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Earth’s magnetic field varies on all 
time scales.

At periods > 11 years we can observe 
variations associate with the core 
geodynamo.

At periods < 11 years we can observe 
external magnetic field variations.   

Electromagnetic induction driven by 
external field variations are used to 
probe electrical conductivity of the 
crust and mantle, typically to less than 
1 year periods.

Here we try to extend the external 
field response out to 11 years.

Constable & Constable (2023)
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To convert a time series into the frequency domain we use the discrete Fourier transform:

X̃(m�f) = �t
N�1X

n=0

Xn+1e
�2⇡imn/N , m = 1, 2, ... N/2� 1

�f = (N�t)�1Frequency bandwidth: |X̃(m�f)|2Periodogram:

The periodogram obtained from a FT is biased (-> spectral leakage) and has large variance.  The solution to the bias is to 
use a taper, but this doesn’t improve the variance.  For that we need averaging.  There are three approaches to averaging:

• frequency averaging

• window averaging

• multi taper averaging

Refresher of time series analysis:

(complex numbers)



Window averaging:  Chop the time series up into shorter bits, apply one taper to reduce bias, and 
average the FT of each bit.  But we lose the longest periods this way.

W1 W2 W3 W4 W5

Frequency averaging: Average 
over adjacent frequencies (in the 
complex domain) and assign the 
average to the average frequency.



Wikipedia

First 3 Slepian tapers

X̃(m�f) = �t
N�1X

n=0

wnXn+1e
�2⇡imn/N

Tapering:

Here w is a taper - a smooth bunch of weights that usually go 
to zero at the ends of a series.  The multitaper method uses an 
orthogonal set of tapers and averages the resulting Fourier 
coefficients.

I want to discuss the sine tapers.First 4 sine tapers

Bob Parker
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The advantage of multi-taper spectral estimates is that you use the entire time series and obtain the lowest possible 
frequencies - important if your data series are limited in length.  More tapers means more variance and bias reduction, but 
lowers frequency resolution.  There is a trade-off.  A clever adaptive sine multi-taper algorithm (Riedel and Sidorenko, 1996) 
varies the number of tapers with frequency — this was used for the Grand Spectrum.

In MT data processing we mentioned  the cross spectrum but went on to develop MT processing using a covariance approach.  
For observatory records we don’t have the luxury of extra data channels, remote references, or cutting up the data into 
windows.  We need the cross spectrum Sxy

where
<latexit sha1_base64="zqCW18omYK4ZtoDWqqZ44VrsrHE=">AAACGHicbVBLSwMxGMz6rPW16tFLsAhbhLIrPg9CQQoeq9iHtEvJpmkbmn2QfFssy/4RL/4VL6JeFLz5b9y266GtA4FhZkIy4wSCKzDNH21hcWl5ZTWzll3f2Nza1nd2q8oPJWUV6gtf1h2imOAeqwAHweqBZMR1BKs5/euRXxswqbjv3cMwYLZLuh7vcEogkVr65V0rehzGBuTxFY6a0sXUH8S4UTdUHj8Y6gjy9p9Tisdyqrb0nFkwx8DzxEpJDqUot/T3Ztunocs8oIIo1bDMAOyISOBUsDjbDBULCO2TLovGxWJ8mEht3PFlcjzAY3UqR1ylhq6TJF0CPTXrjcT/vEYInQs74l4QAvPo5KFOKDD4eLQSbnPJKIhhQgiVPPkhpj0iCYVky2xS3ZotOk+qxwXrrHB6e5IrltIRMmgfHSADWegcFdENKqMKougZvaJP9KU9aS/am/YxiS5o6Z09NAXt+xdFSpyJ</latexit>

Rxy(t) = cov[X(s)Y (s+ t)] = E[X(s)Y (s+ t)]

is the cross-covariance between X and Y.   The cross-spectrum is complex.  The coherence is given by 
<latexit sha1_base64="GRM0u5O7ErP1tqsYlKFn/wrHAG0=">AAACE3icbVDLSgMxFM34rPU16tJNsAiuykypj41QEMFlRfuATh0yaaYNzTxMMtJhOp/hxl9xI+JCBT/AvzEz7aatFxJOzj2Xm3OckFEhDeNXW1peWV1bL2wUN7e2d3b1vf2mCCKOSQMHLOBtBwnCqE8akkpG2iEnyHMYaTnDq6zfeiJc0MC/l3FIuh7q+9SlGElF2XrV6iPPQ3YyitOHCryEyfguf4yhFahBaIlHLpOMG6XqjuM0TW29ZJSNvOAiMKegBKZVt/VPqxfgyCO+xAwJ0TGNUHYTxCXFjKRFKxIkRHiI+iTJPaXwWFE96AZcHV/CnJ3RIU+I2HOU0kNyIOZ7GflfrxNJ96KbUD+MJPHxZJEbMSgDmAUEe5QTLFmsAMKcqh9CPEAcYaliLCrr5rzRRdCslM2z8ulttVS7noZQAIfgCJwAE5yDGrgBddAAGLyAN/AFvrVn7VV71z4m0iVtOnMAZkr7+QPxnZ9W</latexit>

�2
xy =

|Sxy|p
SxxSyy

and is between 0 (no correlation) and 1 (perfect correlation). 

<latexit sha1_base64="6HGBguSmfO/zPmf6jZOXPWgFNvw=">AAACGnicbVDLSgMxFM34tr6qLt0Ei9AuWmbEF4hQEMFlfVQLnXbIpJkazDxI7ojDMH/ixl9xo+JGwY1/Y9rpptUD4R7OPSE5x40EV2CaP8bU9Mzs3PzCYmFpeWV1rbi+caPCWFLWpKEIZcsligkesCZwEKwVSUZ8V7Bb9/50sL99YFLxMLiGJGIdn/QD7nFKQEtO8fjKSR+TrOxV8Am2eQBOWtXDgyTr5hNf5g6oYNZNq7t2xDH3IOuBUyyZNXMI/JdYI1JCIzSc4pvdC2nsswCoIEq1LTOCTkokcCpYVrBjxSJC70mfpcNoGd7RUg97odQnADxUx3zEVyrxXe30Cdypyd1A/G/XjsE76qQ8iGJgAc0f8mKBIcSDnnCPS0ZBJJoQKrn+IaZ3RBIKus2Cjm5NBv1LbnZr1kFt/2KvVD8blbCAttA2KiMLHaI6OkcN1EQUPaNX9Im+jCfjxXg3PnLrlDG6s4nGYHz/AlINoD4=</latexit>

Sxy(f) =

Z 1

�1
Rxy(t)e

�2⇡iftdt
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In practice we don’t use the convolution to compute the cross spectrum but use our (fast) discrete Fourier transform

X̃(m�f) = �t
N�1X

n=0

Xn+1e
�2⇡imn/N , m = 1, 2, ... N/2� 1

<latexit sha1_base64="vMg9qAfcZORojSKpkhfeBupc/io="></latexit>

Ỹ (m�f) = �t
N�1X

n=0

wnYn+1e
�2⇡imn/N , m = 1, 2, ... 1/2N � 1

<latexit sha1_base64="U8LnhYGZCKR0RqsqizF7CGpPCug=">AAACI3icbVBLSwMxGMzWV62vqkcvwSJUD2VXfF2EghU8VrQP6dYlm2bb0OyD5FuxLP05XvwlghcRLxX8L6YPD20dCAwzE5IZNxJcgWkOjNTC4tLySno1s7a+sbmV3d6pqjCWlFVoKEJZd4liggesAhwEq0eSEd8VrOZ2r4Z+7YlJxcPgHnoRa/qkHXCPUwJacrKlOyd57vVx3rdLTADB3iG+xDZw0WK4PiXjP/nh8WjacLI5s2COgOeJNSE5NEHZyb7ZrZDGPguACqJUwzIjaCZEAqeC9TN2rFhEaJe0WTLq2McHWmphL5T6BIBH6lSO+Er1fFcnfQIdNesNxf+8RgzeRTPhQRQDC+j4IS8WGEI8HAy3uGQURE8TQiXXP8S0QyShoGfN6OrWbNF5Uj0uWGeF09uTXPF6MkIa7aF9lEcWOkdFdIPKqIIoekUfaIC+jRfj3fg0vsbRlDG5s4umYPz8AlhSoBY=</latexit>

Sxy(m�f) = X̃(m�f)Ỹ ⇤(m�f)

where
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https://svs.gsfc.nasa.gov/hyperwall/index/download/a030000/
a030400/a030470/van_allen_probes_discov_new_rad_belt_cal.png
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Sunspot Number
F10.7

A

The solar magnetic field reverses approximately every 11 years, modulating sunspot number, radio flux, magnetic storms, 
and the strength of the ring current. 

(SFU)
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B

Sunspot Number
F10.7

A

Since 1957 the strength of the ring current is tracked by the Dst index, but similar estimates can be made 
from observatory data back to 1900


(SFU)
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The electromagnetic response Q is mapped into the inductive scale 
length c, a complex number that is easily predicted from a conductivity-
depth profile  (a forward problem):σ(z)

c(!) = ao
1� 2Q

2 + 2Q c(!) = f(!,�(z))

The inverse problem seeks to recover  from . σ(z) c(ω) �(z) = f�1(!, c)

Data Models

Constable (Treatise on Geophysics, 2015); Medin et al. (2007)



BGS data distribution:  Hourly data from 227 observatories between 1900 — 2022.  
192 with magnetic colatitudes 25° <  < 155°, 180 with usable data. 
Baselines were corrected using the IGRF/Covobs, outliers removed, and gaps up to 48 hours filled with interpolation. 
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 Data are rotated into geomagnetic coordinates year by year to track the movement of the poles
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Then compute declination angle to the pole at every observatory

The standard rotation matrix is

but to rotate clockwise we need the transpose with negative declination



• Data are rotated into geomagnetic coordinates year by year to track the movement of the poles

• International Geomagnetic Reference Field (IGRF) or Covobs removed from the time series

• Internal and external fields of  geometry fit to the hourly radial and latitudinal fieldsP0
1

2

4
� cos(✓) 2(a/r)3 cos(✓)

sin(✓) (a/r)3 sin(✓)

3

5

2

4
e01

i01

3

5 =

2

4
Br

B✓

3

5

Br = �@�

@r
=


�e01 + 2i01

✓
a

r

◆3�
cos(✓)

B✓ = �1

r

@�

@✓
=


e01 + i01

✓
a

r

◆3�
sin(✓)

15

�0
1(r, ✓,�) = ao

⇢
i01(t)

✓
ao
r

◆2

+ e01(t)

✓
r

ao

◆�
P 0
1

�
cos ✓

�



16

• Fits are made year by year using only observatories with data for that particular whole year


• One month overlaps between years gives baseline corrections from changes in observatory distribution
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Average misfit is around 15 nT.  Minimum number of observatories used per year is 3 — 86.
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Sunspot Number
F10.7
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If we add the internal and external time series we have a proxy for Dst, which we can compare with IAGA Dst (back to 1957)

Red - IAGA Dst
Blue - Dst proxy

IAGA Dst baselines 
are corrected every 
year, so power falls 
off at longer periods
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proxy Dst shows the long period 
differences.



Now we need to convert our time series to 
the frequency domain.  We can compute 
the spectrum of the internal and external 
time series as well as the cross-spectrum.

external

internal
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From now on we will work in period, not frequency.



We only want 5-6 
estimates of c per 
decade.


Further variance 
reduction is obtained by 
band averaging (green 
lines show bands).  
Periods of one year and 
one day (and harmonics) 
are not  and so are 
excluded in narrow 
bands.  Dots show 
averages in bands. 


P0
1
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Q(!) =
i(!)

e(!)
=

Sei

Se

Sei = complex cross spectrum

Se = external power spectrum

⇣e = noise to signal ratio

⌘ = ⇣e/⇣i = ratio of noise ratios

� = spectral coherency

The EM response function Q is the frequency dependent complex ratio of internal to external fields, which in a 
noise-free world is the ratio of the cross spectrum to the external power spectrum:

However, noise in the spectra biases the estimate up and down

We can correct for the bias if we know the noise characteristics

Here we assume the absolute noise is the same in the internal and external field spectra.  Finally, for  source 
field geometry the inductive scale length is 

P0
1

c =
r

2

(1� 2Q)

(1 +Q)

r = Earth radius
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Here we assume the absolute noise is the same in the internal and external field spectra.  Finally, for  source 
field geometry the inductive scale length is 

P0
1

c =
r

2

(1� 2Q)

(1 +Q)

Errors.  Errors are important!  While errors can be expected to be equal in the real and imaginary components of 
the cross spectrum, the relationship to c is non-linear.  We estimate errors in the spectrum from the variance in the 
band averages by running 1,000 simulations sampling these errors and projecting them into c.  
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Finally we get our estimates of c, corrected for bias and with errors generated from the variance in the mean of the 
band averages.  Periods of 1 day, 6 months, and 1 year are known not to be , but ~4 years appears so too.P0
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We have good agreement between our results and previous work but have filled in the 1—11 year gap.  For 
inversion we invert periods > 4 days, excluding 1/2, 1, and 4 years.
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A regularized (“Occam”) inversion that is maximally smooth in a 1st derivative sense.  Perhaps we see the core?
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Indeed, fixing the core at its known conductivity and depth does not alter the ability to fit the data.  But do we need 
it?  And is the jump in conductivity at ~1800 km depth real?  We need Uncertainty Quantification (UQ)! 
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Bring on the Bayesians?  One thing we know about 1D-MT is that an acceptable model, indeed the best model in a LS 
sense, is Parker’s D+ model, which has conductivities that are either zero or infinite.  So we can’t hope to bound 
conductivity (or resistivity) at any given depth.   We need some smoothing, either by regularization or layering. 

D+ solution
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The Bayesian methods seek to quantify uncertainty by randomly sampling models and seeing which ones fit the data, but this 
is slow and needs careful tuning.  An alternative:  Randomize Then Optimize.   We can work with Bayes’ theorem by 
randomizing the data rather than the model.  We draw randomly and repeatedly from the data, guided by the error structure, 
and use a standard optimization to compute the associated models, either by regularized inversion or Marquardt fitting. 
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RTO: Randomize Then Optimize.   This is very much more efficient because we rarely have to reject models, since 
our optimization machinery is good at finding models that fit the data.  And because we are not doing a random walk 
through model space, each optimization is independent and can be parallelized. 

P (model|data) = P (data|model)P (model)

P (data)

randomize this instead of this

(Bayes’ Theorem)
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Here we have fit 10,000 4-layer models using Marquardt inversion, using random data sets drawn from our observed 
data distributions (i.e. data + errors).  The Occam model response (rms 1.3) is shown for reference (black lines).  

Misfit distribution

Model response
 distribution



Here are the models (orange), with the 
Occam models shown again in black.  
They cover a lot of model space, but 
90% of conductivities fall with in the 
contours.  Jumps at 670 km and 2900 km 
are known to exist, so perhaps the jump 
at 1800 km is real too.

What causes the 1800 km jump?
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Core

Maybe we are seeing a response to the 
Large Low Seismic Velocity Provinces 
(LLSVPs).  However, if we re-run our 
analysis using observatories on and off the 
LLSVPs, we get the same result.

Korte et al. (2022) 
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The depth is about where we expect the 
spin transition in iron.  However, laboratory 
measurements suggest that the spin 
transition reduces conductivity .
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Since upper mantle conductivity is consistent 
with bridgmanite, but ferropericlase is much 
more conductive, we could be seeing a 
change in connectivity between these 
minerals driven by temperature and pressure.

Chandler et al. (2021) 
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Silva et al. (2012)

A provocation: Finally, the link that has been suggested between a 6-year periodicity in the length of day (LOD) and 
internal magnetic field may instead be the 5.5 year harmonic of the sun spot cycle, since we see a peak in the external 
field as well as the internal.  On the other hand, the 4-year peak in the spectrum, strongest in the internal field, may be 
the signature of a torsional oscillation in the core.

external

internal
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• 117 years of hourly data from 180 observatories provides a time series of internal and external fields.


• Multi-taper cross-spectrum analysis shows peaks at 11 and 5.5 years with high coherency.


• An EM response function is estimated, correcting for bias from noise.


• Error bars are estimated by a parametric bootstrap based on variance in spectral band averages.


• Results are consistent with previous work, but fill in periods between 1 and 11 years.


• Data can be fit to RMS 1.25 using a radially symmetric Earth.  


• An RTO algorithm provides uncertainty on conductivity, showing jumps at 670 km and the CMB.


• A jump of ~1 OM at ~1800 km suggests a transition in mantle properties. 


• It is likely that an inferred 6 year geomagnetic LOD oscillation is a harmonic of the sunspot cycle. 

Summary

Thanks to the Alexander von Humboldt Foundation (CC), Scripps SEMC (SC), ONR (MM), Bob Parker, and BGS.
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