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S U M M A R Y
We present an analytic solution in the Fourier domain for an elastic deformation in a semi-
infinite solid due to an arbitrary surface traction. We generalize the so-called Boussinesq’s
and Cerruti’s problems to include a restoring buoyancy boundary condition at the surface.
Buoyancy due to a large density contrast at the Earth’s surface is an approximation to the full
effect of gravity that neglects the perturbation of the gravitational potential and the change in
density in the interior. Using the perturbation method, and assuming that the effect of gravity is
small compared to the elastic deformation, we derive an approximation in the space domain to
the Boussinesq’s problem that accounts for a buoyancy boundary condition at the surface. The
Fourier- and space-domain solutions are shown to be in good agreement. Numerous problems
of elastostatic or quasi-static time-dependent deformation relevant to faulting in the Earth’s
interior (including inelastic deformation) can be modelled using equivalent body forces and
surface tractions. Solving the governing equations with the elastic Green’s function in the space
domain can be impractical as the body force can be distributed over a large volume. We present
a computationally efficient method to evaluate the elastic deformation in a 3-D half space due to
the presence of an arbitrary distribution of internal forces and tractions at the surface of the half
space. We first evaluate the elastic deformation in a periodic Cartesian volume in the Fourier
domain, then use the analytic solutions to the generalized Boussinesq’s and Cerruti’s problems
to satisfy the prescribed mixed boundary condition at the surface. We show some applications
for magmatic intrusions and faulting. This approach can be used to solve elastostatic problems
involving spatially heterogeneous elastic properties (by employing a homogenization method)
and time-dependent problems such as non-linear viscoelastic relaxation, poroelastic rebound
and non-steady fault creep under the assumption of spatially homogeneous elastic properties.
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1 I N T RO D U C T I O N

An instantaneous deformation field accompanying an earthquake
can be well explained assuming linear elastic deformation of the
ambient rocks (Reid 1910; Fialko et al. 2001b; Simons et al. 2002;
Fialko 2004). Post-seismic and inter-seismic phases of the earth-
quake cycle are also commonly modelled using solutions for an
elastic half space (Savage 1974; McGuire & Segall 2003; Miyazaki
et al. 2003; Hsu et al. 2006; Fialko 2006; Barbot et al. 2008b;
2009a). Elastic solutions are also widely used to model volcanic
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unrest (e.g. Mogi 1958; Yang et al. 1988; Fialko et al. 2001a).
Some types of time-dependent inelastic deformation can be simu-
lated using an elastostatic Green’s function by virtue of the Laplace
transform whereby the time-series of deformation are obtained from
a series of static deformation fields evaluated given the effective
elastic moduli (Rundle 1982; Pollitz 1997; Wang et al. 2003, 2006;
Smith & Sandwell 2004). Recent geodetic observations suggest that
the time-dependent response of the crust and upper mantle to a stress
perturbation may be in fact non-linear (Pollitz et al. 2001; Freed &
Bürgmann 2004; Barbot et al. 2009a; Pearse & Fialko 2010). If so,
models used to interpret observations of post-seismic deformation
need to account for non-linear rheologies of the lower crust or upper
mantle.

Barbot & Fialko (2010, submitted), hereafter referred to as the
companion paper B&F, proposed a method to evaluate mechanisms
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Fourier-domain elastic solutions 569

thought to be involved in post-seismic transients (e.g. afterslip,
viscoelasticity and poroelasticity), based on a fundamental solution
for a body force in an elastic half space. In this paper, we present
such a solution in the Fourier domain, to allow an efficient evalua-
tion of the time-dependent displacement field by taking advantage
of the fast Fourier transforms and the convolution theorem. The
proposed semi-analytic method involves two steps: first we evaluate
a displacement field in a full space, then apply a correction to satisfy
the boundary condition (also, see Nguyen et al. 2008). Our model
includes a mixed boundary condition with a gravitational restoring
force that results from displacements across the density contrast
interface. For typical wavelengths of coseismic deformation of the
order of 10–100 km, the effect of gravity on surface displacements
is several orders of magnitude smaller than the direct effect of rup-
ture. For larger-wavelength post-seismic relaxation, the effect of
gravity can be more prominent and the interior buoyancy forces are
at least one order of magnitude smaller than the surface traction.
Hereafter, we neglect the interior buoyancy restoring force associ-
ated with bulk compaction and extension. The method can be used
to model post-seismic deformation involving non-linear rheologies
(see companion paper B&F).

This paper is organized as follows. First, we describe a Fourier-
domain analytic solution to the displacement field in a homogeneous
elastic half-space under a prescribed traction boundary condition.
The solution is obtained using the Galerkin vector potential. We
consider the cases for tangential traction and normal load sepa-
rately then describe a solution that accounts for an arbitrary spatial
distribution of traction in all directions. Our solution generalizes
the so-called Cerruti’s and Boussinesq’s problems to incorporate
the buoyancy effect due to a density contrast at the surface. In Sec-
tion 3, we derive a semi-analytic Green’s function for the elastic
half-space in the Fourier domain. Our formulation allows one to
evaluate the displacement field due to an arbitrary distribution of
internal forces and surface traction accounting for a buoyancy ef-
fect at the surface. In Section 4, we present applications relevant
to crustal deformation and compare calculations using our method
to known analytic solutions. We show an application of the pro-
posed Green’s function to deformation in a heterogeneous crust. In
Appendix A, we use a perturbation method to derive an approxima-
tion to the solution to the generalized Boussinesq’s problem in the
space domain. We use this analytic solution to validate our Fourier-
domain formulation. Finally, in Appendix B, we validate the results
presented in Section 2, using an alternative derivation based on the
Boussinesq–Papkovitch potential.

2 A NA LY T I C S O LU T I O N T O T H E
T R A C T I O N B O U N DA RY- VA LU E
P RO B L E M I N A S E M I - I N F I N I T E
E L A S T I C S O L I D W I T H G R AV I T Y

We wish to obtain an expression for the static deformation of a ho-
mogeneous elastic half space � subject to a distribution of traction
pi(x1, x2) at its surface x3 = 0. The surface ∂� is associated with
the normal vector ni = −δi3, where δij is the Kronecker’s delta.
The vertical displacement at the surface gives rise to a buoyancy
restoring force so that the equilibrium holds (Wolf 1991; Johnston
et al. 1998)

ti = pi + gi , (1)

where pi is the applied surface traction,

gi = �ρ g u3 ni (2)

is the pressure due to the assumed density contrast �ρ at the surface,
and ti = σ ij nj is the resulting traction at the surface (Fig. 1). In terms
of stress components we obtain the surface boundary condition

σ13(x1, x2) = −p1(x1, x2),

σ23(x1, x2) = −p2(x1, x2),

σ33(x1, x2) = −p3(x1, x2) + �ρ g u3(x1, x2, 0), (3)

where σ ij is the Cauchy stress tensor (Malvern 1969; Nemat-Nasser
& Hori 1999). In the homogeneous elastic half-space, the con-
servation of linear momentum and Hooke’s law give rise to the
homogeneous Navier’s equation

(λ + μ)u j,i j + μ ui, j j = 0, (4)

where ui is the vector-valued displacement field and λ and μ are
the Lamé parameters. We look for a displacement field that satisfies
the governing eq. (4) with boundary condition (1) at the surface and
vanishing displacements at infinity.

Next we introduce the Galerkin vector potential and use it to solve
two related subproblems: the Boussinesq’s problem for the defor-
mation due to normal loads at the surface, and the Cerruti’s problem
for the deformation due to tangential tractions at the surface. We
consider a generalization of the classic formulation of the Cerruti’s
and Boussinesq’s problems that includes a buoyancy restoring force
at the surface. By applying the superposition theorem, we derive
a general solution for the deformation in a half-space due to the
application of some arbitrary tractions at the surface.

x3
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g

x
p(x1,x2)

t = p + g

t =     n̂.

e1
^
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Figure 1. Geometry and boundary condition for the deformation due to arbitrary distributions of surface tractions. The surface traction t(x) is the sum of the
applied load p(x) and the buoyancy restoring force g = �ρ g u3 n̂. Displacement u in the semi-infinite solid satisfies the homogeneous Navier’s equation (4)
with buoyancy condition (3).
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2.1 The Galerkin vector potential

The Galerkin vector potential Gi (Westergaard 1935; Mindlin
1936b; Mindlin & Cheng 1950a; Steketee 1958) is defined by the
change of variable

ui = Gi, j j − α G j,i j (5)

where the dimensionless constant α can be expressed in terms of
the Lamé’s parameters or Poisson’s ratio

α = λ + μ

λ + 2μ
= 1

2(1 − ν)
. (6)

Inserting the Galerkin potential in the homogeneous Navier’s equa-
tion (4) gives rise to

Gi, j jkk = 0. (7)

In the absence of internal forces, the three Cartesian components
Gi are biharmonic. By applying the 2-D horizontal (x1, x2) Fourier
transforms

f̂ (k1, k2, x3) =
∫ ∞

−∞

∫ ∞

−∞
f e−i2π (k1x1+k2x2)dx1dx2,

f =
∫ ∞

−∞

∫ ∞

−∞
f̂ (k1, k2, x3) e+i2π (k1x1+k2x2)dk1 dk2, (8)

where f is a scalar field and defining the angular wavenumbers
ωi = 2π ki the biharmonic equation (7) simplifies to the fourth-
order ordinary differential equation

(
∂2

∂x2
3

− β2

)2

Gi = 0, (9)

where we have defined the radial angular velocity

β = (ω2
1 + ω2

2)1/2. (10)

A general solution for the component of the Galerkin vector is

Ĝi = (Ai + Biβx3) e−β x3 + (Ci + Diβx3) e+β x3 . (11)

Vanishing displacements at infinity (x3 → ∞) require Ci = Di =
0, so that the general solution and its successive derivatives are

Ĝi = (Ai + Biβ x3) e−β x3 ,

Ĝi,3 = β (Bi − Ai − Biβ x3) e−β x3 ,

Ĝi,33 = β2 (−2Bi + Ai + Biβ x3) e−β x3 ,

Ĝi,333 = β3 (3Bi − Ai − Biβ x3) e−β x3 .
(12)

The components of the stress tensor are, without loss of generality,

σi j = μ
[

(2α − 1)δi j Gk,kll

+Gi, jkk + G j,ikk − 2α Gk,i jk

]
. (13)

The semi-analytic solution in the Fourier domain for the deforma-
tion in a half space subject to surface traction is reduced to finding
the values of the Ai and the Bi from the Fourier transform of the
surface stresses, that is removing the six degrees of freedom in the
Galerkin vector (12). Such a solution might be attainable by in-
verting a 6 × 6 square matrix, but this approach is not generally
tractable. Instead, we solve independently the so-called Boussinesq’s
and Cerruti’s problems, corresponding to the application of
normal and tangential loads, respectively, at the surface of the half
space, and obtain the full solution by linear superposition.

2.2 The Boussinesq’s problem with gravity

The Boussinesq’s problem arises from the application of a concen-
trated normal load p = p3 ê3 at the surface of the half-space. We
consider an extended problem of an arbitrary distribution of normal
tractions with buoyancy effects. The solution to this problem in the
Fourier domain with no gravity was presented by Steketee (1958).
Assuming that the first two components of the Galerkin vector po-
tential can be set to zero, G1 = G2 = 0, we obtain from eqs (12)
and (13) the shear stress components in the Fourier domain

σ̂13 = −2μ iω1β
2 [(1 − 2α)B3 + α(A3 + B3βx3)] e−βx3 ,

σ̂23 = −2μ iω2β
2 [(1 − 2α)B3 + α(A3 + B3βx3)] e−βx3 , (14)

that both vanish identically at the surface if

A3 = (2 − α−1)B3. (15)

Combining the surface normal stress (derived from eqs 12 and 13)

σ̂33 = 2μα B3 β3 (16)

and the vertical displacement at the surface (derived from eqs 5 and
12)

û3 = −β2 B3 (17)

and using the boundary condition σ̂33 = − p̂3 + �ρ g û3 of eq. (1),
one finds

B3 = − p̂3

2μαβ2 (β + �)
, (18)

where we have introduced the critical buoyancy wavenumber

� = �ρ g

2μα
= (1 − ν)

�ρ g

μ
(19)

that represents the relative effect of gravity compared to the elastic
rigidity. For a typical density contrast at the Earth’s surface �ρ =
2.8 × 103 kg m−3 and shear modulus G = 30 GPa, the associated
critical wavelength is �−1 � 103 km. The solution for the displace-
ment field for the Boussinesq’s problem with the buoyancy effect
is

û1(k1, k2, x3) = iαω1β B3

[
1 − α−1 + βx3

]
e−β x3 ,

û2(k1, k2, x3) = iαω2β B3

[
1 − α−1 + βx3

]
e−β x3 ,

û3(k1, k2, x3) = −α β2 B3

[
α−1 + β x3

]
e−β x3 . (20)

A comparison between the Fourier-domain solution (20) and the
corresponding analytic solution using the space-domain Green’s
function (eq. A28 in Appendix A) is shown in Fig. 2 for the case
of a moment load. We define a unit moment mij as a force couple
of equal and opposite magnitude 1/ε in the ê j direction separated
by a distance ε in the êi direction. We compute the response of a
moment load m13 applied at the surface x3 = 0 and compute the
displacements at a depth of 3 km ignoring gravity (� = 0). The
difference between the two fields is within a few percent of the
maximum value. An elastic Green’s function in the space domain
that incorporates the effect of buoyancy is developed in Appendix
A. The effect of gravity on viscoelastic relaxation following slip on
a thrust fault is illustrated in a companion paper (B&F).

2.3 The Cerruti’s problem with gravity

The Cerruti’s problem corresponds to the deformation in a half-
space due to the application of a tangential force at the surface. As
there is no fundamental difference between applying forces in the
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Fourier-domain elastic solutions 571

Figure 2. (A) Fourier-domain solution for the Boussinesq’s problem
(eq. 20). The map view corresponds to displacements at a depth of 3 km.
The arrows indicate the horizontal displacement; the vertical displacement
is shown by the colour. Upwards displacement is taken to be positive. A
point-source moment m13 is applied at the surface. (B) Comparison be-
tween the analytic solution and the semi-analytic Fourier domain solution
along profile A–A′. These results correspond to a Poisson’s solid (λ = μ)
without buoyancy effects at the surface (� = 0).

ê1 or the ê2 direction, we solve for deformation due to a distribution
of forces applied in the ê1 direction only. A solution corresponding
to the tangential forces oriented in the ê2 direction can be obtained
by rotation about the x3 axis. We therefore solve the homogeneous
Navier’s equation (4) considering the following boundary condi-
tions: a prescribed surface stress σ 13, vanishing surface stress σ 23,
equilibrium between the restoring buoyancy force and the normal
stress σ 33 and vanishing of displacements at infinity.

We start by using only one component of the Galerkin vector
potential, such as G2 = G3 = 0. In the Fourier domain, we obtain

the stress components at the surface,

σ̂13 = 2μβ
[
α ω2

1 A1 + (β2 − α ω2
1)B1

]
,

σ̂23 = 2μα ω1ω2β[A1 − B1]. (21)

From the surface boundary condition σ 23 = 0, we obtain

A1 = B1 (22)

and from the prescribed shearing stress in the ê1 direction we find

B1 = − p̂1

2μ β3
. (23)

At this point, however, we have no vertical displacement at the
surface and the condition of vanishing of normal stress at the surface
is not satisfied. The Galerkin potential G1 contributes to the surface
normal stress

σ̂33 = (α − 1)
iω1 p̂1

β
. (24)

This normal stress can be readily cancelled by application of the
solution (20) to the Boussinesq’s problem with the constant

B3 = −iω1
1 − α

α

B1

β + �
. (25)

The solution to the Cerruti’s problem requires two components of
the Galerkin vector potential. Using eqs (22), (23) and (25) the
solution displacement can be written

û1 = B1

{
− 2 β2

+ ω2
1

1 + h

[
2 − α−1 + αh + (1 + αh)β x3

]}
e−β x3 ,

û2 = ω1ω2
B1

1 + h

{
2 − α−1 + αh + (1 + αh)β x3

}
e−β x3 ,

û3 = iω1β
B1

1 + h

{
α−1 − 1 + (1 + αh)β x3

}
e−β x3 , (26)

where, for convenience, we have introduced a dimensionless pa-
rameter h = �/β. The solution to the Boussinesq’s and Cerruti’s
problems can also be obtained analytically in the Fourier domain
using the Boussinesq–Neuber–Papkovitch potential, as shown in
Appendix B.

In case when the tangential traction is exerted in the ê2 direction,
we have p = p2ê2, B1 = 0, B2 = − p̂2/2μβ3 and the displacement
field is

û1 = ω1ω2
B2

1 + h

{
2 − α−1 + αh + (1 + αh)β x3

}
e−β x3 ,

û2 = B2

{
− 2 β2

+ ω2
2

1 + h

[
2 − α−1 + αh + (1 + αh)β x3

]}
e−β x3 ,

û3 = iω2β
B2

1 + h

{
α−1 − 1 + (1 + αh)β x3

}
e−β x3 . (27)

The space-domain solution for the case of a tangential concen-
trated force on the plane boundary at the surface of a half-space is
given by (Love 1927; Nemat-Nasser & Hori 1999)

u1 = 1

4πμ r

[
1 + x2

1

r 2
+ (1 − 2ν)

(
r

r + x3
− x2

1

(r + x3)2

)]
,

u2 = x1x2

4πμ r

[
1

r 2
− 1 − 2ν

(r + x3)2

]
,

u3 = x1

4πμ r

[
x3

r 2
+ 1 − 2ν

r + x3

]
, (28)
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572 S. Barbot and Y. Fialko

Figure 3. Benchmark of the Fourier-domain solution to the Cerruti’s prob-
lem (eqs 26 and 27). (A) A point-source moment m22 is applied at the
surface of the half-space. The map view corresponds to displacements at a
depth of 3 km. The arrows indicate the horizontal displacement; the vertical
displacement is shown in colour. Vertical displacement is taken to be pos-
itive upwards. (B) Comparison between the analytic solution (eq. 28) and
the semi-analytic Fourier-domain solution for the displacement along profile
B–B′. In these calculations, we use a Poisson’s solid (λ = μ) and ignore the
buoyancy effect (� = 0).

where r = (x2
1 + x2

2 + x2
3)1/2. We note a discrepancy in sign be-

tween the solutions given by Nemat-Nasser & Hori (1999) and
Soutas-Little (1999) for the vertical component of displacement.
Our results (eq. 28) agree with those of Soutas-Little (1999) and
Okumura (1995). A comparison between the analytic solution (28)
and the Fourier-domain formulation (26) is shown is Fig. 3. We
apply a moment m22 at the surface of the half-space and compute
the solution on a plane at a depth of 3 km. Fig. 3(B) compares the
analytic and numerical solutions along the horizontal profile B–B′.
The error is less than 1 per cent of the maximum value for either
displacement components.

2.4 Arbitrary distribution of surface traction with gravity

The general solution corresponding to the application of an arbitrary
traction pi at the surface of the half space is provided from the su-
perposition of solutions to the Boussinesq’s and Cerruti’s problems.
It makes use of the three components of the Galerkin vector poten-
tial. Combining results (20), (26) and (27) we obtain the complete
displacement solution

û1 = [ − 2B1β
2 + α ω1 (B1ω1 + B2 ω2)(1 + β x3)

+α iω1β B3(1 − α−1 + βx3)
]

e−β x3 ,

û2 = [ − 2B2β
2 + α ω2 (B1 ω1 + B2ω2)(1 + β x3)

+α iω2β B3(1 − α−1 + βx3)
]

e−β x3 ,

û3 = α β2
[

i (ω1 B1 + ω2 B2) x3

− B3

(
α−1 + β x3

) ]
e−β x3 ,

(29)

where the constants Bi depend upon the applied traction

B1 = − p̂1

2μβ3
,

B2 = − p̂2

2μβ3
,

B3 = −β p̂3 + i(1 − α)(ω1 p̂1 + ω2 p̂2)

2μα β3(β + �)
.

(30)

Formulation (29) is a closed-formed solution in the horizontal
Fourier domain to the traction boundary-value problem in a half
space including a buoyancy restoring force at the surface. An equiv-
alent expression can be found in the 3-D Fourier domain by forward
Fourier transforming eq. (29) in the vertical direction

û1 = φ
[ − 2B1β

2 + α ω1 (B1ω1 + B2ω2) (1 − i ω3 φ)

+α iω1β B3

(
1 − α−1 − i ω3 φ

) ]
,

û2 = φ
[ − 2B2β

2 + α ω2 (B1ω1 + B2ω2) (1 − i ω3 φ)

+α iω2β B3

(
1 − α−1 − i ω3 φ

) ]
,

û3 = φ α β
[

(ω1 B1 + ω2 B2) ω3 φ

−β B3

(
α−1 − i ω3 φ

) ]
, (31)

where we have defined

φ = 2β

ω2
3 + β2

. (32)

3 A S E M I - A NA LY T I C G R E E N ’ S
F U N C T I O N F O R T H E E L A S T I C
H A L F - S PA C E U N D E R G R AV I T Y

The elastic Green’s function for a semi-infinite elastic solid with a
free-surface boundary condition (Love 1927; Mindlin 1936a) pro-
vides the elementary solution that can be used to evaluate the 3-D
deformation due to a distribution of point forces. As body force
representations can be used to imitate dislocations (Burridge &
Knopoff 1964; Steketee 1958), an elastic response of the crust due
to slip of buried faults can be evaluated using the elastic Green’s
function (Okada 1992; Meade 2007). Both internal forces and sur-
face tractions are required to represent slip on a fault if the latter
intersects the surface (Backus & Mulcahy 1976a,b; Barbot et al.
2009b). An inhomogeneous traction boundary condition is also
used in models of a heterogeneous crust (Barbot et al. 2009b). Fi-
nally, it can be required in models of time-dependent poroelastic
relaxation (B&F).
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Fourier-domain elastic solutions 573

Theoretically, the 3-D displacement field can be obtained with
the convolution between the equivalent body force and the elas-
tic Green’s function (Love 1927; Mindlin 1936a). However, the
forcing terms might occupy a large volume and the convolution
in the space domain might not be computationally tractable. Our
approach is to evaluate the elastic deformation numerically using a
semi-analytic Green’s function in the Fourier domain (Barbot et al.
2008a, 2009a,b). This approach takes advantage of the convolution
theorem and the fast Fourier transform whereby the convolution
becomes a product in the Fourier domain. The surface traction
boundary condition is enforced using superposition. The Fourier-
domain semi-analytic Green’s function satisfying arbitrary surface
traction boundary conditions can be used in multiple applications
including elastostatic deformation in homogeneous and heteroge-
neous materials (Moulinec & Suquet 1998; Barbot et al. 2009b),
models of fault creep (Barbot et al. 2009a) and other post-seismic
post-seismic phenomena (see companion paper B&F).

3.1 A Fourier-domain elastic Green’s function

Our approach to evaluate the 3-D displacement in a half-space
due to an arbitrary distribution of body forces fi subject to an
inhomogeneous traction and buoyancy boundary condition is as
follows. Consider the inhomogeneous Navier’s equation

μ

(
α

1 − α
u j,i j + ui, j j

)
+ fi = 0 (33)

subject to the surface boundary condition

σi j n j = qi + �ρ g u3ni , x3 = 0, (34)

where ui is the vector-valued displacement field, σ ij is the Cauchy
stress tensor, ni = (0, 0, −1) is the surface normal vector and qi(x1,
x2) is the prescribed load. The displacement that satisfies eqs (33)
and (34) can be decomposed into a homogeneous and a particular
contribution

ui = uh
i + u p

i , (35)

where the displacement field uh
i is a solution to the homogeneous

Navier’s equation

α uh
j,i j + (1 − α) uh

i, j j = 0, (36)

with inhomogeneous surface boundary conditions and the particular
solution u p satisfies eq. (33) regardless of the surface boundary
condition. The particular solution can be obtained in a straight-
forward manner in the Fourier domain. Upon Fourier transforming
in the three directions eq. (33) becomes algebraic

μ

(
α

1 − α
ki k j + klkl δi j

)
û p

j = 1

4π 2
f̂i , (37)

where the ki are the wavenumbers and the displacement field can be
directly inverted to obtain

û p
i = 1

μ

(1 − α) klkl δi j − α ki k j

4π 2(klkl )2
f̂ j , (38)

where the hats correspond to the Fourier transform of the corre-
sponding variables. We note that eq. (38) is ill-posed for k1 = k2 =
k3 = 0. The zero wavenumber component of the Fourier solution
corresponds to a rigid-body displacement and does not involve an
elastic deformation. We do not allow for a net displacement of the
half space by setting ûi (0, 0, 0) = 0. A particular solution to eq. (33)
is provided by eq. (38) for any distribution of internal forces.

We now seek a homogeneous solution uh such that the sum (35)
satisfies the boundary condition (34). For convenience, as eq. (31) is
already a Fourier-domain solution, we evaluate the surface tractions
and the surface vertical displacements in the Fourier domain as well.
A displacement field is associated with the stress

σi j = μ

(
ui, j + u j,i − 1 − 2α

1 − α
uk,kδi j

)
(39)

and we define the surface traction due to the homogeneous and par-
ticular displacement fields by th

i = σ h
ij nj and tp

i = σ
p
ij nj, respectively.

In the Fourier domain, the stress can be written

σ̂i j = μ i

(
ω jδil + ωiδ jl − 1 − 2α

1 − α
ωlδi j

)
ûl . (40)

The contributions of vertical displacement û p
3 and traction t̂ p

i from
the particular solution at the surface are, respectively,

û p
3 (k1, k2, x3 = 0) =

∫ ∞

−∞
û p

3 (k1, k2, k3) dk3 (41)

and

t̂ p
i (k1, k2) =

μ i

∫ ∞

−∞

(
ω j û

p
i + ωi û

p
j − 1 − 2α

1 − α
ωl û

p
l δi j

)
n j dk3. (42)

The solution to the homogeneous Navier’s equation (36) is given
by eq. (29), as discussed in Section 2. By definition of eq. (1), the
traction and the surface vertical displacement of the homogeneous
solution satisfy

t h
i = pi + �ρ g uh

3ni (43)

where the traction pi(x1, x2) is a degree of freedom required to sat-
isfy eq. (34). We use linear superposition to cancel the contribution
from the particular solution and satisfy the boundary condition (34).
The displacements in the semi-infinite solid can be evaluated from
a given applied traction pi(x1, x2) at the surface and the buoyancy
boundary condition is automatically satisfied. We write

uh = uh(; pi ) (44)

where we use the semi colon to denote the dependence of the ho-
mogeneous solution upon the prescribed boundary condition pi at
the surface. Using the decomposition (35) the boundary condition
(34) can be written

t h
i + t p

i = qi + �ρ g (uh
3 + u p

3 )ni (45)

Using eq. (43) we constrain the last degree of freedom

pi = −t p
i + �ρ g u p

3 ni + qi . (46)

In the Fourier domain, the required homogeneous contribution is

ûh = ûh(; −t̂ p
i + �ρ g û p

3 ni + q̂i ) (47)

The displacement field due to a distribution of internal body forces
and surface tractions is ultimately evaluated using the following
steps. First, we apply a 3-D Fourier transform to the body-force
field. Second, we apply the transfer function of eq. (38). We obtain
a displacement field that satisfies periodic boundary conditions.
The intermediate solution requires a correction to satisfy the trac-
tion boundary condition. We evaluate the 2-D traction field (46)
in the Fourier domain by performing the integrals (41) and (42)
numerically. We then evaluate a homogeneous solution that sat-
isfies eq. (46) using the analytic solution (31). Summing the two
displacement fields results in a solution that satisfies the inhomo-
geneous Navier’s eq. (33) and the prescribed traction boundary
condition (34). Finally, we perform a 3-D inverse Fourier transform
numerically to obtain a displacement field in the space domain.
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4 A P P L I C AT I O N S T O FAU LT I N G
A N D V O L C A N I C U N R E S T

We test the semi-analytic Green’s function described in Section 3
against analytic results for the 3-D displacement due to fault slip and
magmatic intrusions. Some benchmarks for strike-slip faults and a
comparison with the numerical approach of Wang et al. (2003) are
presented in Barbot et al. (2009a). Benchmarks for dip-slip faults
in plane strain problems can be found in Barbot et al. (2009b). We
start by comparing models of deformation for a point source using
the solution of Mindlin & Cheng (1950a) for a nucleus of strain. We
then describe models including sources of finite size and compare
our numerical solution for strike-slip and dip-slip faults with the
analytic solution of Okada (1992). Our formulation allows us to
represent sources of arbitrary orientation and location in the half-
space. We consider a case of a buried thrust fault as an example.

4.1 Point of dilatation

First, we consider the case of a dilatation source. A point source
of dilatation is an approximation representing isometric magmatic
intrusions subject to a pressure boundary condition (Mogi 1958).
The surface displacement (at x3 = 0) due to a source of dilatation
at depth y3 in a semi-infinite solid with Poisson’s ratio ν is (Mindlin
& Cheng 1950a,b)

u1 = +1 + ν

π

x1

r 3
,

u2 = +1 + ν

π

x2

r 3
,

u3 = −1 + ν

π

y3

r 3
, (48)

where r = (
x2

1 + x2
2 + y2

3

)1/2
is the distance from the source centred

at the origin and an observation point at the surface (Fig. 1). The
dilatation source of eq. (48) can be represented by the eigenstrain
εi

ij = δij, a moment density mij = 3κ δij and an equivalent body
force fi = −mij,j in the notation of Barbot et al. (2009a,b) and
Barbot & Fialko (2010, submitted), where κ is the bulk modulus.
Our numerical solution for the surface displacement is shown in
Fig. 4(A) for a point source at depth y3 = 0.5 km. In Fig. 4(B), we
show the numerical error as a function of the number of nodes in
our 3-D grid. We normalize the sum of the square of the residuals
between the semi-analytic and the analytic solution of eq. (48) by
the norm of the analytic signal. In these calculations we use a
Poisson’s solid (λ = μ and ν = 1/4), ignore the density contrast
at the surface (� = 0) and use a uniform sampling size of �xi =
0.05 km. A simulation using the 5123 nodes takes about 30 s on a
four-cpu shared-memory computer. The error decays to less than 1
per cent for large computational grids where the effect of periodicity
is smaller. Calculations with different values of Poisson’s ratio gave
rise to similar residuals.

4.2 Finite fault deformation

We now consider the case of finite faults. We model finite faults
with a distribution of internal forces and surface traction (Barbot
et al. 2009a). Fig. 5(A) (left panel) shows the surface displacements
due to a vertical left-lateral strike-slip fault with a slip of 1 m. The
right panel shows the residuals between our numerical solution and
the analytic formulation of Okada (1992). The residuals at the tip
of the fault are due to our tapering of the slip at the edges of the
fault. We taper slip at the fault tips to mitigate a possible Gibbs

Figure 4. (A) Map view of surface displacement due to a dilatation source
centered at y1 = y2 = 0 and buried at a depth of y3 = 0.5 km. Horizontal
and vertical components of displacement are represented by the vectors and
the colour, respectively. Uplift is taken to be positive. (B) The norm of the
residuals between the numerical solution and the formulation of Mindlin &
Cheng (1950b) as a function of the number of nodes in the 3-D grid for a
uniform isotropic sampling of �xi = 0.05 km. The error is normalized by the
norm of the analytic solution. The dashed and solid-line profiles correspond
to a dilatation source at depth of y3 = 0.5 and 1.0 km, respectively. The
numerical error decreases as the boundaries of the computational domain
increases and the non-desired effect of periodicity decreases.

phenomenon (Barbot et al. 2008a); also the tapered slip distribution
is more physically reasonable than the constant slip (Fialko 2004,
2007). Fig. 5(B) shows the surface displacements associated with
a vertical dip-slip fault with a 1 m slip on a plane extending from
the surface to a depth of 1 km. Models of dip-slip faults intersecting
the surface require both equivalent body forces and equivalent sur-
face traction to represent the slip discontinuity. The residuals with
the solution of Okada (1992) are localized near the fault and arise
from the displacement discontinuity, which cannot be accurately
sampled by a continuous field down to a scale of numerical dis-
cretization. For both the strike-slip and dip-slip faults, the residuals
immediately away from the fault discontinuity fall below 5 per cent
of the exact solution.

Finally, we use the proposed semi-analytic Green’s function to
compute the displacement due to a thrust fault. Fig. 6(A) shows
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Figure 5. (A) Map view of surface displacement due a vertical, 1 km long, strike-slip fault extending from the surface to a depth of 1 km with a 1 m slip (left
panel) and residuals with the analytic solution of Okada (1992) (right panel). (B) Surface displacements due to a 1 m slip on a vertical dip-slip fault with same
dimensions as in A). The fault trace is indicated by a solid black line. A dip-slip fault intersecting the surface is modelled with both internal body forces and
surface traction. Residuals in (A) are due to the tapering of the fault tip; residuals in (B) come from the problem of sampling a displacement field that is not
single-valued at the fault.

the displacement field at the surface due to a buried thrust fault
10-km long and 10-km wide in the down-dip direction. The top
of the fault is buried at a depth of 5 km. The residuals with the
analytic solution of Okada (1992) are shown in Fig. 6(B) (note
the change of scale). Overall, residuals are about 2 per cent of the
expected signal. The biggest residuals are located near the top of
the fault and are due to slip tapering of the fault tips in our model.
We investigate the effect of sampling and size of the computational
domain on the numerical solution accuracy. Fig. 6(C) shows the
norm of the residuals as a function of the number of nodes in the
computational grid for two different sampling size. For small grids,
the error is greater for small sampling size. Fig. 6(C) shows that the
error corresponding to using a grid with linear dimension 12.8 km
is comparable to the error arising from using a grid with the same
linear dimension but doubled number of nodes. We conclude that
a primary source of error in this case comes from the distance
to the periodic boundary. For larger computational grids, residuals
associated with a denser sampling become smaller, illustrating the

tradeoffs between the requirement of large computational domains
and small discretization. We performed additional tests for a buried
dip-slip fault, varying the dip angle from 0◦ to 90◦ and the fault
length between 10 and 30 km, all other parameters being otherwise
the same. We found similar good agreements between numerical
and analytic solutions as in the example shown in Fig. 6.

4.3 Modelling heterogeneous properties of crustal rocks

The homogeneous elastic Green’s function can be used to model
elastic deformation in a heterogeneous half-space by means of a ho-
mogenization method (Du et al. 1997; Cochran et al. 2009; Barbot
et al. 2009b). Successive approximations u(n+1) of the displacement
field can be obtained with the convolution between the homoge-
neous Green’s function and the body forces

f (n)
i = −(

C ′
i jkluk,l

)
, j

(49)
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Figure 6. (A) Map view of surface displacement due a 45◦-dip, 10-km
long, 10-km wide (in down-dip direction) thrust fault buried at a depth of
5 km (dashed rectangle). (B) Residuals with the analytic solution of Okada
(1992). (C) The norm of the residuals as a function of the number of nodes
in the 3-D grid.

and the surface tractions

t (n)
i = C ′

i jklu
(n)
k,l n j (50)

starting from an initial guess displacement field u(0), where su-
perscript (n) is the iteration number and C ′

ijkl is the elastic tensor
deviation from an arbitrary background value.

Fig. 7 shows an application for the case of a vertical dip-slip rup-
ture in the vicinity of an infinitely long compliant zone. The fault ex-
tends from the surface to a depth W = 10 km, is 2W long in the strike
direction and slips 1 m uniformly. The bulk modulus is uniform in
the half-space and the compliant zone, also extending from the sur-
face to a depth W , is characterized by a thickness T = W/5 and a
10 per cent reduction in shear modulus. The displacement anomaly
originating from the compliant zone exhibits additional uplift to the
East of the rupture where the shear modulus is reduced (Fig. 7B).
We performed a similar calculation using a finite-element method
using the Simulia software (formally Abaqus, www.simulia.com).
The small residuals (Fig. 7C) between the two simulations indicate
a very good accuracy of our Fourier-domain Green’s function used
in combination with the homogenization method.

Figs 4, 5 and 6 illustrate simple sources of deformation. Complex
geometries can be readily accounted for in our method using a su-
perposition of such elementary sources (Barbot et al. 2009a,b). We
conclude that the proposed Fourier-domain semi-analytic Green’s
function approach is sufficiently accurate and flexible to allow re-
alistic simulations of crustal deformation due to earthquake- and
volcano-related phenomena.

5 C O N C LU S I O N S

Building on the classic work of Steketee (1958), we derived the an-
alytic Fourier-domain solution for displacements due to an arbitrary
distribution of tangential and normal loads at the surface of a semi-
infinite solid. Our formulation generalizes the so-called Boussi-
nesq’s and Cerruti’s problems by accounting for the effect of buoy-
ancy at the surface due to a large density contrast between the litho-
sphere and the atmosphere. The buoyancy boundary condition is
an approximation to the full effect of gravity where self-gravitation
and internal density variations are ignored. The full Fourier-domain
solution with surface buoyancy is given by eq. (29). We note that
the solution of eq. (29) can be found using the Galerkin as well
as using the Boussinesq–Papkovitch–Neuber vector potentials (Ap-
pendix B). We also derived a space-domain Green’s function for the
deformation due to the application of normal loads at the surface of
the half space with a buoyancy boundary condition (Appendix A).
We use a perturbation approach, assuming that the effect of gravity
is a small contribution to the deformation, to approximate a solution
for the elastic Green’s function. The accuracy of our solution is val-
idated by a good agreement between the Fourier and space-domain
solutions to the generalized Boussinesq’s problem.

Numerous problems of elastic deformation due to internal forces
and surface traction come about from static models of faulting
and from time-dependent models of postseismic relaxation (Barbot
et al. 2009b), Barbot & Fialko (2010, submitted). The displacement
or velocity can theoretically be obtained by the convolution in the
space domain between the elastic Green’s function and the body
force, however this is not always practical because the internal
forces can be distributed over a larger domain and the convolution
operation scales as N 2, where N is the number of nodes in the simu-
lation. We derived a efficient way to evaluate the 3-D deformation in
a half-space due to the presence of an arbitrary distribution of inter-
nal forces and surface tractions. Our method involves (1) obtaining
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Figure 7. (A) Geometry of the finite dip-slip fault and the infinitely long
compliant zone. (B) Map view of displacement anomalies—compared to the
prediction of homogeneous elasticity—due to the presence of a compliant
zone surrounding a dip-slip fault. (C) Residuals with a similar calculation
using a finite element method (FEM).

the displacement field in a periodic full space due to the same in-
ternal forces and (2) adding a homogeneous solution to satisfy the
prescribed boundary condition, including the buoyancy effect. The
periodic solution can be readily obtained in the Fourier domain and
the auxiliary analytic homogeneous solution is given by eq. (29).
The two-step method is computationally efficient and easily paral-
lelized to deal with large computational grids. The semi-analytic
solution compares well to analytic solutions for the displacement
field due to strike-slip and dip-slip faults of arbitrary orientation and
point-sources of dilatation, within a typical maximum error of 5 per
cent for the explored range of model sizes. Our Fourier-domain
solution can be efficiently used to model elastostatic deformation
(Barbot et al. 2009b), as well as quasi-static deformation such as
that due to the most common postseismic mechanisms (viscoelastic
relaxation, poroelastic rebound and fault creep). Application of the
proposed Green’s function to models of time-dependent postseismic
deformation are considered in a companion paper (B&F).
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A P P E N D I X A : S PA C E - D O M A I N
A NA LY T I C G R E E N ’ S F U N C T I O N W I T H
B U OYA N C Y B O U N DA RY C O N D I T I O N

In this appendix, we derive an analytic solution for the elastic
Green’s function for the case of the application of a concentrated
normal load at the surface of a semi-infinite elastic body. Our solu-
tion extends the classic solution to the Boussinesq’s problem (Love
1927; Nemat-Nasser & Hori 1999) to a generalized boundary condi-
tion where surface normal displacement is counteracted by a buoy-
ancy force. We use the analytic solution derived in this Appendix
to validate the Fourier-domain solution shown in Section 2. We
first introduce the Boussinesq–Papkovitch–Neuber vector poten-
tial, then use this potential to solve for the elastic Green’s function
with buoyancy boundary condition. Our solution of eq. (A27) is
obtained using the perturbation method where we assume that the
buoyancy effect is a small contribution to the total deformation.

A1 The Boussinesq–Papkovitch–Neuber potential

The Boussinesq–Papkovitch–Neuber representation (Mindlin
1936b) comes about when applying the Helmholtz decomposition
to the solution to the Navier’s equation (4) as follows:

ui = φ,i + εi jk A j,k with A j, j = 0, (A1)

where φ and Ai are scalar and vector potentials, respectively, and
εijk is the Levi–Cevita symbol. In the absence of body forces the
conservation of momentum gives rise to[
φ,i + (1 − α)εi jk A j,k

]
, j j

= 0, (A2)
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where we denoted

α = λ + μ

λ + 2μ
= 1

2(1 − ν)
. (A3)

Defining the harmonic vector potential

Bi = 1

1 − α
φ,i + εi jk A j,k (A4)

and its divergence

Bj, j = α

1 − α
φ, j j (A5)

one obtains, without loss of generality,

φ = 1 − α

2
(xk Bk + B0), (A6)

where we have used the vector identity (xk Bk),jj = 2 Bj,j and defined
B0 as a harmonic scalar. From the definition of Bi, we have

εi jk A j,k = Bi − 1

1 − α
φ,i . (A7)

By combining expressions (A1), (A4), (A6) and (A7), one obtains
the following representation:

ui = Bi − α

2
[xk Bk + B0],i . (A8)

This is the Papkovitch–Neuber elastic potential, which represents
the solution to the Navier’s equation in the absence of body force in
terms of a harmonic vector Bi and a harmonic scalar B0. Without
loss of generality, one has the following results

u j, j = (1 − α)Bj, j ,

1

μ
σi j = (2α − 1)δi j Bk,k + Bi, j + Bj,i

−α(xk Bk + B0),i j . (A9)

The advantage of the Papkovitch–Neuber potential is that it may
allow one to obtain an analytic solution to the Navier’s equation in an
easier way by manipulating harmonic vector and scalar potentials.

A2 The Boussinesq’s problem with buoyancy surface
boundary conditions in the space domain

We look for an analytic expression of the Green’s function represent-
ing the displacement field experienced by the homogeneous elastic
half-space � due to the application of a unit normal concentrated
load p = δ(x) ê3 at the origin, including the effect of buoyancy at
the surface. The boundary conditions at the surface ∂�, recast in
terms of stress components, is

σ13 = 0,

σ23 = 0,

σ33 = −δ(x1)δ(x2) + �ρ g u3, (A10)

where δ(x) is the Dirac delta function. We consider the case where
the first two components of the Papkovitch potential vanish B1 =
B2 = 0. The stress components become

σ13

μ
= (1 − α) B3,1 − α (x3 B3,13 + B0,13) ,

σ23

μ
= (1 − α) B3,2 − α (x3 B3,23 + B0,23) ,

σ33

μ
= B3,3 − α (x3 B3,33 + B0,33) . (A11)

The displacement field is

u1 = −α

2
(x3 B3,1 + B0,1) ,

u2 = −α

2
(x3 B3,2 + B0,2) ,

u3 =
(

1 − α

2

)
B3 − α

2
(x3 B3,3 + B0,3) . (A12)

At the surface x3 = 0, the stress components are simply

σ13

μ
= (1 − α) B3,1 − α B0,13,

σ23

μ
= (1 − α) B3,2 − α B0,23,

σ33

μ
= B3,3 − α B0,33, (A13)

and the vertical displacement at the surface is

u3 =
(

1 − α

2

)
B3 − α

2
B0,3. (A14)

Note that the expressions (1 − α) B3,1 − α B0,13 and
(1 − α) B3,2 − α B0,23 in eq. (A13) are harmonic in � and vanish
at the surface ∂� due to the vanishing shear stress boundary con-
dition (A10) on ∂�. A harmonic field that vanishes at the domain
boundary is zero identically in the whole domain and one obtains
the relation

(1 − α) B3 − α B0,3 = 0 in �. (A15)

Using Green’s third identity and the Betti’s method of integration
(Love 1927, Chapter 10), the elastic response to load and gravity at
the surface ∂� can be written

σ33

μ
− 2α� u3 = α (B3,3 − �B3) = − 1

2πμ

x3

r 3
, (A16)

where r = (xk xk)1/2 is the distance from the point source (Fig. 1)
and we have used the wavelength

� = �ρ g

2μα
. (A17)

The component B3 of the Papkovitch potential satisfies the inho-
mogeneous ordinary differential equation

B3,3 − �B3 = − 1

2πμα

x3

r 3
. (A18)

The homogeneous solution to eq. (A18) is associated with the trivial
solution (zero displacements) of a stress-free boundary condition.
Using the method of variation of parameters, the particular solution
to (A18) is

B3 = − e�x3

2πμα

∫ x3

0

t e−�t dt

(ρ2 + t2)3/2
, (A19)

where

ρ = (
x2

1 + x2
2

)1/2
. (A20)

The definite integral in eq. (A19) does not readily yield a closed-
form quadrature. An approximation of the solution to eq. (A18) is
attainable by various ways. One is to Taylor-expand the denominator
in the integrand in the right-hand-side of eq. (A19) and keep only
the first two terms to obtain

B3 � − e�x3

2πμα

∫ x3

0

t e−�t dt

ρ (ρ2 + 3
2 t2)

(A21)

for which a solution can be expressed in closed form. However,
for the sake of interpretation, we are looking for an expression
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that can be separated into two parts, one part corresponding to
the solution with no buoyancy effects (� = 0) and another part
describing the contribution of gravity. Assuming that �L 	 1,
where L is the characteristic linear dimension of the problem, we
use a perturbation approach (Bender & Orszag 1978) and write the
successive approximations of B3 as follows:

B(n+1)
3,3 = − 1

2πμα

x3

r 3
+ � B(n)

3 (A22)

with B(0)
3 = 0, where superscript f (n) denotes the approximation n

of function f . The first approximation is

B(1)
3 = 1

2πμα

∫ x3

0

−t dt

(ρ2 + t2)3/2
= 1

2πμα

1

r
(A23)

which corresponds to the well-known case where buoyancy at the
surface is ignored (Love 1927; Mindlin 1936a; Nemat-Nasser &
Hori 1999). The second approximation is

B(2)
3 = 1

2πμα

[ ∫ x3

0

−t dt

(ρ2 + t2)3/2
+ �

∫ x3

0

dt

(ρ2 + x2
3 )1/2

]

= 1

2πμα

[
1

r
+ � ln (x3 + r )

]
(A24)

and corresponds to our analytic approximation of the effect of grav-
ity for the Boussinesq’s problem; thereafter we use the approxima-
tion B3 ≈ B(2)

3 . Using eq. (A15) we define

B(n)
0 = 1 − α

α

∫ x3

0
B(n)

3 (t) dt (A25)

to obtain

B(2)
0 = 1 − α

2πμα2
[ln(x3 + r ) + � (x3 ln(x3 + r ) − r )] . (A26)

Finally, plugging eqs (A24) and (A26) into eq. (A12) and using the
cylindrical coordinates we obtain the following approximation of
the displacement field

ur = ρ

4πμr

[
x3

r 2
− 1 − α

α

1 − � r

x3 + r
− �

x3

x3 + r

]
,

uθ = 0,

u3 = 1

4πμr

[
α−1 + x2

3

r 2
+ �

[
α−1 r ln(x3 + r ) − x3

]]
. (A27)

For comparison, the Green’s function of the Boussinesq’s problem,
in the absence of gravity, can be found, for example in Love (1927),
Okumura (1995), Nemat-Nasser & Hori (1999) or Soutas-Little
(1999)

ur = ρ

4πμ r

[
x3

r 2
− 1 − α

α

1

r + x3

]
,

uθ = 0,

u3 = 1

4πμ r

[
α−1 + x2

3

r 2

]
. (A28)

Note that eq. (A27) simplifies to the classic solution of eq. (A28)
when � = 0, as expected.

A comparison between the Fourier-domain solution (eq. 29) and
the corresponding analytic solution using the space-domain Green’s
function (eq. A27) is shown in Fig. A1. We compute the response
of a point-source moment load m13 applied at the surface x3 = 0.
We take into account a density contrast at the surface by setting � =
10−2 m−1. The corresponding displacement at a horizontal plane at
a depth of 3 km is shown in Fig. A1(A). The difference between

the solution that includes a buoyancy effect and one that ignores
buoyancy is shown in Fig. A1(B). The contribution of buoyancy
to the total displacement field is less than 10 per cent of the total
signal. The vertical displacement contribution of buoyancy is of op-
posite polarity compared with the direction of vertical displacement
due to the direct effect of the applied traction. The buoyancy effect
is tempering the amplitude of vertical displacement and the oppo-
site polarity of the gravity contribution is an expected behaviour. We
evaluate the contribution of gravity using our space-domain Green’s
function (A27). The residuals between the Fourier-domain and the
space-domain solutions is shown in Fig. A1(C) and a comparison
between the Fourier and space-domain solutions along profile C–C′

is shown in Fig. A1(D). The residuals between the two fields are
within a few percents of the maximum value of the gravity contribu-
tion field. Note a good agreement between the Fourier-domain and
space domain solutions to the generalized Boussinesq’s problem.

A3 From Fourier- to space-domain expressions

Finally, we establish the formal relation between the perturbation
solution (A27) and the exact Fourier-domain solution (20), which
we repeat here for convenience

û1(k1, k2, x3) = iαω1β B3

[
1 − α−1 + βx3

]
e−β x3 ,

û2(k1, k2, x3) = iαω2β B3

[
1 − α−1 + βx3

]
e−β x3 ,

û3(k1, k2, x3) = −α β2 B3

[
α−1 + β x3

]
e−β x3 . (A29)

Assuming small ratios of �/β, corresponding to a small wavelength
limit, the constant

B3 = − p̂3

2μαβ2(β + �)
(A30)

can be expanded in a Taylor series. Keeping the first two terms of
the Taylor expansion we find

B3 = − p̂3

2μαβ3
− �

− p̂3

2μαβ4
+ O

(
�2

β2

)
. (A31)

Setting p3 = δ(x1)δ(x2), or simply p̂3 = 1, the first term corre-
sponds to the classic Boussinesq’s solution (A28) and the second
term gives rise to the perturbation contribution found in eq. (A27).
To illustrate this statement, we consider the vertical component of
displacement. Using the expansion (A31) and setting p̂3 = 1, the
vertical component of displacement in the Fourier domain becomes

û3(k1, k2, x3) = 1

2μβ

[
α−1 + βx3

]
e−β x3

−�
1

2μβ2

[
α−1 + βx3

]
e−β x3 . (A32)

Upon inverse Fourier transforming with the pairs recalled in
Table A1, we directly confirm that

u3(x1, x2, x3) = 1

4πμr

[
α−1 + x2

3

r 2

]

+�
1

4πμ

[
α−1 ln(x3 + r ) − x3

r

]
(A33)

is the perturbation solution (eq. A27). Equivalence between the
remaining components of displacement can be demonstrated in a
similar way.
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Figure A1. Benchmark of the Fourier-domain solution including a buoyancy boundary condition. (A) A moment m13 is applied at the surface of the half-space.
(B) The full surface displacement. Horizontal and vertical components of displacement are represented with arrows and colours, respectively (positive for
uplift). (B) The surface displacement due to the surface buoyancy, corresponding to � = 10−2 m−1. Note the reversal of the vertical displacements. (C) The
residuals between the Fourier-domain and the perturbation-method solutions, eqs (29) and (A27), respectively.

Table A1. Commonly used 2-D Fourier transforms of 3-D functions.

f (x1, x2, x3) F [ f (x)] = f̂ (k1, k2, x3)

1/r 1
|k| e−2π |k| x3

ln (x3 + r ) 1
2π |k|2 e−2π |k| x3

x3 ln (x3 + r ) − r 1
4π2|k|3 e−2π |k| x3

Note: We denote |k | = (k2
1 + k2

2)1/2 and r = (x2
1 + x2

2 + x2
3)1/2. The

Fourier transforms are defined in eq. (8).

A P P E N D I X B : S TAT I C D E F O R M AT I O N
I N A H A L F - S PA C E D U E T O S U R FA C E
T R A C T I O N U S I N G T H E
B O U S S I N E S Q – PA P KOV I T C H – N E U B E R
P O T E N T I A L

In this appendix we use an alternative derivation of the Fourier do-
main solution for the Boussinesq’s and Cerruti’s problems. In Sec-
tion 2, we used the Galerkin vector potential to derive the solution

to the generalized problem of applied surface traction including the
effect of a buoyancy restoring force at the surface of a semi-infinite
elastic solid. Here, we use the Boussinesq–Papkovitch–Neuber po-
tential to derive the Fourier-domain solution to the Boussinesq’s
and Cerruti’s problems, ignoring the effect of gravity. We use this
alternative derivation to validate results of Section 2 in the special
case where gravity is neglected (setting � = 0). We first derive the
solution to the Boussinesq’s problem then to the Cerruti’s problem.

B1 The Boussinesq’s problem

The Boussinesq’s problem can be solved semi-analytically in the
Fourier domain by making use of the Papkovitch–Neuber represen-
tation and Fourier transforming (A8) in the horizontal direction.
Using the Fourier transforms pair defined in (8), the transformed
gradient operator becomes ∇̂ = (iω1, iω2,

∂

∂x3
). In Cartesian coor-

dinates, each component of the vector potential is harmonic and it
is sufficient to set B = B3 e3. Hence, we have ∇2 B3 = ∇2 B0 = 0
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and

B̂3(k1, k2, x3) = β b3 e−β x3 ,

B̂0(k1, k2, x3) = b0 e−β x3 , (B1)

where we have used

β = 2π
(
k2

1 + k2
2

)1/2
. (B2)

We have discarded the positive exponentials to ensure a bounded
solution in the far field. Before satisfying the surface boundary
condition, we obtain the surface displacements

û1 = −α iπk1 (b0 + βb3x3) e−β x3 ,

û2 = −α iπk2 (b0 + βb3x3) e,

û3 = +β
[
b3 + α

2
(b0 − b3 + b3βx3)

]
e−β x3 .

(B3)

At the surface, x3 = 0, we have the shear stresses

σ̂13 = μ i2πk1 β [α b0 + (1 − α)b3] ,

σ̂23 = μ i2πk2 β [α b0 + (1 − α)b3] , (B4)

so the condition of vanishing of the shear stress at the surface is
satisfied for

b0 = (1 − α−1)b3. (B5)

Respectively we obtain the displacement field

û1 = −iπk1b3(α − 1 + αβ x3) e−β x3 ,

û2 = −iπk2b3(α − 1 + αβ x3) e−β x3 ,

û2 = +1

2
β b3(1 + αβ x3) e−β x3 . (B6)

The surface normal stress, in the Fourier domain, is

σ̂33 = −μαβ2b3. (B7)

Using the boundary condition σ 33(x1, x2) = −p3(x1, x2), where
p3 is the prescribed load at the surface, the Boussinesq problem is
solved for

b3 = p̂3

μαβ2
. (B8)

Result (B6) is the same as the one of eq. (20) obtained using the
Galerkin biharmonic vector potential.

B2 The Cerruti’s problem

We start by considering the form of the solution corresponding to
setting B2 = B3 = 0. The remaining non-zero harmonic scalar are
thus

B̂0 = b0 e−β x3,

B̂1 = βb1 e−β x3, (B9)

making use of the Fourier transform identity

F [ 2πx f (x)] = i f̂ ′(k), (B10)

where the prime means differentiation with respect to the relevant
wavenumber, we obtain the displacements

û1 =
[(

β + α

2

ω2
1

β
[1 − β x3]

)
b1 − α

2
iω1b0

]
e−β x3 ,

û2 = −α

2
iω2

[
i
ω1

β
(1 − β x3)b1 + b0

]
e−β x3 ,

û3 = −α

2

[
iω1(−2 + β x3)b1 − β b0

]
e−β x3 .

(B11)

Using the Hooke’s law for a homogeneous solid, we obtain the
surface shear stresses

σ̂13 = μ
[
iω1αβb0 − (β2 + 2ω2

1α)b1

]
,

σ̂23 = μ iω1α(b0β + i2ω1b1). (B12)

The vanishing condition for σ 23 at the surface gives

b0 = − i2ω1

β
b1 (B13)

and the prescribed surface stress σ̂13 = − p̂1 gives

b1 = p̂1

μβ2
. (B14)

The remaining normal stress is

σ̂33 = −(1 − α)iω1βb1 = (α − 1)
iω1 p̂1

μβ
(B15)

and is removed by applying the Boussinesq’s solution with the con-
stant

b3 = α − 1

α

iω1 p̂1

μβ3
. (B16)

The solution to Cerruti’s problem, coming from the application of
the Papkovitch–Neuber representation, is then

û1 =
[

b1

β

(
β2 − α

2
ω2

1(1 + β x3)
)

−1

2
iω1b3(α − 1 + αβ x3)

]
e−β x3 ,

û2 =
[

− αb1

2β
ω1ω2(1 + β x3)

−1

2
iω2b3(α − 1 + αβ x3)

]
e−β x3 ,

û3 = αβ

2

[
− iω1b1 + b3(α−1 + β x3)

]
e−β x3 .

(B17)

Formulation (B17) is equivalent to eq. (26) obtained with the
Galerkin vector potential. This alternative route to derive the homo-
geneous solution to the Navier’s equation provides an independent
check to validate our analytic solutions.
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