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Today’s Class

e Laplace’s equation for geomagnetic scalar potential is valid in source free
region - Farth’s atmosphere

e Write a general solution to Laplace’s equation in geocentric spherical coordi-
nates

e [ully-normalized spherical harmonics with complex coefficients A" and B;"
allow us to easily do theory to separate internal and external field contributions

e But geomagnetists usually use real partially normalized Schmidt coefficients
g/ and h;"* (internal) and ¢/, s/ (external).



But first -

It you feel the need for some intuition about what the Laplacian is see the
Khan academy tutorials

Note that we use the notation V* for the Laplacian operator but others sometimes

use /\.


https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/laplacian/v/laplacian-intuition

Next - a coordinate system

In a spherical coordinate system we specify location in terms of (7, 8, @), where r is radius, 0 1s polar
angle or geocentric colatitude, and ¢ is longitude. In a geocentric coordinate system the origin is Earth’s center.
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Spherical coordinates (r, 6, ¢) as commonly used in physics (ISO A globe showing the radial distance, polar angle
80000-2:2019 convention): radial distance r (distance to origin), and azimuthal angle of a point P with respect to a
polar angle 6 (theta) (angle with respect to polar axis), and unit sphere, in the physics convention. In this
azimuthal angle ¢ (phi) (angle of rotation from the initial image, r equals 4/6, 6 equals 30°, and ¢ equals
meridian plane). The symbol ¢ (rho) is often used instead of r. 90°.


https://en.wikipedia.org/wiki/International_Organisation_for_Standardisation
https://en.wikipedia.org/wiki/ISO/IEC_80000

Geocentric spherical coordinates are comprised of the geocentric radial distance r, the

colatitude @, and the east longitude ¢. A position vector r can be written in geographic

Cartesian coordinates x, y, Z as

X rsinfcos ¢
r=|y|=|rsinfsing
Z

rcos é

so that the spherical coordinates can be expressed in terms of x, y, z as:

r=4/x*+y +72°

Z
9 = cos™! ( ; - )
VX T+ Y-+ z For a whole lot about the many possible coordinate systems

¢ = atan2(y, x). that are used 1n geomagnetic and geospace research see
this paper by Laundal and Richmond
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https://link.springer.com/article/10.1007/s11214-016-0275-y

Coordinate Systems and Differential Operations

Gradient of a scalar field VWV is a vector that gives the direction and rate of
change of the field. It is orthogonal to lines of constant W, and this is the
direction of maximum rate of change. If we want to know the derivative of W
in some other direction, e.g. A that would be V¥ - A.

Gradient in three Coordinate Systems:

lines (5f constant W

Cartesian:
ow ow ow
U = X \ 7— — '\Ijz
v . ox Y oy “ 0z %
Cylindrical:
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Spherical:
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v " or r 06 ¢rsin9 9J0),



Coordinate Systems and Differential Operations - cont

Divergence of a vector field V - A is a scalar that represents the 3-dim spatial
derivative of a vector field. If A represents fluid flow V - A is net outward flow
per unit volume surrounding point (z,y, 2).

Divergence in three Coordinate Systems:

Cartesian:
0A 0A 0A
v ox oy 0z
Cylindrical:
1 0 10Ay O0A,
— T = Ar I i
VoA r Or (rdy) r 00 0z
Spherical:
1 O 1 0 1 O0A
A = 2A,) 4 ingA) A ¢
v r2 Or (rAr) rsin @ 00 (sin6.45) rsin@ 0@



Coordinate Systems and Differential Operations - cont

Laplacian of a scalar field V¥ = 0 is a second order differential equation.

V20 =V - (VD).

Laplacian in three Coordinate Systems:

Cartesian:
0°U  O*W 9V
2P — | | — 0,(0; U
v ox?  Oy?  0z? %0 0)
Cylindrical:
1 0 0V 1 9°0U  9*U
‘U = —) A a
v r Or (r Or ) r2 002 = 0z2
Spherical:
1 0, ,00 1 0 OV 1 0°U
U = ‘=) inf—-)
V= 555 T 000 50 T ez g 042
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Recall the static approximation to the geomagnetic field from the end of Lecture 2

* Magnetic field representation in terms of scalar potential

Approximation: Earth's atmosphere 1s an insulator with no electrical currents

VX B=0 since J=0
B=— V\P See vector identity number 12
Since V:-B=0 no monopoles

Laplace’s Equation




A Bit of Theory of Harmonic Functions - there 1s a lot!

¥(r, 0, ¢) is harmonic in D, a bounded region of real space if V?¥ = 0. Then
¥ is infinitely differentiable at all points in D - note we are talking about spatial derivatives.
Maximum and minimum values of ¥ always occur on the boundaries of D - not inside.

For any spherical surface within D the average value of ¥ over the surface equals its value at the
center of the sphere.

There is a uniqueness theorem for the Neumann Boundary value problem: if you know 0W/on
everywhere on the surface of a compact body B, and YW falls off like //r as » goes to infinity, then this
knowledge is sufficient to determine ¥ uniquely everywhere outside B.
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GAUSS' THEORY OF THE MAIN FIELD

* Gauss' Separation of Harmonic Fields into Parts of Internal and External Origin
B=—VW Vw=0

()
AN = |+ By Y7 (6,0)

\a

"External Internal

a=constant reference radius (e.g. Earth's surface= 6371 km)

* Gauss (1n 1832) demonstrated the predominance of the internal part

* The expansion begin at / = 1, excluding the monopoles as a source
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Solution of Laplace’s Equation

* This can be found by the standard technique of separation of variables and 1s given in the form of
an 1nfinite sum of spherical harmonic functions and radial polynomials.
 What are the spherical harmonics? They are eigentfunctions of the surface Laplacian

r

. d o d
V1—6$+ sin @ dg D
%,
=rV r=—. (2)

The subscript one is to remind us the operator acts over the unit sphere, S(1). The

first definition shows how to compute the surface gradient in a spherical polar coor-
dinate system; the second assumes the function is defined in all of space and just
subtracts out the radial part. The second definition shows the operator is indepen-
dent of coordinate orientation and also that nothing funny happens at the poles.

The ordinary Laplacian operator in R” is

2 2 2
)9 _90 & T 3)

V2 = =
dx; dx; dx2 dy2 022
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The full Laplacian can be written as the sum of the radial part and the
surtace Laplacian

1 9 1 _,

where V? is the surface Laplacian, sometimes also called the Beltrami operator; rela-
tive to a coordinate system

_82+cot68+ ! 32- ! asin68+ 1_& (5)
062 06 sin?e 092  siné 96 06 sin®g g%

v2

2
Vl

We can think of V# as the ordinary Laplacian, with the radial part subtracted and
scaled by r* to make it unitless: from (4)

9
V%:rzvz—rﬁr. (6)

Note there is also a dimensional form of the surface gradient

Ve=r1V,
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GAUSS' THEORY OF THE MAIN FIELD

* Gauss' Separation of Harmonic Fields into Parts of Internal and External Origin
B=—VW Vw=0

()
AN = |+ By Y7 (6,0)

\a

"External Internal

a=constant reference radius (e.g. Earth's surface= 6371 km)

* Gauss (1n 1832) demonstrated the predominance of the internal part

* The expansion begin at / = 1, excluding the monopoles as a source
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Spherical harmonic functions are defined on the surface of a sphere

Y™ (0, ) = Njpne'™? P (cosh)

[ is called the degree and m is the order of Y™ .  Note e = cos m¢ + i sin mep

For fully normalized spherical harmonics the normalization constant is

20+ 1,1
A } [(l—l—m)!}

Nim = (=1)™]

and the Associated Legendre Function is

15



What do the P/"s look like?
note that y = cosf and s = sin 6

s=sin@=(1-u?)".

I%Kﬂ)ZZI
P(w)=p;  Piuw)=s

Po(u) =(Bu® - 1)/2; P3u)=3us; P3(u)=3s*
Pq(u) = u(5u% — 3)/2
Pi(u) =3s(5u° — 1)/2
P%(u) = 15s%u; P3(u) = 15s°
P,(u)=(35u* — 30u* + 3)/8
Pl(u) =5su(Tu® - 3)2; PAu) = 15sX(Tu® - 1)/2
P3(u) =105s%u;  Pi(u)=105s*
P(u) = u(63u* —T04% + 15)/8
Pl(u) = 15s(21u* — 144% + 1)/8
PZ(u) = 10582 u(3 1% — 1)/2; P3(u) = 10553(9u2% — 1)/2

Pi(u) =945s*u;  P2(u) = 945s°.
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Example Y;"'s for 1=10

zonal, m=0 tesseral sectoral, I=m

1 I

zonal tesseral sectoral
l,0mg l,oms l,0m1o
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A Table of Spherical Harmonic Lore

Internal/External
separation uses 3,4,6,12

Property Formula Comments
1. Laplacian in polar o2 _ 1 - 1 0%r V¢ is angular part of
coordinates S Vit o familiar Laplacian
2. Eigenvalue VEYT = - Il+1) YT, There are 2l+1 linearly
[=0,1,2,--- independent  eigenfunc-
tions per [
3. Orthogonality f d?s Y?l(é) Y’lz(é)* =0, True for every normaliza-
tion
unless [=n and
m=~Fk
4. Theoretician’s nor- f d2& 1Y7(8) | 2_1 Other choices: 47 or
malization A4 /(21 +1)
5. Completeness o 1 . Works for any reasonable
f(8) = Eo E‘_l CimY7'(8) function f on S(1)
6. Expansion coeffi- Cln = f d2s f(8) Y(8)* Requires property 4
cients
7. Addition Theorem 20 +1 P(a-3 Requires property 4
4 /(8- 7) =
!
> Y Y@
m=-1
8. Wavelength of Y " 27 Depends only on degree /,
[+ not on order m or §
9. Appearance Re Y;" vanishes on 2m Im Y;” the same but
meridians and [-m rotated about z
parallels
10. Parseval’s Theorem f d2s | £(§)12 = Requires property 4. Get
o I RMS value of f by divid-
Y ey, |2 ing by 4z and taking
1=0 m=-1 square root
11. Generating function 1 _ Often used in conjunction
(1-2ur+r2)~ with property 7
00]
> rtPy(w
1=0
12. Very wuseful but often

Another orthogonal-
ity

[ ViY@ V,YES) =
l(l + 1) 5ln 5mk

omitted! Requires prop-
erty 4.
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Fully normalized spherical harmonics (property
4) are most convenient for theory - but most
geomagnetists use Schmidt normalization.

This changes N;" in slide 15 and uses a real

representation for longitudinal variation.



Schmidt Normalization 5 A ys§' THEORY OF THE MAIN FIELD

Separating internal and external fields

[
r

(%)m(g'f’cos(mcb)+h75in(m¢))P7(6)+ - (g} cos(m@)+s)sin(md)) P (0)

Internal sources External sources

* Note we have 2 spherical harmonic expansions 1n the general solution to Laplace's
equation in spherical geometry.

e Fields associated with internal and external sources have different radial
dependence.

» This allows 1nternal (e.g. core) and external (e.g. magnetospheric) sources to be
efficiently separated, provided observations at different altitudes are available.

* Except during geomagnetic storms the internal field consists of around 97%
of the total field observed at Earth's surface.
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solar wind

Sources of Earth's magnetic field

The Geomagnetic Earth

magnetosphere

o mem mm g,

m Sate)y:
- ~ \e//'l‘es

(credit: ESA)

Earth's magnetic field sources
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Fully Normalized
GAUSS' THEORY OF THE MAIN FIELD

* Gauss' Separation of Harmonic Fields into Parts of Internal and External Origin
B=—VW Vw=0

()
AN = |+ By Y7 (6,0)

\a

"External Internal

a=constant reference radius (e.g. Earth's surface= 6371 km)

* Gauss (1n 1832) demonstrated the predominance of the internal part

* The expansion begin at / = 1, excluding the monopoles as a source
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How did Gauss separate internal and external parts of the field?
First recall that we measure B not V.

* Assumption: B 1s known everywhere on the surface of the sphere » = a:

B:;’Br-l-Bs V:;ﬁa’”-l-%vl | /(Br
Br:—ﬁr‘P‘r:a:—Z[ZA7—(1+1)B7]Y7[(6,(|)) \ A‘B
[,m S

B=—V,w=-% [4+B]|V, 1]
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How did Gauss separate internal and external parts of the field?
First recall that we measure B not V.

* Assumption: B 1s known everywhere on the surface of the sphere » = a:

B:;’Br-l-Bs V:;}a’”-l-%vl | /(Br
Br:—ﬁr‘P‘r:a:—Z[ZA7—(1+1)B7]Y7(6,(|)) \ /\B
[,m S

B=—V,w=-% [4+B]|V, 1]
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We want to find the Alm and Blm for all / and m

B,==0,¥|,_, == 147 —(1+1) B! |Y7(0, ¢)

B=— V=3 [4+5|V, ]

We use properties 3, 4, 6, and 12 from the table of SH lore.
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A Table of Spherical Harmonic Lore

Internal/External

separation uses 3,4,6,12

Property Formula Comments
1. Laplacian in polar - 1 - 1 0%r V¢ is angular part of
coordinates S Vit o familiar Laplacian
2. Eigenvalue VEYT = - Il+1) YT, There are 2I+1 linearly
[=0,1,2,--- independent  eigenfunc-
tions per [
3. Orthogonality f d?8 Y'(8) Y @$) =0, True for every normaliza-
tion
unless [=n and
m==~k
4. Theoretician’s nor- f d2& 1Y7(8) | 2_1 Other choices: 47 or
malization 4 /(20 +1)
5. Completeness o 1 . Works for any reasonable
F8) = Eo E‘_l Cim ¥ (8 function f on S(1)
6. Expansion coeffi- Cln = f d2s f(8) Y(8)* Requires property 4
cients
7. Addition Theorem 20 +1 P(a-3 Requires property 4
4 /(8- 7) =
!
> Y Y@
m=-1
8. Wavelength of Y " 27 Depends only on degree /,
[+ not on order m or §
9. Appearance Re Y;" vanishes on 2m Im Y;” the same but
meridians and [-m rotated about z
parallels
10. Parseval’s Theorem f d2s | £(§)12 = Requires property 4. Get
o I RMS value of f by divid-
Y ey, |2 ing by 4z and taking
1=0 m=-1 square root
11. Generating function 1 _ Often used in conjunction
(1-2ur+r2)~ with property 7
00]
> rt Py(w)
1=0
12. Very wuseful but often

Another orthogonal-
ity

[d*8ViY'(®) ViV () -
l(l + 1) 5ln 5mk

omitted! Requires prop-
erty 4.
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B,=—0,W|._,=— |l47—(1+1)B!'|Y](8,0)
[, m

B=—V,W=—3[4+5|V,;

By using properties 3, 4, 6, and12 from the table of lore

 We can always recover the internal and external coefficients separately from our
knowledge of B on » = a, combining the following two equations:




Summarizing: Gauss' Separation of Harmonic Fields into Parts of
Internal and External Origin

* Assumption: B 1s known everywhere on the surface of the sphere » = a:

B=iB,+B, V=?8F+%V1 /13

B,=—3,W|_, =~ |4/ —(1+1)B}'|Y]'(0,0) B

[, m

B=—V,w=-3 [4+B]|V, 1]

* We can always recover the internal and external coefficients separately from our
knowledge of B on » = a, combining the following two equations:




