of null flux curves and integral of B, through each should remain constant over time.
This can be tested if our maps of B, at the CMB are sufficiently accurate.

gufml field model at Core-mantle Boundary
B, 1590 AD

FFA relies on high Rm and ability to 1gnore magnetic diffusion. We expect this to be a better approximation at
large spatial scales and over short time 1ntervals.



Tracking core surface flow under FFA

In the perfect conductor limit of the induction equation (no magnetic diffusion)

0B
—+(u-V)B=B-V)u
ot

For the radial component of the rate of magnetic change just below the CMB we can

write a tracer equation for B,

oB
ot

4 + (llH° V)BI‘: —B,,(VH° U)

where the H refers to the horizontal component of the flow and we have supposed
that the radial component of u can be neglected (fluid can’t pass through the CMB).



Tracking core surface flow under FFA

In the perfect conductor limit of the induction equation (no magnetic diffusion)

B
Fa-V)B=@B-V)u
ot

For the radial component of the rate of magnetic change just below the CMB we can write a trace
equation for B,

a B advective transport Intensity changes in Br due to horizontal divergence of outer core flow

atr : (llH° V)BF BI/‘(VH. ll)

where the H refers to the horizontal component of the flow and we have supposed that the radial

oB
component of u can be neglected. If we know B, and a—tr it 1S possible to recover uy provided we

supply some additional constraints to resolve the two horizontal velocity components..




Calculation of Fluid Flow Models at the Surftace of the Core

Core surface velocity orthogonal to null flux curves

(places where

B, = 0) in IGRF 1980. These velocities

can be determined uniquely from the positions of the
null flux curves 1f they are known.

Components parallel to the curves are unknown, because
V- u = 0 parallel to B, contours, and under FFA there is
no secular variation there.

Additional constraints used to recover both components

of uy everyw.
» steady state :

here under FFA could be:
low

* purely toroidal flow
» tangentially geostrophic or quasi-geostrophic
 columnar flow

* helical flow.



What do the additional constraints mean?

* steady state - no change in u with time

« toroidal flow - horizontal divergence of velocity, V- u =0 or u. = O - reasonable if expect stable

stratification in £’ layer of outer core

e tangential geostrophy - geostrophic force balance to tangential components of flow leads to V4 - (mwcos @) = 0

. 2tan @
. columnar flow constraint - Vg - u = Ug
C

» helical flow assumes tangential divergence of the flow, V. u, 1s spatially correlated with the radial component
of the vorticity (V X u), - expect this for a? dynamo and strongly helical flow due to influence of Coriolis

acceleration



FF image of flow near top of core with columnar constraint

mT Note the large counterclockwise gyre in the
southern hemisphere beneath the southern ocean,
I-‘l

high latitude vortices around the intense flux patches.
These are common to almost all frozen flux inversions.

Core low
6 Dipole axis

Download : Download full-size image

Fig. 3.25. A frozen flux image of flow near the top of the outer core at epoch
2005 based on the columnar flow constraint. Streamlines of the horizontal
flow with directional arrows are shown overlaying contours of the radial
magnetic field on the core-mantle boundary at the same epoch. Continental
outlines are shown for reference. Black cross and circle denote the location of
the North and South Geomagnetic Poles, respectively.



Length of day variations predicted from core flow - due to changes in angular momentum 1n the core transmitted to the mantle.
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FIG.3.26 Comparison of the observed excess length-of-
day variations (in milliseconds) that is attributed to the
deep Earth (squares and filled circles), with predictions from
various frozen flux images of core flow. Reproduced with
permission from Ponsar, S., Dehant, V., Holme, R., Jault, D.,
et al., 2003. The core and fluctuations in the Earth’s rotation.
In: Dehant, V., Karato, S., Zatman, S. (Eds.), Earth’s Core:
Dynamics, Structure, Rotation. AGU Geodynamics Series v31.



Back to the full induction equation and
the in-between case of finite but large Rm

Poloidal, P, and toroidal, 7; potentials and fields will interact. In terms of radial field and velocity, B, u,
respectively, with ru, = r - u 1t can be shown that

0
EVB,, +@.V)rB.=nV?rB, + (Bt + Bp) - V(ru,), o

where
rB.=r.B=r-V XV X(P).

** can be thought of as being like a heat transport equation for poloidal field, with the 2nd term on the RHS a

magnetic field production term 1nvolving both toroidal and poloidal terms. There 1s a similar equation for the
toroidal field.

Poloidal field 1s transported and diffuses much like temperature, but production 1s proportional to both
potentials and also to the fluid radial velocity. Coupling can amplify the poloidal field through interaction
with fluid u. Note that when u, = 0 there 1s no coupling.

Radial fluid motion 1s needed to generate the poloidal magnetic field in the core. Horizontal motions are not
sufficient, although they do affect the field structure.



We started with

Ingredients needed for a dynamo

¢ large electrically conducting fluid 1n planetary interior
e cnergy supply (for convection)

e planetary rotation (swirls the field around)



Additional needs for dynamo regeneration

Energy Pathways in self-sustaining dynamo system

supercritical Magnetic Reynolds number, Rm . ,
Gravitational Rotational
potential Kinetic
fluid motion with helicity to produce an a effect energy energy
Convective | | Incrtial
fluid motion with shear for w-ettect instability I mstabiity
S . Magnetic [*—| Fluid motion
Ohmic dissipation contributes much more to energy  — kinetic energy
energy loss than viscous friction, so kinetic/ S —
magnetic energy exchange 1s extremely dissipation | & [ dissipation
1mportant. Heat

Figure 3.24, Earth’s Core



Then alpha etfect drives helicity from overall rotation

3.3 The geodynamo process 99

FIG. 3.21 Production of poloidal magnetic field By from a toroidal magnetic field Br by a

-_\.“_

(A) //’_/,_ helical convective eddy. Flow in the eddy consists of two parts, a convective upwelling v, in
| Vs ) ) (A) and a quasigeostrophic circulation around the upwelling v, in (B) with vorticity in the same
\R} (/ / direction as the upwelling, generating positive kinematic helicity. Positive helicity induces an
O N C , | e.m.f. £ antiparallel to By, and a loop of poloidal magnetic field with the polarity indicated
by the filled arrows.

(B) N Helicity is defined as the correlation between the fluid

\
LEAY . . g
Q velocity, u, and 1ts vorticity, V X u:

S

B, H=u-V Xu

In an @ dynamo the a effect is parametrized as a linear
relationship between the helicity induced emf and the toroidal

field € =uXxB = aBy




Both toroidal and poloidal magnetic fields are needed to make a self sustaining dynamo
- for example

alpha-Q model
Q) effect transforms large scale poloidal field into toroidal field




Equations governing core dynamics

* Ingredients of core dynamics

Core-Mantle
Boundary

Tangent cvlinder
barrier to flow I

Magnetic
Field

——| Small Scale

(Modified from Aurnou, 2007)
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Not just the magnetic induction equation



Equations governing core dynamics

We start with

* The Navier-Stokes equation

ou
P o1

+

Rate of change of
flow momentum
w.I.t. time

Viscous
force on
fluid

But that’s not all - there are more forcing terms

ovViu




Equations governing core dynamics

* Adding rotation: The Coriolis Force




Equations governing core dynamics

* The Buoyancy force

Y P

* The effects of the buoyancy forces are most easily taken into account using the
Boussinesq Approximation:

- The fluid 1s assumed to have constant background density p, with a background
temperature field T,, and perturbations T evolving as:

aaf +(u-V)Ty=kV°'T

- Viscous and Ohmic heating effects neglected.
- Only dynamic effect of T 1s through gravity g acting on density perturbations paT
as described 1n the buoyancy force.




Equations governing core dynamics

e The Lorentz force

9,
o 8;’+p0(u-V)u+2pO(.Q><u)I—VP—pOaTg.+pOvvzu




Equations governing core dynamics

e These are the equations of convection-driven, rotating
magnetohydrodynamics under the Boussinesq approx.

O
u G+ 1V s 2, (@xu) ==V P=pyaT g+(J < B)+p, vV

aT+(u-V)T0= kV°T

Ot
%fZVX(uXBH nV’B
V-u=0
V-B=0

These equations are used in numerical dynamo simulations...... usually they are non-dimensionalized first.



Dynamo Simulations: Pros

Radial magnetic field, core-mantle boundary

(snapshot)

Heimpel and Evans (201 3)
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Radial magnetic field, core-mantle boundary

(time-average)

We get: B inside core; high spatio-temporal resolution; predictive power




Dynamo Simulations: Cons

E Du . PmERa
+zZXu=-VP +

T'# + (VX B) X B + EV?
Pm Dt pr 1 t+(VxB)xB+EVu

Navier Stokes Eq’'n

o + (u-V)T' = fm VeT' + S
ot v ~ Pr

Temperature Eq'n

Magnetic Induction Eq’'n aa—B + (u . V)B — (B . V)u + V2B
L

V-u=V-B=20

B = magnetic induction
u = velocity field

T = temperature

Dimensionless Numbers:
E = Ekman number; Pr = Prandtl number; Ra = Rayleigh number; Pm = Magnetic Prandtl number
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(Note Pm ~ 1 in figure to right)
* Outputs are dimensionless and need to be rescaled

» Parameters are far from geophysical reality
* Initial conditions are generally arbitrary

Roberts and King (2013)
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Dynamo simulations are sometimes initialized = 2.95
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Figure 1 | Observed and modelled decay of the geomagnetic axial dipole. Axial dipole magnitude |g?| since 1840 (inset, red line, units: nT) and its rate of

decay dg?/dt (red shaded area shows one standard deviation uncertainties, units: nTyr — 1), from the COV-OBS® geomagnetic field reconstruction.
Comparable dipole decay rates are produced by a prototype gyre acting on an asymmetric field (green dot-dashed line, see also Fig. 2a), and by a more
realistic filtered gyre flow, acting on the observed field averaged over 2000-2010 (purple star, see also Methods section and Fig. 2¢). The solid black line
with dots is the retrieved axial dipole decay rate from a series of 3D inversions for the field and flow within the core, based on geodynamo model
multivariate statistics?? (see also Methods section and Figs 3 and 4). Each dot represents an independent inversion for the core state; these inversions are
equally spaced in time. For the 3D inversion results, the dipole decay rate can be decomposed into its advective (dark blue line with dots) and diffusive
(light blue line with dots) components. The grey area shows the 1s.d. spread of an ensemble of 40 geodynamo model forward calculations, initialized using
the estimated core state?? in 2010, with randomized realizations of small scales; the ensemble mean is shown by the black dot-dash line. Corresponding
ensemble mean advective and diffusive contributions are given by the dark and light blue dot-dashed lines. The latest values for the axial dipole and its
decay rate in 2014, as determined using the data from ESA's Swarm satellite constellation3?, are marked by the gold diamonds.

Finlay et al., 2016, https://www.nature.com/articles/ncomms10422
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Figure 4 | Gyre-driven dipole decay as inferred using the CE dynamo. Maps of the core surface showing (a,c) core surface flow (arrows) acting

on the radial magnetic field B, (units: mT) and (b,d) the associated maps of contributions to axial dipole moment (ADM) change from core surface
meridional flux transport — 3/2uq ugsin0B,, units As —1 (a,b) Here the situation in 2015 is shown, for the same 3D state presented in Fig. 3, derived from a
forward run of the CE dynamo model®' estimated from the inverted core state?2 in 2010. (¢,d) The same quantities for the inverted 3D core state in 1980
are shown, when the magnitude of dipole decay was twice as large as in 2015. Note that magnetic diffusion has been taken into account when deriving the

flows presented here, which was not the case for the results presented in Fig. 2.
Finlay et al., 2016, https://www.nature.com/articles/ncomms10422



Figure 3 | Estimated field and flow within the core in 2015. Volume visualization of the estimated magnetic field and flow within Earth’'s core in 2015
from a numerical geodynamo3' model forward run initialized with an inferred core state?? for 2010. Orange and blue contours show the intensity of
the radial magnetic field, azimuthally averaged in a meridional plane within the shell, and at the core surface in the inset. The red and dark blue iso-surfaces
are of constant axial flow velocity and illustrate intense columnar convection at the eastern meridional limb of the gyre, as also seen in the inset core
surface flow plot. Field lines within the shell have thickness proportional to their magnetic energy. The inner core is black and the core-mantle boundary is
transparent. The 3D view faces longitude 90° E, with a cutaway between 90° and 180° E.

Finlay et al., 2016, https://www.nature.com/articles/ncomms10422



