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Today

* A bit of vector calculus, reminder of the gradient operator on a vector field, ...

* Helmholtz’s Theorem - writing vector fields as the sum of the gradient of a scalar
potential, V, and the cross product of a vector potential, A

* The origin of electric and magnetic and fields - electric field 1s produced by stationary
charges, and the magnetic field by moving charges (currents)

* Force on a moving charge - the Lorentz Force
« Maxwell’s Equations - differential and integral forms
 Static Case for Geomagnetic Modeling - 1.e. no change 1n time

* Frequency dependence 1n electromagnetic physics



We are going to need a little calculus, and the use of the V operator.
x,y,z Cartesian coordinate system

o 0 0
V= <8:L" 0y’ &z)

so VA 1s just a gradient:
A 1S a vector,

0A, 0A, O0A, How would you express this in Einstein Summation Notation?
VA = ox ' Oy ' 0z or in spherical coordinates?

V - A 1s the divergence:

DA, 0A, OA,
+ — +

LA =
v ox oy 0z

V X A is the curl,
Recall cross product of two vectors A and B

AxB=[A,B, - A,B,, A,B, — A,B, , A,B, — A,B,]

. <8AZ DA, 0A, OA, 0A, an>

Oy 0z 0z or = Ox Oy

and V - VA 1s the Laplacian.

0’A, 0°A, 0O%A
: — V2A = z Y z
V- -VA=V°A 52 + 9 + 5,2




Useful Vector Identities: A 1s a vector, s,f are scalars

Vo (V X A) =0 Divergence of a curl of a vector 1s zero

V X (VS) = () Curl of a scalar field is zero

V(st) = sVt +tVs Product rule for vector gradient of scalars

V:-(sA)=A -Vs+ sV -A Product rule for divergence

V X (sA) =sV x A+ Vs x A Product rule for curl
Dot productrule V(A -B)=(A- V) B+ (B- V) A+ A XV xB+BxVXxA
V-(AxB)=B-VxA-A-VxB
Cross productrules |\ % (A x B)=AV-B—-BV-A+(B-V)A-(A-V)B
VxVxA=V(V-A)—-V?A Curlofcurl

A xB=[A,B, — A.B,, A,B, — A,B, , A,B, — A,B,]
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https://en.wikipedia.org/wiki/Vector_calculus_identities#Divergence_of_gradient_is_Laplacian

Integrating over surfaces:

>
A surface vector, s, has a direction that 1s the ourward normal to the
surface and a magnitude proportional to the area of the surface. An

infinitesimal surface element, ds, 1s useful for integrating things over
surfaces. In particular, 1if we have a vector field A, then the integral

/A-ds:/A.cosﬁ.ds
9 9

over surface 2 is the Flux through the surface. 6 1s the angle between A
and ds.

The line integral of a vector field:

/CA(I')-dI': /abA(r(t))-r’(t) dt



Gauss’ Divergence Theorem

The divergence theorem links the flux of a (continuously differentiable) vector field A through a
closed surface S to the divergence of the field in the volume V enclosed by the surface.

At any point on the surface S = 0V we can define the outward pointing unit

normal vector n. Then the divergence theorem states

/V(V.A)dV:/ (A -h)dS

oV

In words, we are relating the sum (integral) of all the sources in the volume V

to the total flow across the boundary S.

The divergence theorem allows us to write some physical laws in two ways:
(1) a differential form - one quantity is the divergence of another) (2) an integral

form - flux one quantity through a closed surtace is equal to another quantity

e.g. Gauss’s laws in electrostatics, magnetism, and gravity.



Suppose F is any vector field -
this could be E or B or 1n gravity studies g...

Helmholtz's theorem

F=—V/7V+V x4

Hermann von Helmholtz 1821-1894

V 1s called a scalar potential and A a vector potential.
These two potentials can be explicitly computed from the following two integrals:

Ly

\r s\

A(r fv ( )d3s

r—s]|




This also applies to gravity

Gravitational Potential V(r) at location r is generated by density distribution
p(s) as a function of position s

V(r) = — /d3s LS

r—s

V=V =4rGp Poisson’s Equation

and

F =g = —VV



Moving on to £ and B

Electrostatics and Magnetic Field Review

* https://en.wikipedia.org/wiki/Electrostatics

* Coulomb’s law, Electric field, Gauss’ Law, Poisson
and Laplace’s Equations, Electrostatic Approx’'n

* https://en.wikipedia.org/wiki/Magnetic_field

* The B-field, the H-field, Units, Biot-Savart and
Ampere’s laws

* See also Introduction to Electrodynamics by Griffiths
do1:10.1017/97811083333511



https://en.wikipedia.org/wiki/Electrostatics
https://en.wikipedia.org/wiki/Magnetic_field
http://10.1017/9781108333511

Basic Assumptions
Our mathematical description of electromagnetism will be interns of macro-
scopic continuum physical quantities measured in SI units:

B(r, 0, ¢,t): Magnetic field in Tesla (7T')

E(r, 0, ¢,t): Electric field in Volts/meter (V/m)

J(r,0,¢,t): Electric Current Density in Amperes /square meter (A/m?)
o(r,0,¢,t): Electric Charge Density in Coulombs /cubic meter (C'/m?)

Constants:
eo: Electrical permittivity of free space = 8.85 x 10~ F/m
1o: Magnetic permeability of free space = 47 x 10~ H/m

(eoi10) 2 = ¢ = 3 x 103m/s

Actually in the new SI system since 2019 p is determined experimentally;
47 x 1.00000000055(15) x 10~ "H/m is a recently measured value in the new

system.



The Lorentz Force

Electric and magnetic force on a point charge in motion Hendrik Antoon Lorenz
\ 7 X /
N\ ; / \ ; /
F X i \ / 7 . - e \ / o

—0— — 0
S/NYT T2/

/ \ / \

F=q[E(r,t)+vXB(r,t)] b | - //\f

A B

Magnetic field of a long wire carrying current i - i.e., charge in motion



Maxwell’s equations: An Overview

* The relationship between magnetic fields, electric fields and electrical currents are
encapsulated 1n just 4 simple equations:

0

V-E= & Gauss's Law: E-fields produced by charge density

V-B=0 Lack of monopole sources of B-field so B-field 1s solenoidal

VXE= %lf Faraday's Law of Induction:
E-field induced by changing B-field
_ OFE
VXB=u,J+¢e,u, Y Ampere-Maxwell Law: B-field produced

by currents or by changing E-field

* Note, this 1s the form of Maxwell’s equations for materials with no permanent
magnetization or electric polarization



Gauss’ Law:

() 1s charge, C
p is charge density, C/m’
€, 1s permittivity of free space, = 8.895 x 10~'* F/m.

Gauss’ Law says that the electric field leaving a volume 1s proportional
to the enclosed charge. \ 2




Faraday’s Law:

dD;, 5B
E.dl = V x E =
ﬁé dt 8 ot

® 5 1s magnetic flux

Faraday’s Law says that the electric field integrated around a loop (1.e.
the voltage) 1s given by the time rate of change of the enclosed magnetic
flux.

>
esht




Gauss’ Law (magnetism):

/B-dS=O VBzo
Q

Gauss’ Law for magnetism says that there are no magnetic monopoles.
Any flux entering a volume has to leave tit.




Ampere’s Law:

jIgB-dl:,uO] V XB=u,l

I 1s electric current, A
J is current density, A/m?
1, is permeability of free space, = 47 x 10~/ H/m.

Ampere’s Law says that an electric current will generate a circulating
magnetic field.

ool




Maxwell’s equations (1n a vacuum):

V X E = OB V-E:E
Ot €o

E
V X B =pu, J+eoaa—t V-B=0

The extra term in Ampere’s Law was added by Maxwell. It allows fields
to exist without charges or currents, and allows electromagnetic radiation
to propagate in a vacuum at speed ¢, where ¢* = 1/(u€,).

distance B>

"Light-wave". Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Li



http://commons.wikimedia.org/wiki/File:Light-wave.svg#/media/File:Light-wave.svg

Integral Forms

Maxwell's Equations

E
(. q
EendS = — Gauss's Law
) &o
[ -
BenidS =0 (no monopoles) B
1
_B. —_—
= d B
Bedl :Noll"‘foa@E] and
| | OF
Ampere's Law ntin
ot
L E
%E.d R Faraday's Law @
ot
= = — .  9E!
VekE = fo VxB = ,uo|J+foW;
Vel = 0 U X e _%

(Differential Forms)



Back to F as a vector field and Helmholtz

Force on a moving charge:

f =q/E(r,t) +v x B(r, t)]

That 1s, E and B are defined by their effects on a charged particle.

Helmholtz Theorem:

F=—-VV+VXA

Scalar potential:

- d
Vir) A r — s >
Vector potential: | v F( )
X S
A(r) = — d”
(x) 47 r—s >

Maxwell’s equations provide expressions for the divergence and curl
of the electric and magnetic fields.



E and B sources are charge density and current density

* The relationship between magnetic fields, electric fields and electrical currents are
encapsulated 1n just 4 simple equations:

0

V: E= & Gauss's Law: E-fields produced by charge density

V-B=0 Lack of monopole sources of B-field so B-field 1s solenoidal

VXE= %lt? Faraday's Law of Induction:
E-field induced by changing B-field
_ 0E
VXB=u,J+¢,u, =7 Ampere-Maxwell Law: B-field produced

by currents or by changing E-field

* Note, this 1s the form of Maxwell’s equations for materials with no permanent
magnetization or electric polarization



Empirical relations are needed for describing E and B 1n physical media

Some basic electromagnetic theory. Let’s start with

E 1s the electric field, measured in volts/meter.

B 1s the magnetic field, measured 1n tesla.
H 1s sometimes also called the magnetic field, and has units of A/m, and
then B 1s called magnetic induction vector, or the magnetic flux density.
But here we call B the magnetic field, and H the magnetizing field, in
recognition of its relationship to magnetic polarization.
B and H are related through the permeability ¢ of a material.

B =uH

In a vacuum, 4 = p, = 47 x 107" H/m



Adding Constitutive Relations

Polarized Medium

Bound charge and current

Left: A schematic view of how an

assembly of microscopic dipoles
produces opposite surface charges
as shown at top and bottom.

Right: How an assembly of
microscopic current loops add

together to produce a
macroscopically circulating current
loop. Inside the boundaries, the
individual contributions tend to
cancel, but at the boundaries no

Flectric and magnetic cancellation occurs.
polarization per unit volume:

®0O GO GO
OO GO GO
®0O ®O GO
®0O GO GO

+
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1 .
Plr)= In a material:
TP ,
(p)=p =V P

(I)=J"+V X M+0 P



Maxwell’s equations in matter:

OB
E: .D:
V X oy V 0
oD
H = — -.B=0
V X J + By V

where

D = ¢,E + P 1s the electric displacement field, and
H = B /i, — M is the magnetizing field. H has units of A/m.



Constitutive Relations

 Maxwell's Equations 1n a vacuum and a polarized medium:

VXE=-0,B VXE=-0,B
VxB=u,(J +¢,0,E) VXBlu,=(J+0,P+V XM +¢,0,E)
V- -B=0 V-B=0

(p)=p"=V P

(I)=T"+V X M+0, P



Constitutive Relations

* The electric and magnetic flux densities D, B are related to the field intensities E, H
via the so-called constitutive relations, whose precise form depends on the material
in which the fields exist.

J=0FE In a vacuum:
D=¢ E
D=¢cFE
B=u,H
B=uH

where € , pare the electric permittivity and magnetic permeability of vacuum:

£,=8.854X 107" F/m
wo=47mx10"" H/Im

They are related to the electric and magnetic susceptibilities of the material as
follows:

€= 30( 1+ XE) The susceptibilities X.» X are measures of the electric
w=pw,(1+y,,) and magnetic polarization properties of the material.



In matter:

PZGOXEE
M = XM
Ho
J = ocE

Y E 18 electric susceptibility
X M/ 18 magnetic susceptibility
o electrical conductivity, S/m Georg Ohm 1789-1854

The last equation 1s, of course, Ohm’s Law, but these are approximations!
Matter doesn’t have to be linear and 1sotropic. Clearly, there will be
saturation phenomena.

polarization



Constitutive Relations

D:8E280<1+XE)E:80E+80XEE:80E+P

B=uH =u,(1+y,,) H=u,H+w,x, H=uw,H+u,M

D=¢,E+P D is the electric displacement vector
H=B/ wo— M H 1s the magnetic displacement vector
P=¢,x. E

where P and M are the electric polarization per unit volume
and the magnetization, or magnetic polarization per unit
M=y H volume of the material.

A




Constitutive Relations

 Maxwell's Equations in a vacuum and a polarized medium:

VXE=-0,B VXE=-0,B
V-E=plg, V-D=p

VX B=u,(J +¢,0,E) VXH=J+0,D
V-B=0 V-B=0




Maxwell’s equations in matter:

OB
E = P =
V X oy V 0
oD
H = — -.B=0
V X J + oy V

where

D = ¢,E + P 1s the electric displacement field, and
H = B /1, — M is the magnetizing field.

0D /0t is called the displacement current, and can be ignored at the fre-
quencies, length scales, and conductivities that are relevant to geomag-
netic induction. Similarly, we won’t concern ourselves with polarizable

media, so E =D/¢, and B = 1, H. H has units of A/m.



Application to the geomagnetic field

* Neglect of the displacement current

VXH=J+0,D | O

[

VX0 Blu,=00, E+¢,0, E

L, T are the characteristic length and time scales associated with EM field
changes we wish to study. We can roughly replace space derivatives by 1/L and
time derivatives by 1/T:

VXV XE+u,00, E+u,e,0, E=0

|E|[1+u,0(L*/T)+(L/cT)*]=0
[f L=10"km; T=10s and 0=10"S/m
w,o (L T)~120

(L/cT)Y~107



Substituting Ohm’s Law into Faraday’s Law:

OE

VxB=u,cE Y p—
HoO T T floo o

The time derivative 1s proportional to frequency:

V xB = pu,E(c+ €,w)

/N

oc~10"*S/m €, ~ 107 F/m

so unless frequency 1s of order megahertz (GPR) or sigma 1s zero (air), the
second term 1s negligible.

All we really need 1s Faraday, Ampere, Gauss, and Ohm.



Pre-Maxwell Equations are what we will use

VXE=-0,B VXE=-0,B
V-E=plg, ¢ V- E=p—V: P
VX B=y,(J +e.5E) VX Bluy=(J+0, P+V xM +¥E)
V-B=0 V-B=0
(p)=p"=V P

(I)=J""+V X M+0, P



Back once again to F' as a vector field and Helmholtz

Helmholtz's theorem

F=—VV+VxA4

V 1s called a scalar potential and A a vector potential.
These two potentials can be explicitly computed from the following two integrals:

=Ly

fVXF

r—s|

\r S\

S



Static case for geomagnetic field modeling

* Assumption: Neglect time variation in geomagnetic processes and 1magine a system
of stationary charges and steady current flows VxE=0  V xB = puyJ

E=V o b(r)1=— [ L) g

4me,? |r—s]

B=V x4 A(r):f—;f “:(_SS)‘ d’s




Application to the geomagnetic field

* Magnetic field representation in terms of scalar potential

Approximation: Earth's atmosphere 1s an insulator with no electrical currents

VX B=0 since J=0
B=— V q) See vector identity number 12
Since V:-B=0 no monopoles



Useful Vector Identities: A 1s a vector, s,f are scalars

Vo (V X A) =0 Divergence of a curl of a vector 1s zero

V X (VS) = () Curl of a scalar field is zero

V(st) = sVt +tVs Product rule for vector gradient of scalars

V:-(sA)=A -Vs+ sV -A Product rule for divergence

V X (sA) =sV x A+ Vs x A Product rule for curl
Dot productrule V(A -B)=(A- V) B+ (B- V) A+ A XV xB+BxVXxA
V-(AxB)=B-VxA-A-VxB
Cross productrules |\ % (A x B)=AV-B—-BV-A+(B-V)A-(A-V)B
VxVxA=V(V-A)—-V?A Curlofcurl

A xB=[A,B, — A.B,, A,B, — A,B, , A,B, — A,B,]
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https://en.wikipedia.org/wiki/Vector_calculus_identities#Divergence_of_gradient_is_Laplacian

Application to the geomagnetic field

* Neglect of the displacement current

VXH=J+0,D | O

[

VX0 Blu,=00, E+¢,0, E

L, T are the characteristic length and time scales associated with EM field
changes we wish to study. We can roughly replace space derivatives by 1/L and
time derivatives by 1/T:

VXV XE+u,00, E+u,e,0, E=0

|E|[1+u,0(L*/T)+(L/cT)*]=0
[f L=10"km; T=10s and 0=10"S/m
w,o (L T)~120

(LIcT)~107 Does this work at all frequencies?



Application 1in Electromagnetism

High frequency Wave equation: Resolution ~ wavelength
(megahertz) ; ,
OE O°E ou 1 0°u
2 _ | v - : : 2
Radar V°E = po 57 T HES5 Seismics V4y = cor T 250
Mid frequency Diffusion equation: Resolution ~ size/depth
(0.001 - 1000 Hz)
Inductive EM V°E = ,uo'a—E
Ot
Zero frequency Laplace equation: Resolution ~ bounds only
_ Gravity/
o _ 277 _
DC Resistivity V°E =0 Magnetism VU =0

O = electrical conductivity ~ 3 — 10~% s/m
[t = magnetic permeability ~ 104 — 10~° H/m
€ = electric permittivity ~ 1072 — 10~ 11 F/m




