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In lecture 12 we showed that the governing equation for the 1D problem was the same as for a half-space
of constant conductivity:

V°E = iwu,0E
which reduces to solving

. d°E
Given o(z) solve —— = iwpo(2)E(z)  for E(x)=0 and FE'(0)=-1
2
where E(0) at the surface was our admittance, c. We can solve this equation numerically using a

finite difference approach where conductivity 1s defined on nodes

En—2 En—l En En—l-l En—|—2
%
Zn—2 Zn—1 n Zn—+1 Zn—+2
On—2 On—1 On On+1 On+2

and we cast the solution as a linear system of equations

En—l—l _ 2En - En—l : _ E2 _ El — — —
N ZwMOUnEn — 0 n — 2, 3, ,N — 1 A~ = —1 En 0

AE =0



Alternatively, 1in the finite element approach, we defined conductivity on elements, and used linear
basis functions to describe how E behaves

A A
J(x)

Ok42

Xk-l Xk Xk+1 Xk—l Xk Xl<+1

This produces a more complicated but still linear system

Z [ ) + oot s ()dsBi =0 forj=1,om
AE =0



We can extend the finite difference and finite element approaches to 2D and 3D models, but the
governing equations and boundary conditions are quite ditfferent. We saw that in 2D MT we could

consider two independent modes, Transverse Magnetic and Transverse Electric. These two modes have
different governing equations.

TE mode (E polarization)

T™M mode
(B polarization)

It has become conventional to use a \ o~

coordinate system where y 1s in the \/
strike direction. That 18,
conductivity only varies 1n x and z




Transverse Magnetic (TM) mode The magnetic field 1s parallel to strike, so

T™ mode: B B = B(a;', y)ezwy
B parallel
to strike

where B(x, y) is a complex, scalar function. Note that

V-E +#0

so for the TM mode, we usually eliminate E and work 1in B.



Transverse Magnetic (TM) mode The magnetic field 1s parallel to strike, so

T™ mode: B B = B(a;', y)ezwy
B parallel
to strike

We have our Maxwell equations for a single frequency @ and Ohm’s Law

V xB=u,J V xE=—iwB J=0E



Transverse Magnetic (TM) mode The magnetic field 1s parallel to strike, so

TM mode: B B = B(fa y)ezwy
B parallel

to strike

We have our Maxwell equations for a single frequency @ and Ohm’s Law

V xB=u,J V xE=—iwB J=0cE

1
—» VXB=uyuy,cE —» Vx(—VxB>:MOV><E
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Transverse Magnetic (TM) mode The magnetic field 1s parallel to strike, so

TM mode: B B = B(fa y)ezwy
B parallel

to strike

We have our Maxwell equations for a single frequency @ and Ohm’s Law

V xB=u,J V xE=—iwB J=0E

1
—» VXB=uyuy,cE —» Vx(—VxB>:u0V><E
o2

1
which gives a curl-curl equation in B V X (—V X B) = —1wWl,B

O

(Note that when o was constant V X V x B = —wu,0B )



Transverse Magnetic (TM) mode The magnetic field 1s parallel to strike, so

TM mode: B B = B($7 y)ezwy
B parallel

to strike

We have our Maxwell equations for a single frequency @ and Ohm’s Law

V xB=u,J V xE=—iwB J=0E

1
—» VXB=uyuy,cE —» Vx(—VxB>:u0V><E
o2

<—

<b— FE

<$— . . . 1 .

which gives a curl-curl equation in B V X (—V X B) = —1wWl,B
%
(Note that when o was constant V X V x B = —wu,0B )

In terms of resistivity —iwp,B =V x (pV x B)
Substituting for B —twpeBYy =V x (pV x By) =V x (pVB x ¥)

where we haveused V X s(A)=sV xA+VsxA and Vxy=0



Transverse Magnetic (TM) mode —iwpeBY =V x (pVB x §)

TM mode: B
B parallel
to strike




Transverse Magnetic (TM) mode —iwpeBY =V x (pVB x §)

T™ mode: B

B parallel
to strike

Using Vx(AxB)=AV-B-BV-A+(B-V)A-(A-V)B

—iwpoBY = pVBV -y =3V - (pVB) + (3 - V)(pVB) — (pVB - V)y



Transverse Magnetic (TM) mode —iwpeBY =V x (pVB x §)

T™M mode: B .
B parallel USlng V X (A X B) = AV -B—-—BV: A (B . V)A — (A . V)B
to strike
_iwpeB§ = pVBY /y _§V - (0VB) + (5:/ V)(pVB) — (VB - V/y
y t _ 9 y t
Yy = const. Oy Yy = const.
<B_
<b— E
SO iwp,B =V - (pVB)

This 1s our governing equation for B in the TM mode.



Transverse Magnetic (TM) mode Our governing equation for B in the TM mode:

TM mode: B iw,uOB =V (IOVB)

B parallel
to strike

We just need some boundary conditions.



Transverse Magnetic (TM) mode Our governing equation for B in the TM mode:

TM mode: B Z.W:LLOB =V (IOVB)

B parallel
to strike

We just need some boundary conditions.

At some great depth, H, we can assume conductivity 1s infinite. Then
E goes to zero, but we need a condition on B. Because EXx 1S

<— continuous, 1t must be zero just above 1n the finite conductor, so current
<0— : too must be zero, and from the x component of V X B = p,J
0B

we have that =0 on z=H

dz

A condition on a normal derivative 1s called a Neumann boundary condition.



Transverse Magnetic (TM) mode Our governing equation for B in the TM mode:

TM mode: B inOB =V (po)

B parallel
to strike

We just need some boundary conditions.

At some great depth, H, we can assume conductivity 1s infinite. Then
E goes to zero, but we need a condition on B. Because EXx 1S

<— continuous, 1t must be zero just above 1n the finite conductor, so current
<0— : too must be zero, and from the x component of V X B = p,J
0B

we have that =0 on z=H

0z
A condition on a normal derivative 1s called a Neumann boundary condition.

At the surface the vertical component of J must be zero because no current flows 1n the air, and from
the z component of Ampere’s Law 0B/odx = 0, so By must be constant, or

B =constantonz=0

This 1s called a Dirichlet boundary condition, where the value of the solution 1s specified.



Transverse Magnetic (TM) mode Since

TM mode: B B =constanton z =0

B parallel
to strike

the constant field at the surface must be the source field B,. That is, the
currents induced in the TM mode do not produce fields above the
conductor. The fields within the conductor are toroidal fields. For this
reason we don’t need to include the air in the model.

< We could put perfect insulators or conductors at the sides of the model,
but 1t 1s more etficient to assume the conductivity 1s constant and use the
half-space solution, or become 1D and use the layered solution we
derived previously.

Finally, we note that to predict our MT observations, we need the x-y component of the impedance tensor

FE, 1 OB
B, uo,ocB 0z




Transverse Electric (TE) mode The magnetic field 1s perpendicular to strike, so

TE mode: | B — Baeiwtf{
B across strike
> and the electric field and currents flow in the y direction:
C .
" E = E(z,y)e™"y
>

o
o



Transverse Electric (TE) mode The magnetic field 1s perpendicular to strike, so

TE mode: | B — Baeiwtf{
B across strike
> and the electric field and currents flow in the y direction:
C .
" E = E(z,y)e™"y
>

Combine Ampere’s and Ohm’s Laws V xB = pu,0E

o
o

and take the divergence V- (V xB) = 1,V -o(x,2)E



Transverse Electric (TE) mode The magnetic field 1s perpendicular to strike, so

TE mode: | B — Baeiwtf{
B across strike
> and the electric field and currents flow in the y direction:
C .
" E = E(z,y)e™"y
>

Combine Ampere’s and Ohm’s Laws V xB = pu,0E

o
o

and take the divergence V- (V xB) = 1,V -o(x,2)E

/ N

use a couple of vector identities V- (V x A) =0 V:-(sA)=A -Vs+sV-A

and we have O:U(%Z)V'EWLE'VU(%Z)



Transverse Electric (TE) mode The magnetic field 1s perpendicular to strike, so

TE mode: | B — BOeiwtf(
B across strike
> and the electric field and currents flow in the y direction:
C .
" E = E(z,y)e™"y
>

Combine Ampere’s and Ohm’s Laws V xB = pu,0E

o
o

and take the divergence V- (V xB) = 1,V -o(x,2)E

/ N

use a couple of vector identities V- (V x A) =0 V:-(sA)=A -Vs+sV-A

£3

and we have O:U(%Z)V'EWLE'VU(%Z)

N

We thus show that V- £ =0 = (0 because E 1s only 1n y direction

and our diffusion equation still holds
V?E = iwugoE



Boundary conditions: As before we put an infinite conductor
at depth H. Because V - E = 0, all components of E are
continuous, SO

Transverse Electric (TE) mode

TE mode:
B across strike

Y,

o
o



Boundary conditions: As before we put an infinite conductor
at depth H. Because V - E = 0, all components of E are
continuous, SO

Transverse Electric (TE) mode

TE mode:
B across strike

- E=0 on z=H
>
B
2N, o ” The fact that J, = O at z = 0 doesn’t help us here, because £, = 0 for
B all TE solutions. The top boundary condition 1s gnarly because the

/67 /67 TE currents create secondary fields in the air layer. That 1s, the TE
% /6’ fields are poloidal.
E



Boundary conditions: As before we put an infinite conductor
at depth H. Because V - E = 0, all components of E are
continuous, SO

Transverse Electric (TE) mode

TE mode:
B across strike

“ E=0 on z=H
>
N ~ > The fact that J, = O at z = 0 doesn’t help us here, because E, = O for
B all TE solutions. The top boundary condition 1s gnarly because the
/6? /Qy TE currents create secondary fields in the air layer. That 1s, the TE
/ ﬁ fields are poloidal.

Bob Parker shows how you can get an exact boundary condition on z = 0, but it 1s rather
complicated and in practice most people just include the air and consider B = B at some
height above the ground.

As for the TM mode, you can use constant or 1D conductivities on the sides. Finally our impedance
tensor element 1s given by
E

Loy
ZW_B—Q;_ iwOFE [0z on z=0




Fields in 3D:

In Lecture 3 we derived the diffusion equations by casting Maxwell’s equations 1n only E or B:
Substituting Ohm’s Law into Ampere’s Law we have

1
J=0E V X B = pu,J -V x B =pu,E
o

1
Take the curl V X ;V X B =V X pu,E  and use Faraday’s Law VxE=-0B/0t
we get 'V x lv x B = —u,0B/0t which for fixed frequency 1s
o

1
VX —-VXxB+iwu,B =0

o



Fields in 3D:

In Lecture 3 we derived the diffusion equations by casting Maxwell’s equations 1n only E or B:
Substituting Ohm’s Law into Ampere’s Law we have

1
J=0E V X B = pu,J -V x B =pu,E
o

1
Take the curl V X ;V X B =V X pu,E  and use Faraday’s Law VxE=-0B/0t
we get 'V x lv x B = —u,0B/0t which for fixed frequency 1s
o

1
VX —-VXxB+iwu,B =0

5
Similarly, take the curl of Faraday’s Law v « vV x E = _gv « B  and use Ampere/Ohm
L
0
VXVXE=-0ou,—E or VxVXE+iwou,E =0

ot



These are the curl-curl equations, which are completely general and can be solved 1n 2D or 3D.

. 1
VXV XE+iwou,E=0 VXx—-VxB+iwuB=0

O

They can be generalized to include current or magnetic source terms Js and Ms
VXV XE+itwuoE = —iwwugds — 1wV x Mg
VX pV X H+ wugcH =V X pJg — 1wM

Both of these equations could be solved, but 1n practice it 1s cheaper to solve only one (usually E, to
avoid having to deal with the gradients in ), and compute the other using Faraday or Ampere.



In lecture 12 we showed that the governing equation for the 1D problem was the same as for a half-space
of constant conductivity:

V°E = iwu,0E
which reduces to solving

. d°E
Given o(z) solve —— = iwpo(2)E(z)  for E(x)=0 and FE'(0)=-1
2
where E(0) at the surface was our admittance, c. We can solve this equation numerically using a

finite difference approach where conductivity 1s defined on nodes

En—2 En—l En En—l-l En—|—2
%
Zn—2 Zn—1 n Zn—+1 Zn—+2
On—2 On—1 On On+1 On+2

and we cast the solution as a linear system of equations

En—l—l _ 2En - En—l : _ E2 _ El — — —
N ZwMOUnEn — 0 n — 2, 3, ,N — 1 A~ = —1 En 0

AE =0



Finite differences in 2D Here conductivities are constant in the cells and the fields are
calculated on the nodes. We saw that the governing equation for

4 i-1 i i+1 the TE mode 1s
) .
| V2E(y, 2) — iwptoo E(y, ) = 0
‘ f(i,j-1)
a 1 Do 0°E 0°FE
which 1s > > — weo ks =0

o(i-1j-1) | olij1) 0y 0z
j .f(i-Lj) .f(i,j) L fli+1,))

o (i-1,)) o (i,))
i+ [fij+) |




Finite differences in 2D Here conductivities are constant in the cells and the fields are
calculated on the nodes. We saw that the governing equation for

l—’y - i i+ the TE mode 1s
' VZE(y, z) —iwp,oE(y, z) = 0
. f(i,j-1)
a t L 0°E  O°FE
which 1s > > — weo ks =0
oi-1-1) | olij1) oy 0z
i Lf(-1) m $fi+1,j) .. : :
\__/ At the (1, J) node this can be approximated by

& (i-1,) o (i)
) f(i,j+1) Fiv1:—2F,:+F;, 1, F;;x1—28;;+F;: 1
J+1 . " ¢ 5J (2¥] ¢ 5J I (2¥] (2W] t,] 1 Ly E — O

Ay? Az? Hol
or 1f the mesh 1s equal 1n y and z

1

ﬁ(Ei—l—l,j +Fi_1j+FEij1+FE;j1—4E; ;) = —iwp,oF = 0

It the 4 conductivities surrounding (1,)) are different, we have to use the average.



Our TE finite difference equation

1 .
E(EZ—FL] -+ Ei—l,j -+ Ei,j—l—l -+ Ei,j—l — 4Ez,]) — —ZwluOO-E' _ O

becomes one row of our linear system AFE =)
which looks like Ei1;| [0
Ei_ 1, 0
[th, h12, h12, hlz’ ;?2 iwﬂogave} Ei,j-|—1 = |0
Ef,;,j_l 0
CBig | 10




Our TE finite difference equation

1 .
E(EZ—FL] -+ Ei—l,j -+ Ei,j—l—l -+ Ei,j—l — 4Ez,]) — —ZwluOO-E' _ O

becomes one row of our linear system AFE =)
which looks like Ei1;| [0
Ei_ 1, 0
[th, h12, h12, hlz’ ;?2 Z.(v‘j,uoa-afue} Eq;,j-|—1 = |0
Ez’,j—l 0
B 0

We need an entry like this for every node (1,)) along with the boundary conditions. Finally we need
the vertical derivative at the surface to compute the impedance:
E, b

ZW:B_CU: iwOFE [0z on z=0

Since the vertical derivative changes 1n the atmosphere, the practice 1s to {it a parabola to the electric
fields at the three nodes closest to the surface and use the analytical derivative at z = 0.






Finite differences in 2D

—

zZ

I+ 1

J-1

o (i-1,j-1)

f(i-1,))

| f(i+1,)

J+1

o(i-1,))

which 1s

»’B

payQ |

The governing equation for the TM mode 1s

iwpoB =V - (pVB)

0°B  0p OB

0p 0B

o2 " By by | 0z 02

w5 =0



Finite differences in 2D The governing equation for the TM mode is

[——*V i- 1 i i+1

iwioB =V - (pVB)

z which 1s
. f(i,j-1)
: ' 2B 9?B| opeB o9poB
o171 | olij1) | 9y Oy | 92 O w8 =0
j | ) | fij | fi+1))

The first two terms can be approximated as before
& (i-1,) o (i)

Bit1,j —2Bij + Bi—1,j Bijy1 —2B;; + Bij

j+1 ¢ Pave Ay2 - Pave A 2




Finite differences in 2D The governing equation for the TM mode is

l—'y i- 1 i i+1

iwioB =V - (pVB)

7 which 1s
j‘1 .f(l,J"I)
0*B | 0*B |0p0B| 0p0oB . B0
o, —

o(i-1j1) | o) p@yQ o2 T Oy Oy | 0z 0z Ho

j | fi-1,) | fij | f(i+1,) o
For the next two terms we note that central derivatives are more

o (i-1,)) o (i,j) accurate
, f(i,j+1) 0B ~ B’i+1,j _ Bi—l,j
J+1 9 o

oy 2Ay




Finite differences in 2D The governing equation for the TM mode is

l—'y i- 1 i i+1

iwioB =V - (pVB)

- which 1s
. | f(ij-1)
0*B 0°B |0pdB| 0pdB . B—0
. | | | WD =
o(i-1;1) [ o) P 0y? 922 Oy Oy | 0z 0z K
j i) ffi) f(i+1,))
For the next two terms we note that central derivatives are more
o(i-1) o (i) accurate
. o | 0B N Biy1,j — Bi—1,
0y 20y
It we call p,; the average of p(1,)-1) and p(1;) then

Op OB  ( Pyim1 = Py Biy1; — Bi—1; _ Pyi—1Bit1,j — pyi—1Bi—1, — pyiBit1,; + pyiBi—1,;
Oy Oy Ay 2AYy 2Ay?

(Pyi—1 = pyi)Biv1,; — (Pyi—1 — pyi)Bi—1,;
2A\y?




A finite difference grid in 3D. Note that the node spacing in the center of the mesh propagates
to the edges.

X 1 2 3

, /1

S L L L Lz L L L S

AR S SN PG E ISP EIEOIT IO T S S S
l -..III////I//////////'..
Y AR B BT SSTSTSTTIS TSI T A AW AR

(L L il L L L S
s LA ALl L L L S
-.'II/////I//I////I//...-"

(2L g Z 2 7
(L L i £ L L S

7)) 44

==IIHHHHHIHHHIIIM

‘

NN SSNSNNNNANNNAN D

NN

!
:
:
:
:
/
)

S N .

“\\\\\\\\\\\\\—.‘
‘\\\\\\\\\\\\\\“
“\\\\\\\\\\\\\-‘

NERNRENNNNNNNNNN




Some Boundary Conditions
Continuity of tangential electric field: E; = E»

Continuity of normal electric current: J; = J»

Using a staggered-grid of E along cell edges
ensures continuity of tangential electric fields:




Curl-curl operator approximated using finite differences
defined on a paddle wheel around each edge.

VXV XE+iwou,E=0

VXE=—wuH

oLk, 0L, ,
— _iwuH.
Ox oy il
a b
Lo aEcc ~ Ew_Eaz
> 0y Ay
K,
VxH=J=0cE
Le=0

difference operators

are placed into the
matrix L e is the unknown electric

field on cell edges

/’T N




Alternatively, 1in the finite element approach, we defined conductivity on elements, and used linear
basis functions to describe how E behaves

A A
J(x)

Ok42

Xk-l Xk Xk+1 Xk—l Xk Xl<+1

This produces a more complicated but still linear system

Z [ ) + oot s ()dsBi =0 forj=1,om
AE =0
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Finite elements in 2D. Electric fields defined on the nodes,
conductivity 1s constant within each element.

Complex.1l.1.1.poly: 754 vertices, 1461 triangles
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Finite elements in 2D. Electric fields defined on the nodes,
conductivity 1s constant within each element.

ZZ/ (Vv; - Vuj +iwpeoevv) By dfe =0, 1=1,...,n
Qe

e=1 j3=1
Ax =D
A = Z/ (Vv; - Vo, +iwpeoev;v;)
e=1 "7
CC] — Ej
bj = ()

(plus boundary conditions)




Finite elements in 3D. The electric fields are now defined on the element edges.

[_inear basis for e6
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