SIOG 231 GEOMAGNETISM AND ELECTROMAGNETISM

Lecture 6
More on Spherical Harmonics
1/25/2024

Last Class

- Laplace's equation for geomagnetic scalar potential is valid in source free region Earth's atmosphere
- Write a general solution to Laplace's equation in geocentric spherical coordinates
- Fully-normalized spherical harmonics with complex coefficients A_l^m and B_l^m allow us to easily do theory to separate internal and external field contributions
- But geomagnetists usually use real partially normalized Schmidt coefficients g_l^m and h_l^m (internal) and q_l^m , s_l^m (external).

Today's Class

- •Why spherical harmonics?
- •Specializing to the internal field
- Upward and Downward Continuation looked at 2 different ways
- Spatial power spectrum for the geomagnetic field

A Table of Spherical Harmonic Lore

	Property	Formula	Comments
1.	Laplacian in polar coordinates	$\nabla^2 = \frac{1}{r^2} \nabla_1^2 + \frac{1}{r} \frac{\partial^2 r}{\partial r^2}$	$ abla_1^2$ is angular part of familiar Laplacian
2.	Eigenvalue	$ abla_1^2 Y_l^m = -l(l+1) Y_l^m, l = 0, 1, 2, \cdots$	There are $2l+1$ linearly independent eigenfunctions per l
3.	Orthogonality	$\int d^2\hat{\mathbf{s}} \ Y_l^m(\hat{\mathbf{s}}) Y_n^k(\hat{\mathbf{s}})^* = 0,$ unless $l = n$ and $m = k$	True for every normaliza- tion
4.	Theoretician's nor- malization	$\int d^2\hat{\mathbf{s}} Y_l^m(\hat{\mathbf{s}}) ^2 = 1$	Other choices: 4π or $4\pi/(2l+1)$
5.	Completeness	$f(\hat{\mathbf{s}}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_{l}^{m}(\hat{\mathbf{s}})$	Works for any reasonable function f on $S(1)$
6.	Expansion coefficients	$c_{lm} = \int d^2 \hat{\mathbf{s}} \ f(\hat{\mathbf{s}}) Y_l^m (\hat{\mathbf{s}})^*$	Requires property 4
7.	Addition Theorem	$\frac{2l+1}{4\pi} P_l(\hat{\mathbf{s}} \cdot \hat{\mathbf{r}}) = \sum_{m=-l}^{l} Y_l^m(\hat{\mathbf{s}}) Y_l^m(\hat{\mathbf{r}})^*$	Requires property 4
8.	Wavelength of ${Y}_l^m$	$\frac{2\pi}{l+\frac{1}{2}}$	Depends only on degree l , not on order m or $\hat{\mathbf{s}}$
9.	Appearance	Re ${Y}_l^m$ vanishes on $2m$ meridians and $l-m$ parallels	Im Y_l^m the same but rotated about $\hat{\mathbf{z}}$
10.	Parseval's Theorem	$\int d^2 \hat{\mathbf{s}} f(\hat{\mathbf{s}}) ^2 = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} ^2$	Requires property 4. Get RMS value of f by dividing by 4π and taking square root
11.	Generating function	$\frac{1}{(1 - 2\mu r + r^2)^{1/2}} = \sum_{l=0}^{\infty} r^l P_l(\mu)$	Often used in conjunction with property 7
12.	Another orthogonal- ity	$\int d^2\hat{\mathbf{s}} \nabla_1 Y_l^m(\hat{\mathbf{s}}) \cdot \nabla_1 Y_n^k(\hat{\mathbf{s}})^* = \\ l(l+1) \delta_{ln} \delta_{mk}$	Very useful but often omitted! Requires property 4.

Internal/External separation used 3,4,6,12

Why spherical harmonics?

Natural basis functions for representing any real-square integrable function on the sphere

$$f(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_l^m(\theta, \phi)$$

$$c_{lm} = \int d^2 \hat{\mathbf{s}} f(\hat{\mathbf{s}}) Y_l^m(\hat{\mathbf{s}})$$

where on the unit sphere we can write $d^2\hat{\mathbf{s}} = \sin\theta d\theta d\phi$, while for a sphere of radius r

$$d^2\mathbf{s} = r^2 \sin\theta d\theta d\phi$$

If we know the coefficients in this expansion we can evaluate the function anywhere on the surface of the sphere. This makes them useful for all kinds of observables on planetary scale: topography, magnetic and gravitational field, displacement/velocity in seismology, postglacial rebound, elastic flexure, ...

What sort of functions might we represent with a Spherical Harmonic Expansion (SHE)?

Mars Topography - USGS

★ Jezero Crater

Magnetic field at Mars Surface, Langlais et al., 2019

Scalar Field

Radial Field

Upward and Downward Continuation -I

- The solution to Laplace's equation for the scalar potential Ψ given in terms of spherical harmonics is valid through the region D where $\nabla^2 \Psi = 0$.
- To find B we take the gradient of Ψ .
- Then just need to specify the Gauss coefficients and (r, θ, ϕ) to evaluate the field anywhere in D.
- Increasing r is called upward continuation. Decreasing r is downward continuation.

Let's ignore external field contributions and just consider the internal field

Upward and Downward continuation

- Suppose that we have a collection of observations on one surface, but would like to infer something about the source at some other altitude or radius;
- Assumption: Earth's mantle is an insulator and there are no magnetic sources within it (approximations commonly adopted when studying the magnetic field at the core) then we can write the magnetic field **B** as the gradient of a scalar potential within that region too:

$$\boldsymbol{B} = -\nabla \Psi$$
 and $\nabla^2 \Psi = 0$

- Finding B_r further away from the sources is known as *upward continuation*.
- Finding B_r values towards the sources is known as downward continuation.

Specializing to the internal part of Earth's field we write the potential in the region c < r < a + d, with c = 3485km the radius at the Core-Mantle Boundary (CMB), a = 6371km the mean surface radius, and d the height of the atmosphere.

$$\Psi(r, \theta, \phi) = a \sum_{l=1}^{\infty} \sum_{m=-l}^{l} B_l^m \left(\frac{a}{r}\right)^{l+1} Y_l^m(\theta, \phi)$$

The magnetic field is given by the negative gradient $B = -\nabla \Psi$

$$\nabla \Psi = \hat{\mathbf{r}} \frac{\partial \Psi}{\partial r} + \hat{\theta} \frac{1}{r} \frac{\partial \Psi}{\partial \theta} + \hat{\phi} \frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial \phi}$$

For example the radial component of the field by taking $\partial/\partial r$

$$B_r(r,\theta,\phi) = \sum_{l=1}^{\infty} \sum_{m=-l}^{l} (l+1)B_l^m \left(\frac{a}{r}\right)^{l+2} Y_l^m(\theta,\phi) \qquad c < r < a+d$$

B_r for the IGRF in 2020

Radial field at r=a

Non-dipole radial field at r=a

Downward continued radial field at r=c

IGRF 2020 Radial field Br at r=c

Upward and Downward Continuation -II

In Homework 1 you showed that an alternative to Ψ for the magnetic potential is $\Omega = rB_r$. It will have different Gauss coefficients in the spherical harmonic representation - call them β_I^m . We can find them by the same method as before.

We perform the integrals on the known field over S(a).

$$\nabla^{2}(rB_{r}) = \nabla^{2}(\Omega) = 0$$

$$\Omega(r, \theta, \phi) = rB_{r}(r, \theta, \phi) = a \sum_{l=1}^{\infty} \sum_{m=-l}^{l} \beta_{l}^{m} \left(\frac{a}{r}\right)^{l+1} Y_{l}^{m}(\theta, \phi)$$

$$\beta_{l}^{m} = \int_{S(a)} B_{r}(a, \theta' \phi') Y_{l}^{m}(\theta', \phi')^{*} \frac{d^{2}r'}{a^{2}}$$

A Bit of Theory of Harmonic Functions - there is a lot!

 $\Psi(r,\theta,\phi)$ is harmonic in D, a bounded region of real space if $\nabla^2\Psi=0$. Then

- Ψ is infinitely differentiable at all points in D note we are talking about spatial derivatives.
- Maximum and minimum values of Ψ always occur on the boundaries of D not inside.
- For any spherical surface within D the average value of Ψ over the surface equals its value at the center of the sphere.
- There is a uniqueness theorem for the Neumann Boundary value problem: if you know $\partial \Psi/\partial n$ everywhere on the surface of a compact body B, and Ψ falls off like 1/r as r goes to infinity, then this knowledge is sufficient to determine Ψ *uniquely* everywhere outside B.

Green's Function Formulation

- Using the Neumann BVP we can write the field at Earth's surface in terms of point sources of B_r at the core-mantle boundary (CMB).
- The Green's function gives the form for translating a unit of B_r at radius c to a larger value of the radius (upward continuation). To get the whole field we need to integrate over the sphere S(c)

Upward Continuation

Suppose we know B_r everywhere on the surface of the core r = c. Integrating against the Green's function $G(\mathbf{r}, \mathbf{r}') = (c/r)^2 K(c/r, \mathbf{r} \cdot \mathbf{r}')$ gives the value of $B_r(r, \hat{\mathbf{r}})$ at a larger radius r. We can get the functional form for K using information from the table of spherical harmonic lore. Details are omitted here.

$$B_r(r, \hat{\mathbf{r}}) = \int_{S(c)} (c/r)^2 K(c/r, \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}') B_r(c, \hat{\mathbf{r}}') d^2 \hat{\mathbf{r}}'$$

$$K(x,\cos\theta) = \frac{1}{4\pi} \frac{1 - x^2}{(1 + x^2 - 2x\cos\theta)^{3/2}}$$

$$x = c/r$$
 and $\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}' = \cos\theta$

Figure 3.2.1

Why is the Green's Function formulation useful?

- Imagine you have a localized source of radial magnetic field, $B_r(c)$, at the core-mantle boundary (CMB). Let's assume it's a spike-like delta function.
- What does that look like at Earth's surface? The Green's function describes its contribution to the field at Earth's surface, $B_r(a)$, which is spread over a broad region, averaging the input at r=c, and reducing its amplitude.
- Obviously this applies not just to $B_r(a)$ but to all the geomagnetic elements at Earth's surface, D, I, F, etc.

Figure 4 | The Levantine geomagnetic spike. Contours of field intensity, F (μT), at Earth's surface (r=a) from the CHAOS-4 model² at 2010 (**a**) the CALS10k.2 global field model at 1000 BC (**b**) and CALS10k.2 at 1000 BC plus a superposed best-fitting spike at 20° N, 40° E with amplitude A=400 mT and s.d. of $\sigma=1^\circ$ at the CMB (**c**). Symbols show paleointensities for samples dated at 1150-1050 BC (triangles), 1049-950 BC (squares) and 949-850 BC (circles). Symbol colours are blue $(40-50\,\mu\text{T})$, green $(51-60\,\mu\text{T})$, yellow $(61-70\,\mu\text{T})$, orange $(71-90\,\mu\text{T})$, red $(91-115\,\mu\text{T})$ and black ($>115\,\mu\text{T}$). White triangles in **a-c** mark the north pole of the dipole field. (**d**) Longitudinal cross-section through the spike in **c**, at Earth's surface (blue, right ordinate) and the CMB (r=c, red, left ordinate). The horizontal dashed line marks the width at half maximum $\delta_2(a)$. Available data within $20^\circ \pm 15^\circ$ N are shown corrected to 20° N using the formula for an axial dipole field, $F \propto \left(1+3\cos^2\theta\right)^{0.5}$, where θ is colatitude. Error bars correspond to the uncertainties in Fig. 3b. Open and closed symbols cannot be simultaneously matched by the model.

Upward continuation

• A fundamental property of the integral is that:

$$|B_{r}(r,\hat{r})| \leq \int_{S(a)} |(a/r)^{2} K(a/r,\hat{r}\cdot\hat{r}')| |B_{r}(a,\hat{r}')|_{max} d^{2}\hat{r}'$$

$$|B_{r}(r,\hat{r})| < |B_{r}(a,\hat{r}')|_{max}, \quad r > a$$

- The magnitude of B_r on a sphere of radius r > a, is always less than the maximum magnitude on the sphere of radius a;
- The maximum value falls off like r⁻². Technically upward continuation is bounded linear mapping;
- The upward continuation is stable. This means that a small error in the field on the inner sphere remains small on the outer one.

Upward and Downward continuation

$$\Omega_l^m(r) = \beta_l^m \left(\frac{a}{r}\right)^{l+1}$$

- In upward continuation: short wavelength energy disappears from the field preferentially as we go to spheres of larger radius;
- In downward continuation: the shorter wavelength components of the field are magnified relative to the longer wavelength ones;
- Mapping from S(a) to S(r) when r < a is an example of an unstable process. Roughly this means small errors in the field may grow when the field is downward continued.

Downward continuation to the core

• The spherical harmonic expression for the Z component of the geomagnetic field due to internal sources is:

$$Z = -\sum_{l=1}^{L} \sum_{m=0}^{l} (l+1) \left(\frac{a}{r}\right)^{l+2} \left[g_{l}^{m} \cos(m \phi) + h_{l}^{m} \sin(m \phi)\right] P_{l}^{m}(\theta)$$

- Assuming the mantle contains no magnetic field sources (is to first approximation an insulator) then we can simple change r from r = 6371 km to c = 3481 km.
- This involves each spherical harmonic at Earth's surface being multiplied by a factor

$$(l+1)\left(\frac{a}{c}\right)^{l+2}$$

• Since a >> c, harmonics with larger 1 are amplified more on downward continuation

Errors in Upward and Downward continuation

$$|e_{max}|_{r=a} < \eta, \qquad \eta > 0$$

$$|e_{max}|_{r=r} < \eta \left(\frac{a}{r}\right)^2$$

Upward

$$|e_{max}|_{r=a} = \eta$$
, $r < a$, $\eta > 0$
 $|e_{max}|_{r=r} = \eta \left(\frac{a}{r}\right)^{l+1}$

Downward

Downward continuation to the core

The IGRF is the International Geomagnetic Reference Field

• In geomagnetism, basis functions (spherical harmonics) are normalized so that:

$$\int_{S(1)} (Y_l^m)^2 d^2 \hat{r} = \frac{4\pi}{21+1}$$

$$\Psi(r,\theta,\phi) = a\sum_{l=1}^{\infty} \left(\frac{a}{r}\right)^{l+1} \sum_{m=0}^{l} N_{lm} \left(g_l^m \cos(m\phi) + h_l^m \sin(m\phi)\right) P_l^m \left(\cos\theta\right)$$

• The normalization constant is: **Schmidt normalization**

$$N_{lm} = 1, \qquad m = 0$$

$$N_{lm} = \sqrt{\frac{(l-m)!}{(l+m)!}}, \qquad m > 0$$

Geomagnetic Conventions for Spherical Harmonics

In geomagnetism most researchers eschew the complex spherical harmonic representation for the field, replacing $e^{im\phi}$ with real sines and cosines and adopt Schmidt partial normalization for the spherical harmonics. The basis functions are renormalized so that with Y_l^m as we defined them earlier

$$\int_{S(1)} |Y_l^m|^2 d^2 \hat{\mathbf{r}} = \frac{4\pi}{(2l+1)}$$

then

$$N_{lm} = 1, \quad m = 0$$

$$N_{lm} = \sqrt{\frac{(l-m)!}{(l+m)!}}, \quad m > 0$$

In Schmidt quasi-normalized form the geomagnetic potential with both internal and external sources is written

$$\Psi(r,\theta,\phi) = a \sum_{l=1}^{\infty} \sum_{m=0}^{l} \left[\frac{\left(\frac{a}{r}\right)^{l+1} \left(g_l^m \cos(m\phi) + h_l^m \sin(m\phi)\right) \tilde{P}_l^{\tilde{m}}(\theta)}{+\left(\frac{r}{a}\right)^{l} \left(q_l^m \cos(m\phi) + s_l^m \sin(m\phi)\right) \tilde{P}_l^{\tilde{m}}(\theta)} \right]$$
Internal
$$+ \left[\frac{r}{a} \right]^{l} \left(q_l^m \cos(m\phi) + s_l^m \sin(m\phi)\right) \tilde{P}_l^{\tilde{m}}(\theta)$$
External

Here the $P_l^m(\theta)$ has implicitly absorbed the normalization coefficient N_l^m . Going forward we will assume Schmidt normalization with the notation P_l^m .

Radial component of the IGRF1980 magnetic field with added noise without noise 20 10 Earth Surface, r=a -10 -20 -30 -40 r/a=1 r=1.5ar/a=1.5 300 200 100 CMB, r=0.547a -300 -400 -500 -600 -700 Figure 3.3 notes

r/a=0.547

Gauss	Coeffi	cients	for	IGRE.	2000
Odubb	CULIII		IVI	LVIIVI	LUUU

				Outus	COL	nerents for	10111 200	, ,				
l	m	g_l^m	h_l^m	l	m	g_l^m	h_l^m		l	m	g_l^m	h_l^m
1	0	-29615	0	6	2	74	64		9	0	5	0
1	1	-1728	5186	6	3	-161	65		9	1	9	-20
2	0	-2267	0	6	4	-5	-61		9	2	3	13
2	1	3072	-2478	6	5	17	1		9	3	-8	12
2	2	1672	-458	6	6	-91	44		9	4	6	-6
3	0	1341	0	7	O	79	0		9	5	-9	-8
3	1	-2290	-227	7	1	-74	-65		9	6	-2	9
3	2	1253	296	7	2	0	-24		9	7	9	4
3	3	715	-492	7	3	33	6		9	8	-4	-8
4	0	935	0	7	4	9	24		9	9	-8	5
4	1	787	272	7	5	7	15		10	O	-2	0
4	2	251	-232	7	6	8	-25		10	1	-6	1
4	3	-405	119	7	7	-2	-6		10	2	2	0
4	4	110	-304	8	O	25	0		10	3	-3	4
5	0	-217	0	8	1	6	12		10	4	0	5
5	1	351	44	8	2	-9	-22		10	5	4	-6
5	2	222	172	8	3	-8	8		10	6	1	-1
5	3	-131	-134	8	4	-17	-21		10	7	2	-3
5	4	-169	-40	8	5	9	15		10	8	4	0
5	5	-12	107	8	6	7	9		10	9	0	-2
6	0	72	0	8	7	-8	-16		10	10	-1	-8
6	1	68	-17	8	8	-7	-3					

These are in nT.

The Geomagnetic Spectrum

$$R_{l} = \frac{(2l+1)(l+1)}{4\pi} \sum_{m=-l}^{l} |b_{l}^{m}|^{2} = (l+1) \sum_{m=0}^{l} [(g_{l}^{m})^{2} + (h_{l}^{m})^{2}]$$

 R_l is a spatial power spectrum and lets us divide magnetic field according to its spatial wavelength. Recall SH properties 8 & 10.

8.	Wavelength of \boldsymbol{Y}_l^m	$\frac{2\pi}{l+\frac{1}{2}}$	Depends only on degree l , not on order m or $\hat{\mathbf{s}}$
10.	Parseval's Theorem	$\int d^2 \hat{\mathbf{s}} f(\hat{\mathbf{s}}) ^2 =$ $\sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} ^2$	Requires property 4. Get RMS value of f by dividing by 4π and taking square root

Spatial power spectrum of the geomagnetic field at the Earth's surface. Black dots represent the spectrum of a recent field model (Olsen et al. 2009; Maus et al. 2008). Also shown are theoretical spectra (Voorhies et al., 2002) for the core (*blue*) and crustal (*magenta*) part of the field, as well as their superposition (*red curve*)

What happens to the spectrum when the field is downward continued to the CMB?

Figure 3.6.4.2 Lowes spectrum evaluated at the core-mantle boundary.