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Last Class

e Laplace’s equation for geomagnetic scalar potential is valid in source free
region - Farth’s atmosphere

e Write a general solution to Laplace’s equation in geocentric spherical coordi-
nates

e ‘ully-normalized spherical harmonics with complex coefficients A" and B;"
allow us to easily do theory to separate internal and external field contributions

e But geomagnetists usually use real partially normalized Schmidt coeflicients
g/ and h;" (internal) and ¢, s]* (external).



Today’s Class

*Why spherical harmonics?
*Specializing to the internal field
* Upward and Downward Continuation looked at 2 different ways

» Spatial power spectrum for the geomagnetic field



A Table of Spherical Harmonic Lore

Property Formula Comments
1. Laplacian in polar o2 _ 1 - 1 0%r V¢ is angular part of
coordinates B ) familiar Laplacian
2. Eigenvalue ViY== -Il+1)YT, There are 2/+1 linearly
[=0,1,2,--- independent  eigenfunc-
tions per [
3. Orthogonality f d?s Y™(8) YE(@©) =0, True for every normaliza-
tion
unless [=n and
m==~k
4. Theoretician’s nor- f d2& 1Y7(8) | 2_1 Other choices: 47 or
malization 4 /(20 +1)
5. Completeness o 1 . Works for any reasonable
f(8) = Eo E‘_l CmY7'(8) function f on S(1)
6. Expansion coeffi- Cln = f d2s f(8) YH(8)* Requires property 4
cients
7. Addition Theorem 20 +1 P(a-3 Requires property 4
4 /(8- 7) =
l
> Y S Y@
m=-1
8. Wavelength of Y " 27 Depends only on degree /,
[+ not on order m or §
9. Appearance Re Y;" vanishes on 2m Im Y;” the same but
meridians and [-m rotated about z
parallels
10. Parseval’s Theorem f d25 | £(§)12 = Requires property 4. Get
o I RMS value of f by divid-
Y ey, |2 ing by 4z and taking
1=0 m=-1 square root
11. Generating function 1 _ Often used in conjunction
(1-2ur+r2)~ with property 7
00]
> rtPy(w
1=0
12. Very wuseful but often

Another orthogonal-
ity

[ ViY@ VYY) =
l(l + 1) 6ln 6mk

omitted! Requires prop-
erty 4.

Internal/External
separation used 3,4,6,12



Why spherical harmonics?

Natural basis functions for representing any real-square integrable function on the sphere

f(0,9) = Z Z cim Yy (0, ¢)

[=0 m=—1

i = / P51 (8)Y;" (8)

where on the unit sphere we can write d*§ = sin 0dfd¢,
while for a sphere of radius r

d?*s = r? sin 0dOd o

If we know the coetficients in this expansion we can evaluate the function anywhere on the surface
of the sphere. This makes them useful for all kinds of observables on planetary scale: topography,

magnetic and gravitational field, displacement/ velocity in seismology, postglacial rebound, elastic
flexure, ...



What sort of functions might we represent with a Spherical Harmonic Expansion (SHE)"
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Scalar Field

Radial Field

Magnetic field at Mars Surface, Langlais et al., 2019
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https://doi.org/10.1029/2018JE005854

Upward and Downward Continuation -1

» The solution to Laplace’s equation for the scalar potential W given in terms

of spherical harmonics is valid through the region D where V¥ = 0.

» To find B we take the gradient of V.

- Then just need to specify the Gauss coefficients and (r, 8, @) to evaluate the

field anywhere 1n D.

» Increasing r1s called upward continuation. Decreasing » 1s downward

continuation.



Let’s 1gnore external field contributions and just consider the internal field

Upward and Downward continuation

* Suppose that we have a collection of observations on one surface, but would like
to infer something about the source at some other altitude or radius;

 Assumption: Earth's mantle 1s an insulator and there are no magnetic sources
within 1t (approximations commonly adopted when studying the magnetic field at
the core) then we can write the magnetic field B as the gradient of a scalar
potential within that region too:

B=—VWY and V'w=0

 Finding B, further away from the sources 1s known as upward continuation.
e Finding B, values towards the sources 1s known as downward continuation.



Specializing to the internal part of Earth’s field we write the potential in the
region ¢ < r < a-+d, with ¢ = 3485km the radius at the Core-Mantle Boundary
(CMB), a = 6371km the mean surface radius, and d the height of the atmo-

sphere.

V0.6 =03 Y B =) Y6, 9)

[=1 m=—1

The magnetic field is given by the negative gradient B = —VV

O . 10¥ . 1 OU
VU =ro-+0 -0 g 9o

or r 06

For example the radial component of the field by taking 0/0r

00 [
Bi(r,0,0) =3 3 (I+1)B" T)l+2 ™ (0, &) c<r<a+d

=1 m=—1
10



B. for the IGRF in 2020

Radial field at r=a

Non-dipole radial
field at r=a

Downward continued
radial field at r=c

IGRF 2020 Radial field Br at r=c



Upward and Downward Continuation -11

In Homework 1 you showed that an alternative to ¥ for the magnetic potential 1s 2 = rB..
It will have different Gauss coetficients 1n the spherical harmonic representation
- call them f;". We can find them by the same method as before.

We perform the integrals on the known field over S(a).
V*(rB,)=V (Q)=0
Q(r,0,0)=rB,(r.0,¢) aZ > 4] v, o)

=1 m=—1

Br'= | B,(a,0'0" )Y (0, ¢’

S(a) d

)*d 7'
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A Bit of Theory of Harmonic Functions - there 1s a lot!

¥(r, 0, ¢) is harmonic in D, a bounded region of real space if V?¥ = 0. Then
¥ is infinitely differentiable at all points in D - note we are talking about spatial derivatives.
Maximum and minimum values of ¥ always occur on the boundaries of D - not inside.

For any spherical surface within D the average value of ¥ over the surface equals its value at the
center of the sphere.

There is a uniqueness theorem for the Neumann Boundary value problem: if you know 0W/on
everywhere on the surface of a compact body B, and W falls off like //7 as r goes to infinity, then this

knowledge is sufficient to determine ¥ uniquely everywhere outside B.
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Green’s Function Formulation

» Using the Neumann BVP we can write the field at Earth’s surface in terms of
point sources of B, at the core-mantle boundary (CMB).

» The Green’s function gives the form for translating a unit ot B, at radius ¢ to a

larger value of the radius (upward continuation). To get the whole field we need
to integrate over the sphere S(c)

14



Upward Continuation

Suppose we know B, everywhere on the surtace of the core r = c.

Integrating against the Green’s function G(r,r’) = (¢/r)*K(c/r,r - r') gives the value
of B (r,r) at a larger radius » We can get the functional form for K using information from the

table of spherical harmonic lore. Details are omitted here.

O°5 B A ‘ A A A A
B,(r,t) = / (c¢/ry*K(c/r, t-1) B,(ct) d*t
0.4 5(€)
Eg? 0.3 K( 9) | | — L'l?z
O T, COS = ,
o | 47t (1 + 22 — 2xc086)3/2
- 0.2
]
0.1
ooLb— o . . r=c/r and -1 =cosf
0 40 80 120 160

8, (degrees)
Figure 3.2.1
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Why 1s the Green’s Function formulation useful?

» Imagine you have a localized source of radial magnetic field, B,.(c), at
the core-mantle boundary (CMB). Let’s assume 1t’s a spike-like delta
function.

* What does that look like at Earth’s surtace? The Green’s function
describes its contribution to the field at Earth’s surface, B;-(a), which is
spread over a broad region, averaging the input at r=c, and reducing its
amplitude.

» Obviously this applies not just to B,-(a)but to all the geomagnetic
elements at Earth’s surface, D, I, F, etc.
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And example of an intensity spike at the CMB (r=c) and Earth’s surface (r=a)
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Figure 4 | The Levantine geomagnetic spike. Contours of field intensity, F (uT), at Earth’s surface (r=a) from the CHAOS-4 model? at 2010 (a) the
CALS10k.2 global field model at 1000 BC (b) and CALS10k.2 at 1000 BC plus a superposed best-fitting spike at 20° N, 40° E with amplitude A =400 mT
and s.d. of ¢ =1° at the CMB (c). Symbols show paleointensities for samples dated at 1150-1050 BC (triangles), 1049-950 BC (squares) and 949-850 BC
(circles). Symbol colours are blue (40-50 uT), green (51-60 uT), yellow (61-70 uT), orange (71-90 uT), red (91-115uT) and black (>115uT). White
triangles in a-c¢ mark the north pole of the dipole field. (d) Longitudinal cross-section through the spike in ¢, at Earth’s surface (blue, right ordinate) and the

CMB (r =g, red, left ordinate). The horizontal dashed line marks the width at half maximum o,(a). Available data within 20° £15° N are shown corrected to

)0.5

20° N using the formula for an axial dipole field, F (1 +3cos?0) ", where 0 is colatitude. Error bars correspond to the uncertainties in Fig. 3b. Open and

closed symbols cannot be simultaneously matched by the model.



Upward continuation

* A fundamental property of the integral 1s that:

‘WZCZX d2 I//\. ’

B.(r,#)l< [ [(alrV K(alr,i#")|B,(a,F')
S(a)

B, (r,#)|<|B,(a,F') r>a

‘max )

e The magnitude of B, on a sphere of radius » > a, 1s always less than the maximum
magnitude on the sphere of radius a;

e The maximum value falls off like r* . Technically upward continuation is bounded
linear mapping;

* The upward continuation 1s stable. This means that a small error 1n the field on the
inner sphere remains small on the outer one.
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Upward and Downward continuation

/ \/+1

Q' (r)=p=
\ 7

* In upward continuation: short wavelength energy disappears from the field
preferentially as we go to spheres of larger radius;

* In downward continuation: the shorter wavelength components of the field are
magnified relative to the longer wavelength ones;

 Mapping from S(a) to S(r) when r < a 1s an example of an unstable process.

Roughly this means small errors 1n the field may grow when the field 1s
downward continued.
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Downward continuation to the core

* The spherical harmonic expression for the Z component of the
geomagnetic field due to internal sources 1s:

[+2

(a |
Z:Z:: (1+1)| 2] [gVcos(m¢)+h"sin(m¢)] P (6)

* Assuming the mantle contains no magnetic field sources (is to first

approximation an insulator) then we can simple change r from
r= 6371 km to ¢ = 3481 km.

* This involves each spherical harmonic at Earth's surface being
multiplied by a factor

[+2

(I+1)]—

e Since a >> ¢, harmonics with larger 1 are amplified more on
downward continuation
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Errors in Upward and Downward continuation

Downward

21



Downward continuation to the core

20 movie (credit: C. Finlay)



The IGREF is the International Geomagnetic Reference Field

* In gecomagnetism, basis functions (spherical harmonics) are normalized so that:

m\2 72 A~ 43—5
S{”(Y’) SR TFY

+

o [\
(7,0, ¢)= Z 2 Z (gVcos(md)+h'sin(m¢)) P (cosO)

1\ ) m=o0

e The normalization constanti1s: N =1 m=0
. . . Im >
Schmidt normalization \/




Geomagnetic Conventions for Spherical Harmonics

In geomagnetism most researchers eschew the complex spherical harmonic rep-
resentation for the field, replacing ¢ with real sines and cosines and adopt
Schmidt partial normalization for the spherical harmonics. The basis functions
are renormalized so that with Y, as we defined them earlier

4
[ e = o
S(1) (20 + 1)

(I —m)!

0
(I +m)!’ =

Nlm:1, m = (0 Nlm\/

In Schmidt quasi-normalized form the geomagnetic potential with both internal
and external sources is written

00 [ - [+1
U(r,0,6)=ad > i() (97" cos(m) + " sin(ma)) Fi™ (6)

l:l m=0 "

Internal

+ (E) (q}" cos(me) + s;" sin(m(b))le(H) External

Here the P;m(ﬁ) has implicitly absorbed the normalization coeflicient N;"*. Going
forward we will assume Schmidt normalization with the notation P/™.
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Gauss Coefficients for IGRF-2000

[ m q;" h;" f gr" h;" [ m h;"
1 0 -29615 O 6 2 74 04 9 0 i 0
. i -1728 5186 6 3 -161 05 9 1 9 -20
2 0 -2267 0 6 4 -3 -01 9 2 3 13
2 ] 3072 -2478 6 5 17 | 9 3 -8 12
2 2 1672 -458 6 6 91 44 9 4 6 -0
3 0 1341 0 [ - 79 0 9 5 9 -8
5 . -2290  -227 % ‘4 -74 -0 9 0 -2 9
2 2 1233 296 7 2 0 -24 9 7 9 4
3 3 715 -492 T 3 33 0 9 8 -4 -8
4 0 935 0 7 4 9 24 9 9 -8 5
4 1 787 272 7 23 7 15 Iy 8 -2 0
4 2 251 -232 7 B 8 -25 0 1 -0 l
4 3 -405 119 7 7 -2 -0 - 2 0
4 4 110 -304 8 0 23 0 3 -3 4
3 O -217 0 g8 1 § 12 0 4 0 3
¥ 351 — 8§ 2 9 -22 0 3 4 -0
3 2 222 172 8 3 -8 8 0 6 1 -1
x o -131 -134 8 4 -17 -21 0 7 2 -3
5 4 -169 -40 8 3 9 15 1 4 0
3 3 -12 107 8 06 7 9 D 9 0 -2
6 0 2 0 8 7 -8 -16 0 1 -1 -8
6 | 68 -17 8 8 -7 -3

These are in nT.



The Geomagnetic Spectrum

21+1)(1+1) : )
R.= ( bm = l+ 1
, 4 i mZ—I l I mgo [ ) ‘
o (k)
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R, 1s a spatial power spectrum and

lets us divide magnetic field

according to 1ts spatial wavelength.
Recall SH properties 8 & 10.
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- . . . . . . .
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Spatial power spectrum of the geomagnetic field at the Earth’s surface. Black dots represent the
spectrum of a recent field model (Olsen et al. 2009; Maus et al. 2008). Also shown are theoretical
spectra (Voorhies et al., 2002) for the core (blue) and crustal (magenta) part of the field, as well as
their superposition (red curve)




What happens to the spectrum when the field is downward continued to the CMB?
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Figure 3.6.4.2 Lowes spectrum evaluated at the core-mantle boundary.
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