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S U M M A R Y
We present a unified continuum mechanics representation of the mechanisms believed to be
commonly involved in post-seismic transients such as viscoelasticity, fault creep and poroelas-
ticity. The time-dependent relaxation that follows an earthquake, or any other static stress per-
turbation, is considered in a framework of a generalized viscoelastoplastic rheology whereby
some inelastic strain relaxes a physical quantity in the material. The relaxed quantity is the
deviatoric stress in case of viscoelastic relaxation, the shear stress in case of creep on a fault
plane and the trace of the stress tensor in case of poroelastic rebound. In this framework, the
instantaneous velocity field satisfies the linear inhomogeneous Navier’s equation with sources
parametrized as equivalent body forces and surface tractions. We evaluate the velocity field
using the Fourier-domain Green’s function for an elastic half-space with surface buoyancy
boundary condition. The accuracy of the proposed method is demonstrated by comparisons
with finite-element simulations of viscoelastic relaxation following strike-slip and dip-slip
ruptures for linear and power-law rheologies. We also present comparisons with analytic solu-
tions for afterslip driven by coseismic stress changes. Finally, we demonstrate that the proposed
method can be used to model time-dependent poroelastic rebound by adopting a viscoelastic
rheology with bulk viscosity and work hardening. The proposed method allows one to model
post-seismic transients that involve multiple mechanisms (afterslip, poroelastic rebound, duc-
tile flow) with an account for the effects of gravity, non-linear rheologies and arbitrary spatial
variations in inelastic properties of rocks (e.g. the effective viscosity, rate-and-state frictional
parameters and poroelastic properties).

Key words: Numerical solutions; Dynamics and mechanics of faulting; Dynamics of
lithosphere and mantle.

1 I N T RO D U C T I O N

Interpretations of the geodetic, seismologic and geologic ob-
servations of deformation due to active faults require models
that take into account complex fault geometries, spatially vari-
able mechanical properties of the Earth’s crust and upper man-
tle, evolution of damage and friction and rheology of rocks
below the brittle–ductile transition (Tse & Rice 1986; Scholz
1988,1998). Studies of post-seismic relaxation typically rely on
models of fault afterslip (e.g. Perfettini & Avouac 2004,2007;
Johnson et al. 2006; Freed et al. 2006; Hsu et al. 2006; Barbot
et al. 2009a; Ergintav et al. 2009), viscoelastic relaxation
(Pollitz et al. 2000; Freed & Bürgmann 2004; Barbot et al. 2008b)
and poroelastic rebound (Peltzer et al. 1998; Masterlark & Wang
2002; Jonsson et al. 2003; Fialko 2004) to explain the observations.

∗Now at: The Division of Geological and Planetary Sciences, California
Institute of Technology, USA.

Existing semi-analytic models of time-dependent 3-D viscoelastic
deformation (Rundle 1982; Pollitz 1997; Smith & Sandwell 2004;
Johnson et al. 2009) are limited to linear constitutive laws. Fully
numerical methods (e.g. finite element) may be sufficiently versa-
tile to incorporate laboratory-derived constitutive laws for ductile
response (Reches et al. 1994; Freed & Bürgmann 2004; Parsons
2005; Freed et al. 2007; Pearse & Fialko 2010), but often require
elaborate and time-consuming discretization of a computational
domain, especially for non-planar and branching faults, and assign-
ment of spatially variable material properties to different parts of
a computational mesh. Another challenge arises from modelling of
several interacting mechanisms (Masterlark & Wang 2002; Fialko
2004; Johnson et al. 2009). For example, geodetic data from the
1992 Landers, California, earthquake were used to argue for the
occurrence of a poroelastic rebound, a viscoelastic flow in the lower
crust and upper mantle, and afterslip on the down-dip extension
of the main rupture, either individually or in various combinations
(Peltzer et al. 1998; Deng et al. 1998; Freed & Bürgmann 2004;
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Semi-analytic models of postseismic transient 1125

Figure 1. Sketch of inelastic properties of the lithosphere responsible for post-seismic transients. Post-seismic deformation may be due to a combination of
poroelastic response, fault creep and viscous shear. The shear flow in the mantle and lower crust might be governed by a power-law viscosity for high stress
and by a Newtonian viscosity at lower stress. In the former case, the effective viscosity is stress dependent. Afterslip on fault roots may be governed by a
velocity-strengthening friction law. Poroelastic rebound can occur throughout the lithosphere but its effect likely decreases with increasing depth.

Fialko 2004; Perfettini & Avouac 2007). Data from the 2002
Denali earthquake were also shown to be broadly compatible with
the occurrence of these three main mechanisms (e.g. Freed et al.
2006; Biggs et al. 2009; Johnson et al. 2009).

In this paper, we introduce a computationally efficient 3-D semi-
analytic technique that obviates the need for custom-built meshes
but is sufficiently general to handle complex fault geometries and
non-linear rheologies. We develop a unified representation of the
main mechanisms thought to participate in post-seismic relax-
ation (Fig. 1). The model employs a generalized viscoelastoplas-
tic rheology that is compatible with linear and power-law viscous
flow, poroelastic rebound and fault creep (afterslip). This frame-
work allows one to construct fully coupled models that account
for more than one mechanism of relaxation. In Section 2, we
describe a general method to evaluate time-series of inelastic
time-dependent relaxation. The approach is compatible with any
non-linear rheology provided that the infinitesimal-strain approx-
imation is applicable. We then consider particular cases of three
dominant mechanisms of post-seismic relaxation. In Section 3 and
Appendix A1, we introduce a special case of viscoelastic rheology
equivalent to poroelasticity. In Section 4, we describe a viscoelastic
rheology for fault creep with rate-strengthening friction. In Sec-
tion 5, we consider Newtonian and power-law viscoelastic flow.

2 A U N I F I E D R E P R E S E N TAT I O N O F
P O S T - S E I S M I C M E C H A N I S M S : T H E O RY

Our method for evaluating 3-D time-dependent deformation due to
earthquakes or magmatic unrest is based on a continuum represen-
tation of fault slip, viscous flow and change in pore fluid content.
In this section, we describe the coupled equations that govern post-
seismic deformation regardless of a particular relaxation mecha-
nism and present a semi-analytic solution method to evaluate the
time-series of relaxation. The proposed approach can accommo-
date different types of relaxation mechanisms and various degrees
of strain localization in a medium.

In a generalized viscoelastic body �, with elastic compliance
tensor Dijkl, the total strain-rate tensor ε̇i j may be presented as the

sum of elastic (reversible) and inelastic contributions

ε̇i j = ε̇e
i j + ε̇i

i j , (1)

where the dots represent time differentiation. In case of linear elas-
ticity, the elastic strain-rate tensor can be written

ε̇e
i j = Di jkl σ̇kl , (2)

where σi j is the Cauchy stress (Malvern 1969). The plastic strain
rate ε̇i

i j , also referred to as the eigenstrain rate, represents some
relaxation process such as viscous flow, fault creep or poroelastic
rebound. Any such source of time-dependent inelastic deformation
contributes to a forcing term in strain space

ε̇i
i j = γ̇ Ri j , (3)

where γ is the amplitude of inelastic strain and Rij is a unitary and
symmetric tensor representing the local direction of the inelastic
strain rate. The irreversible strain rate obeys a constitutive relation-
ship or evolution law of the form

γ̇ = f (σi j , γ ), (4)

where σi j is the instantaneous Cauchy stress and γ is the cumula-
tive amplitude of inelastic strain. Parameter γ in the evolution law
(4) represents the effects of work strengthening (or softening). A
particular form of operator f , which defines the material rheology,
depends upon the relaxation mechanism. When no work hardening
takes place the rheology γ̇ = f (σi j ) is described by an algebraic
equation. If the instantaneous inelastic strain rate depends on the
history of deformation, then the rheology γ̇ = f (σi j , γ ) is de-
scribed by a differential equation coupled to the equation for stress
evolution. Poroelasticity, viscoelastic relaxation and fault creep can
all be written in this general form.

Assuming infinitesimal strain, combining eqs (1)–(3) and inte-
grating, we obtain the general hereditary equation for stress evolu-
tion

σi j (t) = Ci jklεkl (t) −
∫ t

0
γ̇ Ci jkl Rkldt, (5)

where Cijkl is the elastic moduli tensor. One interpretation of eq. (5)
is that in a viscoelastic material the stress is reduced by a history
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1126 S. Barbot and Y. Fialko

of inelastic relaxation. Notice that eq. (5) reduces to the Hooke’s
law at initial time (t = 0) and if no inelastic deformation occurs
(γ̇ = 0). The total strain εi j can simply be evaluated from the
current displacement field

εi j (t) = 1

2
(ui, j + u j,i ), (6)

where the total displacement depends on a history of deformation,

ui (t) = ui (0) +
∫ t

0
vi dt, (7)

vi being the velocity field. Similarly, using eq. (1), the rate of change
of stress, σ̇i j = Ci jkl ε̇

e
kl , can be written

σ̇i j = Ci jkl

(
ε̇kl − ε̇i

kl

)
. (8)

The inelastic contribution to the stress rate can be thought of as
the instantaneous power density applied to body � by all internal
processes, and as a forcing term in tensor space

ṁi j = Ci jkl ε̇
i
kl . (9)

A time-dependent deformation at any point in � can be evaluated
given a specific rheology (eq. 4). At all times, a displacement field
must satisfy the condition of a vanishing total surface traction∫

∂�

σi j (t) n̂ j dA = 0, t ≥ 0. (10)

The criterion (10) is satisfied by enforcing simultaneously a free
surface boundary condition σ̇i j n̂ j = 0 and the equilibrium condition
σ̇i j, j = 0. Using expressions (8) and (9) the free-surface boundary
condition becomes

ṫi = Ci jkl ε̇kl n̂ j = ṁi j n̂ j , (11)

where n̂i is the normal vector at the surface ∂�. Eq. (11) indicates
that a post-seismic source mechanism contributes to some equiva-
lent rate of surface tractions ṫi if the corresponding eigenstrain-rate
ε̇i

i j is non-zero at the surface ∂�. Without loss of generality, the
equilibrium equation can be written

(Ci jkl ε̇kl ), j + ḟ i = 0. (12)

Expression (12) reduces to the inhomogeneous Navier’s equation in
the case of a homogeneous isotropic elastic solid and we have
defined the body-force rate as follows,

ḟi = −ṁi j, j . (13)

The mechanisms driving a post-earthquake transient can be equiv-
alently represented by an eigenstrain-rate (eq. 3), a power density
(eq. 9) and a distribution of equivalent body force and surface trac-
tion rates (eqs 13 and 11, respectively). One important aspect of
the proposed generalized viscoelastoplastic representation of post-
seismic mechanisms is that regardless of a particular form of the
constitutive relation, including non-linear relations, the instanta-
neous velocity field remains the solution to a linear partial dif-
ferential equation. The velocity field satisfies the inhomogeneous
Navier’s equation (12) with the inhomogeneous boundary condition
(11) and the methods used to solve elasto-static problems become
applicable to evaluate models of non-linear time-dependent defor-
mation.

The instantaneous velocity field vi can in general be obtained
with application of the elastic Green’s function

vi (xi ) =
∫

�

Gi j (xi , yi ) ḟ j (yi ) dV

+
∫

∂�

Gi j (xi , yi ) ṫ j (yi ) dA (14)

or other numerical methods, for example using finite elements.
Interestingly, the details of the geometry and the elastic structure of
a viscoelastic body are all captured by the specific form of the elastic
Green’s function Gij. The Green’s function for a semi-infinite elastic
solid is described by Love (1927) and Nemat-Nasser & Hori (1999).
Because the equivalent body forces can be distributed over a large
volume the convolution (14) can be computationally expensive. We
alleviate this problem by using a Fourier-domain elastic Green’s
function which also accounts for a gravitational restoring force at
the surface of the half space (Cochran et al. 2009; Barbot et al.
2008a, 2009b; Barbot & Fialko 2010).

A time-series of transient deformation following a stress pertur-
bation can be obtained as follows. From a given level of stress at
time t, we evaluate the eigenstrain rate due to a particular mech-
anism with eq. (3). We evaluate the corresponding power density
(9) and compute the associated distribution of surface traction and
internal forces with eq. (11) and (13), respectively. We then solve
eq. (12) for a velocity field. We obtain the new displacement, stress,
and cumulative strain fields for time t + dt by integrating the cor-
responding quantities in the time domain using an explicit method
with a predictor/corrector scheme (Abramowitz & Stegun 1972). In
particular, the stress-tensor field at t + dt is obtained from eq. (5).
We repeat these steps until a simulation of the viscoelastic relaxation
over a specified time interval is complete.

The method is sufficiently general to deal with most mechanisms
believed to be relevant to post-seismic deformation such as New-
tonian and non-Newtonian viscous flow, rate-strengthening fault
creep and poroelasticity. One important advantage of the proposed
method is its ability to handle arbitrary spatial variations in inelastic
properties. Variations in inelastic properties are accounted for by
changing the spatial distribution of the corresponding equivalent
internal forces and surface tractions.

3 P O RO E L A S T I C R E B O U N D

The Earth’s crust is a heterogeneous material composed of solid and
fluid phases (e.g. porous rocks and pore fluids). The occurrence of
a large earthquake alters the pore pressure in the crust. The induced
stress change can create significant pore pressure gradients that may
be relaxed by the movement of fluids if the host rocks are sufficiently
permeable. The coupling between the pore–fluid diffusion and the
effective stress introduces a time dependence into the response of
the solid matrix (Biot 1941; Rice & Cleary 1976; Rudnicki 1985;
Wang 2000; Coussy 2004). In this section, we present a viscoelastic
rheology equivalent to poroelasticity. We demonstrate the equiva-
lence between the equations of poroelasticity and the generalized
viscoelasticity in Appendix A.

Using a formal decomposition of the strain rate tensor (eq. 1), we
postulate that the inelastic strain involved in a poroelastic rebound
is purely isotropic, that is the direction of relaxation in strain space
is constant (cf. eq. 4)

Ri j = 1

3
δi j , (15)

where δi j is the Kronecker’s delta. The poroelastic rebound thus
can be viewed as an example of bulk viscosity. The amplitude of
inelastic strain γ corresponds to the effective change in fluid content
in the representative volume element (see eq. A11 in Appendix A).
In the case of isotropic elastic properties, the amplitude of inelastic
strain γ obeys the diffusive evolution law

γ̇ = D

[
(1 − β) γ − β

σ

κu

]
, j j

, (16)
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Table 1. Example poroelastic moduli for common
rocks.

Rock K (GPa) β D (m2 s−1)

Clay/mudstone 6 ∼1 10−1

Sandstone/limestone 10 0.4 10−2

Granite 40 0.25 10−5

Basalt 40 0.03 10−5

Note: Diffusivity values are for a fluid viscosity of
μ = 10−3 Pa s and the bulk modulus is for undrained
condition.

where κu is the undrained bulk modulus, 0 ≤ β ≤ 1 is a non-
dimensional parameter indicating the degree of coupling between
the porous matrix and the pore space, σ = σkk/3 is the isotropic
stress, positive for extension, and D is the diffusivity having units
of length2×time−1. Eq. (16) is associated with the inhomogeneous
surface boundary condition

γ = β

1 − β

σ

κu
, at x3 = 0, t > 0 (17)

and the initial condition γ = 0 in � at t = 0. Notice that eq. (16) is of
the form γ̇ = f (σi j , γ ), the general evolution law of a viscoelastic
process. In its simplest, isotropic form, the poroelastic deformation
requires only two additional parameters, compared to linear elastic-
ity, to describe the post-seismic time-dependent deformation. The
first parameter β is a non-dimensional coupling coefficient indi-
cating what portion of the initial isotropic stress will eventually
be relaxed. A material with β ∼ 1 cannot sustain pressure gradi-
ents. The second parameter is the diffusivity D which controls the
timescale of the relaxation. Appendix A gives relations between β,
D and other commonly used poroelastic parameters. Typical values
of macroscopic poroelastic parameters are shown in Table 1, using
measurements from Detournay & Cheng (1993).

As fluid flow can take place in the entire crust, including near the
surface, the equivalent-body-force representation of the poroelastic
rebound seeks a proper distribution of internal forces and surface
tractions. The power density, using eqs (9) and (15), becomes

ṁi j = κu γ̇ δi j (18)

and we obtain the corresponding internal force distribution per unit
time

ḟi = −κu γ̇,i (19)

associated with the surface-traction rate

ṫi = −κu γ̇ δi3, at x3 = 0. (20)

The instantaneous solid matrix velocity field can be obtained using
eq. (14) with the forcing terms and traction boundary condition
given by eqs (9) and (20), respectively. Time-series of poroelas-
tic deformation can be generated using the approach developed in
Section 2.

3.1 Computational schemes and benchmarks
for poroelastic models

One complication of poroelastic models compared to the treatment
of power-law viscosity, for example, is the evaluation of the evo-
lution law. The presence of a Laplacian operator in the evolution
law (16) makes an effective viscosity wavelength dependent. One
simple way to evaluate the rate of fluid content is to use a finite-
difference approximation. The finite difference method allows one
to tackle heterogeneous properties and in particular to account for

vertical variations in fluid diffusivity D and matrix/pore coupling
β. One important limitation, however, is the conditional stability
of an explicit finite difference quadrature. The maximum time step
of numerical integration is limited by the Courant condition (Press
et al. 1992),


tmax = 
x2

2D̃
, (21)

where 
x is the grid sampling size and the product D̃ = (1 − β)D
is taken to be the largest value in the computational domain. As the
characteristic length scale of a problem is often a multiple of the
sampling size, the finite-difference method often requires 50–100
computational steps to simulate a time interval of one characteristic
relaxation-time. The full poroelastic rebound is approached only af-
ter several characteristic times so the finite-difference method poses
a significant computational burden. Another approach to evaluate
the rate of fluid content γ̇ at time tn is to perform the time inte-
gration in the Fourier domain. After Fourier transforming eq. (16)
and assuming that the forcing term σ (h) is in fact constant over a
small time interval [tn, tn+ h], an approximation of the rate of fluid
content is

˙̂γ (tn + h) = −D̃ω2e−D̃ω2h

[
γ̂ (tn) − β

1 − β

σ̂ (tn)

κu

]
, (22)

where ω = 2π (k2
1 + k2

2 + k2
3)1/2 is the radial wavenumber and the

hats denote the Fourier transform of the corresponding variables. If
the assumption of a constant forcing term is satisfied then eq. (22)
is an exact solution to the fluid diffusion partial differential equa-
tion (16). Our solution method for the diffusion equation coupled
to the Navier’s equation is as follows: For a given time step 
t ,
we evaluate analytically the fluid velocity at time tn + 
t/2 in the
Fourier domain using eq. (22). We then integrate the change in fluid
content using a leapfrog quadrature in the space domain

γ (tn + 
t) = γ (tn) + γ̇ (tn + 
t/2) 
t. (23)

Naturally, the fluid velocity is also used to evaluate the coupled
elastic deformation rate. The Fourier method of integration is un-
conditionally stable and small steps are required for accuracy only
(to update the forcing term). We also use a predictor–corrector ap-
proach to march forward in time.

We test our viscoelastic formulation of the poroelastic equations
with a simulation of the time-dependent poroelastic rebound fol-
lowing a strike-slip event. We first evaluate the full rebound using
the difference between drained and undrained conditions. We then
simulate the complete time-series of a poroelastic rebound and com-
pare the fully-relaxed numerical solution to the analytic difference
between drained and undrained solutions. The stress perturbation
that is relaxed by poroelastic bulk viscosity in the crust is due
to a strike-slip fault that extends from the surface to a depth of
1 km and has a uniform slip of 1 m. We choose Lamé parameters
such that λu = 1.5 G, where G is the shear modulus, and the cou-
pling coefficient β = 0.3. The corresponding drained parameter
is λd = 0.85 G. We choose the diffusivity D = 10−2 m2 s−1. The
characteristic length scale is the depth of the fault W = 1 km which
is associated with the diffusion timescale tm = W 2/2D = 1.6 yr.
Our simulation spans a time interval of 17 tm, presumably enough
to reach full relaxation. Fig. 2(a) (left panel) shows the initial dis-
placement field at the surface due to the right-lateral strike-slip
fault. The corresponding post-seismic displacement after complete
fluid readjustment is shown in right panel of Fig. 2(a). We run
two simulations, one using the finite difference method with a con-
stant time step of 
t = 
tmax/5, and another using the ‘Fourier-
leapfrog’ method with adaptive time steps. Example displacement
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1128 S. Barbot and Y. Fialko

Figure 2. Benchmark for poroelastic rebound calculations. (a) The coseismic surface displacements due to a strike-slip fault slip (left panel) and post-seismic
displacements due to a complete poroelastic rebound evaluated by taking the difference between the drained and undrained solution (right panel). (b) Example
cumulative displacements before complete relaxation, illustrating an increase in amplitude and wavelength of deformation with time. (c) Comparison between
our time-dependent calculations and the analytic solution at full relaxation (drained condition) for the case of a finite-difference (left panel) and a semi-analytic
Fourier-domain integration method.

before full relaxation are shown in Fig. 2(b). The residuals be-
tween the finite-difference and ‘drained-undrained’ solutions at full
rebound is shown in Fig. 2(c) (left panel). The residuals are charac-
terized by long wavelengths which illustrates the well-known diffi-

culty of resolving long wavelengths with a finite difference scheme
for parabolic equations (Press et al. 1992). The residuals associ-
ated with the Fourier-leapfrog method are shown in right panel of
Fig. 2(c) and correspond to the last of the 130 steps required to reach
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Semi-analytic models of postseismic transient 1129

Figure 3. Efficiency diagram of the Fourier/leapfrog (black profile) and the
finite difference (grey profile) integration schemes. The k = −1 and k = −2
slopes indicate the expected error reduction of second and third-order inte-
gration methods, respectively. The span of possible time steps is limited for
the finite difference method due to a stability condition. The Fourier/leapfrog
method is unconditionally stable and possible time steps cover at least three
orders of magnitude with a consistent third-order convergence.

full rebound. The long wavelength displacement is much better re-
solved. Small short-wavelength residuals (Fig. 2c, right panel) are
due to a continuum body force representation of a displacement dis-
continuity (Barbot et al. 2009b; Barbot & Fialko 2010), and depend
on the grid size and the assumed tapering of slip on a fault.

Finally, we assess the accuracy of our proposed methods of
time integration. Fig. 3 shows the efficiency diagram for the
Fourier/leapfrog and the finite difference methods. We compute
the L2 norm of the error taken at time t = 10 tmax for various
constant time-step sizes. The error is the norm of the difference
between a given solution and a reference one which was obtained
with an extremely small time step. Fig. 3 shows a cumulative er-
ror that decreases about quadratically with the step size for both
methods. This large accuracy improvement with step size reduction
indicates that the Fourier/leapfrog and the finite difference methods,
when associated with a predictor–corrector approach, is third-order
convergent. For a given reduced time step, the Fourier/leapfrog so-
lutions are always about an order of magnitude more accurate than
the finite difference counter part. The efficiency diagram 3 shows
a range of possible time steps for the Fourier/leapfrog method cov-
ering about three orders of magnitude. The better accuracy of the
Fourier/leapfrog method of integration along with the possibility
of including adaptive time steps and a predictor/corrector scheme
makes it much preferable over the finite-difference method.

4 FAU LT C R E E P

Fault creep, or aseismic sliding on a fault plane, is thought to be
an important component of the earthquake cycle (e.g. Tse & Rice
1986). Afterslip has been widely documented following large earth-
quakes in various tectonic environments including subduction zones
(Hsu et al. 2006) and transform faults (Bürgmann et al. 2002; Freed
et al. 2006; Johnson et al. 2006; Barbot et al. 2009a). Recent stud-
ies show that afterslip can be the dominant mechanism responsible
for post-seismic transients, at least in some locations (Freed 2007;

Barbot et al. 2009a), but it may also occur in combination with
other mechanisms (Fialko 2004; Freed et al. 2006; Johnson et al.
2009). Laboratory experiments and modelling of geodetic data in-
dicate that afterslip may be governed by a rate- and state-dependent
friction (Marone et al. 1991; Marone 1998; Perfettini & Avouac
2007; Barbot et al. 2009a). In this section, we describe a contin-
uum representation of rate-strengthening fault creep. We use the
formulation of Barbot et al. (2009a) that regularizes the classic
rate-and-state friction (Dieterich 1979, 1992) to allow for vanishing
slip rates (Rice et al. 2001).

Fault creep can be viewed as a localized viscoelastoplastic de-
formation. The onset of sliding, or fault failure, is defined by the
Coulomb yield stress (Byerlee 1978)

τ − μσ, (24)

where τ is the amplitude of shear traction in the direction of sliding,
σ is the effective normal stress (positive for compression) account-
ing for the pore pressure contribution and μ is the coefficient of
friction. A fault remains locked for strictly negative Coulomb stress
τ < μσ . In this case continuous loading causes deformation off of
the fault (e.g. Heap et al. 2009). When shear stress is high enough,
τ = μσ , the fault fails and the subsequent slip evolution may
be described by a rate-strenghtening friction rheology. Assuming
small Coulomb stress before a stress perturbation, an assumption
discussed in detail in (Barbot et al. 2009a), the slip rate is controlled
by the local stress drop 
τ according to the constitutive law

ṡ = 2ṡ0 sinh

τ

aσ
, (25)

where ṡ0 is a reference slip rate controlling the timescale of slip
transients and aσ is a parameter characterizing the effective stress
and the degree of non-linearity in the afterslip evolution. Formula-
tion (25) ignores the effect of a state variable evolution, which is
justified if the slip speed changes sufficiently slowly.

To simulate fault creep in three dimensions, one needs to describe
the geometry of the slip system. The change of traction ti resolved
on a fault surface S can be decomposed into normal and shear
components,

ti = σi j n̂ j = tk n̂k n̂i + 
τi , (26)

where n̂i is the unit vector normal to the fault surface and 
τi is
the shear component of the traction exerted on the fault such that

τ = (
τk
τk)1/2. Noting the Burger vector of the dislocation
si = sŝi , we assume that the slip-rate vector is colinear with the
direction of shear traction evaluated on the fault patch,

ṡi = ṡ
τ̂i (27)

and the instantaneous inelastic strain-rate direction is (e.g. Nemat-
Nasser 2004; Karato 2008)

Ri j = 1

2
(
τ̂i n̂ j + n̂i
τ̂ j ). (28)

In the continuum representation of fault creep, the slip rate ṡ is
associated with the inelastic strain rate

γ̇ = ṡ Hs(xi ), (29)

where Hs, in dimensions of length−1, is unity or zero according
to whether its argument is or is not a point of the fault surface
S. Fault representation using generalized functions is further dis-
cussed by Backus & Mulcahy (1976) and Barbot et al. (2009a). In
this formulation, the rake of afterslip is governed by the local stress
direction and slip is only constrained to occur on a predefined fault
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k = 7
k = 6
k = 5
k = 4
k = 3
k = 2
k = 1

Figure 4. Benchmark for fault creep on a elementary fault segment (point
source) governed by a rate-strengthening rheology. The Coulomb stress is
perturbed homogeneously in the computational domain at time t = 0 with
an amplitude τ0. The responses of the fault as predicted by our numerical
model and by the analytic solution to a spring-slider model are compared
for various values of the initial stress perturbation. There is an excellent
agreement between analytic and numerical solutions.

plane described by its position and orientation n̂i . Using eqs (28)
and (29), the inelastic strain rate due to fault creep can be written
ε̇i

i j = γ̇ Ri j , mathematically analogous to other deformation mech-
anisms, so that our solution method described in Section 2 also
applies in case of afterslip.

4.1 Benchmark of semi-analytic fault creep models

The response of a rate-strengthening point-source fault patch to a
stress perturbation is described by Barbot et al. (2009a). The slip
impulse response to a stress drop 
τ0 is

s(t) = 
τ0

G∗

[
1 − 2

k
coth−1

(
et/t0 coth

k

2

)]
, (30)

where G∗ is the effective stiffness of the fault patch, the timescale
of slip evolution is

t0 = 1

2ṡ0

aσ

G∗ (31)

and the degree of non-linearity of slip evolution is controlled by the
dimensionless ratio

k = 
τ0

aσ
. (32)

We compare the predictions of afterslip for a point source using
our generalized viscoelastic representation and the analytic solution
(30). We consider the case of an elementary dislocation subjected
to a stress drop 
τ0. We simulate the response of fault patches with
frictional properties varying from aσ = 
τ0/7 to aσ = 
τ0. Fig. 4
shows a comparison between the numerical and analytic solutions.
The numerical profiles represent the post-seismic displacements
at the surface scaled by their maximum amplitude. We perform
this comparison to remove a potential numerical bias due to the
Fourier-domain elastic Green’s function. Note an excellent agree-
ment between analytic and numerical solutions for a wide range of
stress perturbations (Fig. 4).

5 B U L K D U C T I L E F L OW

The lower-crust and upper-mantle rocks exhibit a ductile behaviour
(Nur & Mavko 1974; Weertman & Weertman 1975; Brace &

Kohlstedt 1980; Karato & Wu 1993; Savage 2000) that is often
invoked to explain large-wavelength post-earthquake deformation
transients (Reilinger 1986; Pollitz et al. 2000; Johnson et al. 2009).
Geodetic (Freed & Bürgmann 2004) and laboratory (Karato et al.
1986; Kirby & Kronenberg 1987; Kohlstedt et al. 1995) observa-
tions indicate a stress-dependent mantle viscosity, and suggest that
a power-law rheology of the form

ε̇i
i j = γ̇0

( τ

G

)n−1 1

G
σ ′

i j (33)

may be applicable to the lower crust and upper mantle, where 1 ≤
n < 5 is a power exponent, G is the shear modulus,

σ ′
i j = σi j − δi j

σkk

3
(34)

is the deviatoric stress tensor and

τ =
(

1

2
σ ′

klσ
′
kl

)1/2

(35)

is the norm of the deviatoric stress. The case of n = 1 corresponds to
linear viscoelasticity. The strain-rate direction is purely deviatoric

Ri j = σ ′
i j

τ
(36)

and the constitutive law for strain rate is

γ̇ = γ̇0

( τ

G

)n
, (37)

where γ̇0 is a reference strain rate. Power-law creep is a thermally-
activated process (Karato 2008) and γ̇0 is assumed to increase as
a function of depth. For power exponent greater than unity the
effective viscosity

η = 1

γ̇0
Gn τ 1−n (38)

is lower at the initial stage of a transient deformation when stress
is higher. The ductile flow is not limited by a yield surface and
for a constant stress condition the effective viscosity η increases
exponentially with decreasing temperature (e.g. Karato 2008). A
timescale of a post-seismic transient due to viscoelastic relaxation

tm = η

G
= 1

γ̇0

(
G

τ

)n−1

(39)

is stress dependent and is shorter near the onset than at the later
stages of the transient. A ductile flow is thought to occur below the
seismogenic zone (at depths greater than 15–50 km for a typical
continental crust). The confinement of the flow below an elastic
plate obviates the need for any equivalent surface traction (ṫi = 0)
and the deformation can be represented by a distribution of internal
forces only.

5.1 Numerical examples and benchmarks for
viscoelastic models

We test our formulation of the power-law viscoelastic relaxation
by considering the cases of stress perturbations due to strike-slip
and dip-slip faults. In these test models, the fault slip occurs in
an elastic plate that rests on a power-law viscoelastic half-space.
Here, we ignore the effect of gravity. We compare the predic-
tions of post-seismic displacement from our semi-analytic method
with those computed using a finite-element approach. We use the
commercial finite element software Simulia (formerly Abaqus,
www.simulia.com) to perform the finite-element calculations.
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Figure 5. Calculated time-series of surface displacements due to as a stress perturbation in an elastic plate over a non-linear viscoelastic half-space. A vertical
right-lateral strike-slip fault 40 km long extending from the surface to a depth of L = 10 km slips s = 1 m. The brittle–ductile transition occurs at a depth
of 30 km. The post-seismic flow is governed by a power-law rheology with stress exponent n = 3.5. Elastic properties are uniform with ν = 1/4. (a) A
map view of post-seismic surface displacements at the early stage of the transient. The right panel shows difference between our solution and finite-element
(FEM) calculations. (b) Time-series of surface displacements for an array of locations numbered from 1 to 9 in the corresponding map. Time is scaled by
tm = γ̇ −1

0 s1−n Ln−1. The smaller time steps near the onset of the post-seismic transient are due to the adaptative time-step procedure. Notice a change of
polarity of vertical displacement for point 9. The residuals between results from our numerical approach and the finite element calculation are less than
10 per cent and show reasonable agreement both in map view and in time.

5.1.1 Strike-slip fault models

We start with the case of a strike-slip fault in an elastic brittle layer.
We assume uniform and isotropic elastic properties for a Poisson’s
solid (the Lamé parameters are such that λ = G and Poisson’s ratio
is ν = 1/4). The brittle–ductile transition is assumed at a depth
of 30 km. Below 30 km, we assume a power-law rheology with a
power exponent n = 3.5 (eq. 33). The fault slips 1 m uniformly
from the surface to a depth of 10 km and is 40 km long. We perform
a simulation of the viscoelastic post-seismic relaxation using our
generalized viscoelastic formulation. We perform the computation
on a 5123 ∼ 1.3×108 node grid with a uniform spacing between the
nodes of 
xi = 0.8 km. We use an explicit method to integrate ve-
locity and stress. We choose the adaptive time step corresponding to

one tenth of the characteristic time suggested by eq. (39) and march
forward in time using a second-order accurate predictor/corrector
method. A snapshot of the post-earthquake surface displacement at
early stage of the transient is shown in Fig. 5(a). For the respec-
tive finite-element calculation we use a 628332-node mesh with a
sampling size going from 0.8 km near the fault to 11.5 km in the
far field. We pin the boundary of the mesh 300 km away from
the fault centre. Despite a considerably smaller number of nodes,
the finite-element calculation took 2 weeks on an eight-node shared
memory computer. The same simulation with the Fourier-domain
method required 2 days of computation on the same machine.

A map view of the surface residuals between the simulations
using our formulation and the ones using the finite element method
is shown in the right panel of Fig. 5(a). The maximum discrepancy
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between the two solutions is lower than 10 per cent. The simulated
time-series of surface displacement at the points numbered from 1
to 9 is shown in Fig. 5(b). We choose to non-dimensionalize time
with the reference time

tm = 1

γ̇0

( s

L

)1−n
, (40)

where γ̇0 and n are the reference strain rate and power exponent
of the power law, respectively, and s/L is the strain drop on the
fault. We use s = 1 m and L = 10 km. The time series exhibit the
typical higher velocities near the onset of the post-seismic transient
with rapidly decaying velocities at later times. There is an excellent
agreement between results obtained using the finite element model
and our method. A distinct feature of the power-law relaxation is
a change of polarity of vertical displacements at the surface of the
half- space. The change of polarity can be seen in the time-series of
vertical displacement of far-field point number 9 in Fig. 5(b).

We perform another similar simulation using a Newtonian vis-
cosity, that is with n = 1 in eq. (33), all other parameters being the
same. A snapshot of the surface displacement due to the viscoelastic
relaxation is shown in left panel of Fig. 6(a), corresponding to a time
t = 2tm after the coseismic stress perturbation. The residuals with
the finite-element forward model at this time is shown in left panel of
Fig. 6(a). There is an excellent agreement between the finite-element
and the semi-analytic results: the maximum residuals are less than
5 per cent of the expected signal. In Fig. 6(b), we compare the simu-
lated time-series of viscoelastic relaxation at points numbered from
1 to 12 in Fig. 6(a). The distribution of sample points covers near-
and far-field from the fault. The finite-element and Fourier time-
series differ less than 5 per cent throughout a time interval spanning
12 characteristic relaxation times. The non-Newtonian and linear
viscosity models converge to the same fully relaxed solution. Be-
fore the relaxation is complete, the post-seismic displacements due
to a linear and a power-law rheology have the same polarity in the
near field. In the far-field, however, the power-law relaxation due to
slip of a vertical strike-slip fault has an opposite polarity compared
to the Maxwell rheology. Our simulations indicate that the far-field
post-seismic displacements due to a power-law mantle flow (with
n > 1) change polarity early in the post-seismic transient.

5.1.2 Dip-slip fault models

We proceed with the evaluation of post-seismic relaxation due to
dip-slip faulting. For simplicity, we consider the case of a vertical
dip-slip fault with the same geometry as in the strike-slip mod-
els. Although the geometry is similar, dip-slip and strike-slip faults
lead to very different stress changes in the surrounding rocks. We
consider first the case of a non-linear viscoelastic upper mantle
governed by the power-law rheology (eq. 33) with n = 2. A snap-
shot of the surface displacement early in the post-seismic transient
is shown in Fig. 7(a). The vertical post-seismic displacement has
the same polarity as the coseismic displacement. Horizontal post-
seismic displacements, however, are opposite to the coseismic ones.
We performed the same simulation using finite elements and the
residuals are shown in the right panel of Fig. 7(a). The time-series
of surface post-seismic displacements at points numbered from 1 to
8 in the maps are shown in Fig. 7(b). There is an excellent agreement
between the semi-analytic and the finite-element results. The time-
series reveal two noteworthy features. First, the initial post-seismic
velocities are much higher than at later times, as most visible for
points 1 and 2. Secondly, a change in polarity occurs at far-field
locations. The change of post-seismic displacement orientation is

most conspicuous for point 6 in the east–west direction. A subtle
change of polarity can be misleadingly interpreted as a delayed
post-seismic transient (e.g. see vertical displacement of point 8).

Finally, we consider the case of a dip-slip fault in an elastic plate
over a Newtonian viscoelastic half-space. The geometry of the prob-
lem is the same as in previous models. The predictions from our
semi-analytic model and the residuals with finite-element calcula-
tions at post-seismic time t = tm/2 are shown in Fig. 8(a). The
time-series of post-seismic displacement at surface positions in the
near and far-field are shown in Fig. 8(b). There is an excellent agree-
ment between the semi-analytic and the fully numerical solutions.
Notice a change of polarity of far-field points 8 and 12. The overall
patterns of surface displacement due to Newtonian and power-law
viscosity are similar, in contrast to the case of a strike-slip fault. The
overall agreement between the finite-element and the semi-analytic
calculations suggests that our formulation is robust and can be used
to model post-seismic deformation due to non-linear viscoelasticity.

The semi-analytic Fourier-domain equivalent body-force method
vastly outperforms the finite element method for the same number
of nodes, and remains computationally efficient even when the num-
ber of degrees of freedom is a few orders of magnitude larger than
in a respective finite element model. The finite element method has
the advantage of using meshes with variable spatial discretization.
The Fourier method requires a uniform grid spacing, so a compa-
rable resolution in an area of interest entails a larger problem size.
Also, the periodic boundary conditions used in the Fourier method
require the dimensions of the computation domain to be sufficiently
large. This further increases the problem size. However, to a large
extent this is compensated by a better computational efficiency.
An appealing feature of the proposed method is that it does not
require generation of complicated meshes, which itself can be an
involved and time-consuming process, especially for complex fault
geometries.

5.2 Effect of gravity on viscous relaxation

We include gravity in our model as the former may affect surface
deformation in case of viscoelastic relaxation. The principal effect
of gravity is to reduce the amplitude of large-wavelength vertical
deformation at late stages of relaxation (Pollitz et al. 2000; Freed
et al. 2007). To validate our approach, we reproduce the viscoelastic
relaxation benchmarks of (Rundle 1982, Figs 6 and 7) and (Pollitz
1997, Fig. 3). The model includes a thrust fault buried in an elastic
plate overlying a Newtonian viscoelastic half-space with uniform
elastic properties. Poisson’s ratio ν = 1/4 is constant in the entire
half-space. The brittle–ductile transition occurs at depth H . We
assume a uniform density ρ = 3300 km m−3 in the half-space. The
model of Rundle (1982) and Pollitz (1997) differs slightly in that
they have an additional small density contrast at the brittle–ductile
transition. The fault is dipping 30◦, is 20H/3 long in the strike
direction and H wide in the dip direction and U is the amplitude of
slip. The magnitude of the gravitational restoring force is controlled
by the buoyancy wavenumber (Barbot & Fialko 2010)

� = (1 − ν)

ρg

G
, (41)

where 
ρ is the density contrast at the surface (i.e. between rock
and air) and g is the acceleration of gravity.

Fig. 9(a) shows the simulated across-fault profiles of co- and
post-seismic vertical component of displacements corresponding
to the case of no gravity. The post-seismic vertical displacement
after 45 relaxation times, close to the full relaxation, has higher
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Figure 6. Calculated time-series of surface displacement for a model shown in Fig. 5, but for a linear viscoelastic layer (eq. 33 with n = 1). (a) Left panel:
snapshot of post-seismic surface displacements at time t = 2tm. Right panel: difference between our solution and a calculation using a finite element method
(FEM). (b) Time-series of surface displacements for the points numbered from 1 to 9 in the corresponding map. Time is scaled by the Maxwell time tm = 1/γ̇ .
The maximum discrepancy between results from our numerical approach and the finite element calculation are less than 10 per cent.

amplitude and larger wavelength than the vertical displacement
after just five relaxation times. Notice a few areas, for example
between x2 = −4H and x2 = −2H , that exhibit a reversal in the
course of the post-seismic transient. Such a change of polarity is
an expected feature of the post-seismic transient following a thrust
fault, as shown by Rundle (1982) and Pollitz (1997). Our results
indicate that it is typical of dip-slip faults, in general, for both linear
and power-law rheologies (Figs 7 and 8). The corresponding simu-
lations which include the effect of gravity are shown in Fig. 9(b).
The early post-seismic displacement profile after five relaxation
times is less affected by the gravitational restoring force. At later
times, close to full relaxation, the vertical displacement is reduced
by about a factor of two compared to the non-gravitational solution.
The effect of buoyancy is more pronounced at later times when
surface displacements have a larger wavelength. Results of Fig. 9

compare well with the simulations of Rundle (1982) and Pollitz
(1997) despite our neglect of a density contrast at the brittle–ductile
transition. The density contrast at the brittle–ductile transition has a
much smaller effect on the patterns of surface displacements due to
the smaller density contrast and the smaller wavelength of deforma-
tion at the fault tip. Our results confirm the conclusions of Rundle
(1982) and Pollitz (1997) regarding a substantial effect of grav-
ity on post-seismic displacements during late stages of viscoelastic
relaxation.

6 C O N C LU S I O N S

We have introduced a unified representation of the main mecha-
nisms believed to be involved in post-seismic transients. We showed
that fault creep, pore fluid diffusion and viscous flow can all be

C© 2010 The Authors, GJI, 182, 1124–1140

Journal compilation C© 2010 RAS



1134 S. Barbot and Y. Fialko

Figure 7. Benchmark for time-series of surface displacement due to a stress perturbation caused by a dip-slip fault in an elastic plate overriding a non-linear
viscoelastic half-space. A vertical dip-slip fault 40 km long extending from the surface to a depth of 10 km slips 1 m. The brittle–ductile transition occurs at a
depth of 30 km. The post-seismic flow is governed by a power-law rheology with stress exponent n = 2.0. Elastic properties are uniform with ν = 1/4. (a) A
map view of post-seismic surface displacements after 10 months. A similar computation is performed using finite elements with Abaqus and the residuals are
shown in the right panel. (b) Time-series of surface displacements for the points numbered from 1 to 8 in the corresponding map. The smaller time steps near
the onset of the post-seismic transient are due to the adaptative time-step procedure. Results from our approach are shown every five computation steps for
clarity. The residuals between results from our numerical approach and the finite element calculation are less than 5 per cent and show reasonable agreement
both in map view and in time.

formalized within a framework of a generalized viscoelastoplastic
rheology. Each mechanism contributes to some inelastic strain to
relax a certain quantity in the deformed body. The relaxed quantity
is the deviatoric stress in case of viscoelastic relaxation, the shear
stress in case of fault creep and the trace of the stress tensor in the
case of poroelastic rebound. The proposed unified representation al-
lows us to employ the same solution method to model post-seismic
relaxation invoking the above mechanisms, for various rheologies
(including non-linear ones) and allowing for interactions between
different mechanisms.

Our approach to model post-seismic relaxation is to identify the
power density that represents the effect of all driving mechanisms.
The power density is associated with a distribution of internal forces

and surface tractions and the instantaneous velocity field is a so-
lution to the inhomogeneous Navier’s equation. The technique can
handle non-linear rheologies because in this framework the instan-
taneous velocity satisfies a linear partial differential equation and
all the strategies available to solve elastostatic problems are directly
applicable. We solve for a velocity field semi-analytically using
the Fourier-domain Green’s function described in the companion
paper (Barbot & Fialko 2010). In general, other Green’s functions
(i.e. designed for different boundary conditions, geometry or elastic
properties) and other numerical methods can be used in conjunc-
tion with our body-force method. The Green’s function of Barbot
& Fialko (2010) corresponds to a uniform elastic half-space with a
buoyancy boundary condition at the surface.
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Figure 8. Benchmark for time-series of surface displacement following the rupture of a fault in an elastic plate over a linear viscoelastic layer. A vertical
dip-slip fault 40 km long extending from the surface to a depth of 10 km slips 1 m. The brittle–ductile transition is 30 km deep. The post-seismic flow is governed
by a linear viscoelastic rheology (eq. (33) with n = 1). Elastic properties are uniform with ν = 1/4. (a) A snapshot of post-seismic surface displacements
at time t = 0.5tm. A similar computation is performed using finite elements with Abaqus and the residuals are shown in the right panel. (b) Time-series of
surface displacements for the points numbered from 1 to 9 in the corresponding map. Results from our approach are shown every five computation steps. The
maximum discrepancy between results from our numerical approach and the finite element calculation are less than 5 per cent.

We applied the method to model non-linear viscoelastic relax-
ation, stress-driven afterslip, an poroelastic rebound. We described
the effect of pore fluid diffusion in a permeable medium in terms
of an effective bulk viscous rheology whereby pressure is relaxed
by changes in volumetric inelastic strain. We showed an equiva-
lence between our bulk viscosity formulation and the classic theory
of poroelasticity. In the bulk viscosity formulation of poroelastic-
ity, the inelastic strain corresponds to an effective change in pore
fluid content and obeys an inhomogeneous parabolic differential
equation. We propose two solutions methods to evaluate the in-
stantaneous strain rate due to pore-pressure diffusion. We success-
fully benchmarked our time-dependent simulations of poroelastic
rebound against fully-relaxed solutions. We also showed a good
agreement between our semi-analytic models of stress-driven fault
creep and analytic solutions. Finally, we compared our simulations

to results of finite element calculations for cases of a Newtonian vis-
cosity and a power-law rheology (with a stress power exponent of
n = 3.5 and n = 2 for strike-slip and dip-slip faults, respectively).
For all scenarios considered, we find a reasonable agreement be-
tween our semi-analytic solutions and the fully numerical results.
We show that if the ductile flow is governed by a power-law rheol-
ogy the transient deformation exhibits higher rates of deformation
immediately following an earthquake. The onset of the power-law
viscoelastic relaxation following slip on a strike-slip fault is also
characterized by a change of polarity of vertical displacements in
the far-field. The effect of gravity can be substantial at late stages
of viscoelastic relaxation because of large-wavelength vertical dis-
placements.

Our unified representation of post-seismic mechanisms en-
ables sophisticated simulations of post-seismic relaxation that
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Figure 9. Effect of gravity on the post-seismic displacement following a thrust fault. The brittle–ductile transition occurs at depth H. The fault is 20H/3 long
in the strike direction, H wide in the dip direction and U is the magnitude of dip-slip. The fault tip is buried at H/2 and the fault plane dips 30◦. The coseismic
vertical displacement is indicated by the solid profile. The dashed lines correspond to the post-seismic displacement. (a) The surface displacement after 5 and
45 relaxation times τa due to a linear viscous relaxation in the half-space below depth H . (B) the surface displacement after 5 and 45 relaxation times when
surface buoyancy due to a density contrast at the surface is accounted for. The intensity of the gravitational restoring force is controlled by the dimensionless
number �H = 2.475 × 10−2 corresponding to a Poisson’s ratio ν = 1/4, a density contrast 
ρ = 3.3 × 103 kg m−3 and shear modulus G = 30 GPa. The
effect of surface buoyancy is to damp the large-wavelength components of vertical displacements. The simulations compare successfully with the results of
(Rundle 1982, Figs 6 and 7) and (Pollitz 1997, Fig. 3).

incorporate realistic aspects of faulting including complex fault
geometry, localization of deformation, gravitational effects and re-
alistic variations of inelastic properties. Our semi-analytic approach
simplifies the treatment of non-linear rheologies such as power-
law creep and rate-strengthening friction and enables a possibility
of studying interactions between multiple mechanisms in a self-
consistent manner.
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A P P E N D I X A : C O N T I N U U M T H E O RY
O F P O RO E L A S T I C R E B O U N D

In this Appendix, we show that the poroelastic rebound problem,
which involves the pore fluid diffusion and the coupled elastic defor-
mation following an initial stress perturbation, can be presented as a
generalized viscoelastic relaxation whereby some inelastic strain ac-
cumulates to relax a physical quantity in the material. In a poroelas-
tic composite the relaxed quantity is the isotropic stress as opposed
to, for example, the deviatoric stress in a Maxwellian viscoelastic
body. In this framework, poroelasticity is an analogue of macro-
scopic bulk viscosity. The appendix is organized as follows. First,
we present the basic equations of linear poroelasticity (Bredehoeft
1967; Rice & Cleary 1976; Rudnicki 1985; Kumpel 1991) along
with the respective constitutive relations and conservations laws.
Next, we show that the governing equations of poroelasticity can
be written using two end-member representations. The classic for-
mulation uses the pore pressure as dynamic variable and the elastic
moduli for drained condition as model parameters. An alternative
approach uses the perturbation in fluid density in the pore space as
a dynamic variable and the elastic moduli for undrained condition
to parameterize the pore fluid flow and the associated elastic de-
formation. The proposed formulation is compatible with a general
viscoelastoplastic behaviour of the crust and allows the modelling
of complete time-series of a poroelastic rebound.

A1 The classic theory of poroelasticity

Hereafter we adopt the nomenclature of Kumpel (1991) and Wang
(2000). In a poroelastic composite material, a linearized equation of
state relates a relative change in fluid content

ζ = m f − m f0

ρ0
, (A1)

where m f − m f0 denotes the increment of fluid mass per unit rock
volume and ρ0 is a reference density of the pore fluid, to the given
pore pressure and confining stress as follows (Biot 1941; Rice &
Cleary 1976)

ζ = α

κd

(
p/B + σkk

3

)
, (A2)

Table A1. Notations.

α poroelastic coefficient of effective stress
aσ fault friction parameter
β poroelastic coupling coefficient
εi j total strain tensor
εe

i j elastic strain
εi

i j inelastic strain
ζ fluid content in pore space
B Skempton’s coefficient

Cijkl elastic tensor
D fluid content diffusivity

Dijkl compliance tensor
fi equivalent body force
G elastic shear modulus

Gij elastic Green’s function
γ̇ strain rate (scalar)
γ cumulative strain
� buoyancy critical wavenumber
κ bulk modulus
M Biot’s coefficient

ṁi j power density tensor
mf fluid mass per unit rock volume
ν Poisson’s ratio
η viscosity
n̂i half-space normal vector
p pore pressure

Rij strain-rate direction
ρ0 reference density of pore fluid

ρ surface density contrast
σ macroscopic confining stress
σi j macroscopic stress tensor
ṡ0 reference fault creep rate
ti surface traction
τ shear stress
ui displacement vector
vi velocity vector
χ Darcy’s conductivity

where B is the Skempton coefficient, κd is the bulk modulus of
the composite for drained condition and α is the dimensionless
coefficient of effective stress (Table A1). The pore pressure p is
positive for compression and the confining stress in the solid ma-
trix σ = σkk/3 is positive for extension. Eq. (A2) is a linearized
equation of state for the fluid density. The stress–strain relation for
the composite material is described by the generalized Hooke’s law
which is extended for poroelastic composite materials

σi j = 2G
νd

1 − 2νd
εkkδi j + 2Gεi j − αpδi j , (A3)

where G is the shear modulus, νd is the Poisson’s ratio for drained
condition and the εi j are the macroscopic strain components. In
particular, summing diagonal terms in eq. (A3), one has

σ = κdεkk − αp. (A4)

For vanishing pore pressure (p = 0), one obtains a form of Hooke’s
law where the drained elastic moduli appear as model parameters.

The fluid diffusion law is obtained from the conservation of fluid
mass, ṁ f + ρ0qk,k = 0, with a Darcy flow law qi = −χp,i for the
flux qi, giving rise to

ζ̇ = χp,kk, (A5)

where χ is the Darcy conductivity in units of length3 × time ×
mass−1. The Darcy conductivity is the ratio of the rock permeability
to the fluid viscosity χ = k/μ f , assumed to be constant in eq. (A5).
The permeability has the units k ∼ length2 and the pore fluid
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viscosity μ f ∼ mass × length−1 × time−1. Some more complicated
expressions of the pore fluid flow can include the effect of water
head (e.g. Bredehoeft 1967) and/or anisotropic diffusivity (Singh
et al. 2007).

A combination of constitutive relations (A2) and (A3) with the
flow law (A5) together with the conservation of momentum equa-
tion σi j, j = 0 gives rise to a set of coupled governing equations that
describes the evolution of the macroscopic displacement ui and the
pore pressure p of an isotropic and homogeneous porous medium.
The coupled governing equations are (e.g. Kumpel 1991)

G

(
1

1 − 2νd
uk,ki + ui,kk

)
= αp,i , (A6)

Q−1 ṗ = χp,kk − αu̇k,k, (A7)

where Q−1 is a compressibility. The parabolic eq. (A7) is subject to
the boundary condition p = 0 at the surface of the half-space. Pa-
rameters α and Q−1 can be expressed in terms of the Poisson’s ratio
for undrained conditions νu and the Skempton ratio B as follows:

α = 3(νu − νd )

(1 − 2νd )(1 + νu)B
(A8)

and

Q−1 = 3

2

1 − 2νu

1 + vu

α

G B
= α

κu B
. (A9)

The pore pressure p appears as a forcing term in the Navier’s equa-
tion (A6) and the matrix dilatation uk,k is a forcing term of the
diffusion equation (A7), giving rise to a fully coupled system.

A2 A bulk-viscosity formulation for poroelasticity

We now draw a parallel between the classic poroelastic theory and
the viscoelastic formalism presented in Section 3. We show that
the classic governing equations of poroelasticity can be written us-
ing the effective change in fluid density in the pore volume and
the elastic moduli for undrained condition to parameterize the pore
fluid flow and the associated elastic deformation. Our proposed for-
mulation can be viewed as a macroscopic formulation, where only
two additional parameters, a coupling coefficient β and a diffusivity
D, compared to linear elasticity, are required to describe the time-
dependent deformation. We show how these parameters relate to
the microscopic properties of the fluid-solid composite.

First, to simplify the poroelastic equations, we define the effective
coupling coefficient

β = Bα. (A10)

We define the dynamic variables as the effective change of pore
fluid density,

γ = B
m f − m f0

ρ0
. (A11)

By definition, the inelastic deformation γ is identically zero in
undrained condition. The linearized equation of state for the pore
fluid can now be written

γ = β

κd

(
p/B + σkk

3

)
. (A12)

Using eq. (A10) and the stress–strain relation (A3) for the composite
material we obtain the following relationship for the spherical part
of the stress tensor,
σkk

3
= κdεkk − βp/B. (A13)

Combining eqs (A10), (A12) and Biot’s stress–strain eq. (A4) we
obtain an alternative isotropic strain-rate relation using a new dy-
namic variable γ ,

σkk

3
= Kd

1 − β
(εkk − γ ) (A14)

Setting γ = 0, we obtain the following links between drained and
undrained moduli

κu = 1

1 − β
κd ,

λu = 2 G

3

1

1 − β

(
β + 3νd

1 − 2νd

)
,

νu = 3νd + β(1 − 2νd )

3 − β(1 − 2νd )
, (A15)

where κu, λu and νu , respectively, are the bulk modulus, the Lamé
parameter and the Poisson’s ratio, respectively, for undrained condi-
tion. Reciprocally, given undrained elastic moduli and an effective
coupling coefficient, one has

λd = (1 − β)λu − β
2 G

3
,

νd = β(1 + νu) − 3νu

2β(1 + νu) − 3
. (A16)

The second and third formulas in eqs (A15) and (A16) are sim-
ply derived from the first one using well-known relations between
isotropic elastic moduli (e.g. Malvern 1969). The isotropic stress in
the solid matrix can be written
σkk

3
= Ku (εkk − γ ) , (A17)

which is the counterpart of eq. (A13) that employs the effective
pore pressure instead of fluid content as a dynamic variable. Al-
ternatively, the coupling coefficient β can be retrieved from the
inferred values of drained and undrained moduli

β = 1 − Kd

Ku
= 3

νu − νd

(1 − 2νd )(1 + νu)
, (A18)

where the effective bulk modulus in undrained (initial) condition Ku

is greater than in drained condition, at full relaxation (Ku ≥ Kd ).
Similarly, drained and undrained conditions are associated with
effective drained νd and undrained νu Poisson’s ratios, respectively,
such that νu ≥ νd .

Combining eqs (A12) and (A17), we obtain an expression for the
pore pressure in terms of volume changes in the solid matrix and
the pore fluid,

αp = κu (γ − βεkk) . (A19)

Substituting eq. (A19) into Eq. (A3), we obtain the generalized
stress–strain relation (see also Segall 1985,1989; Rudnicki 1986)

σi j = λuεkkδi j + 2Gεi j − κuγ δi j , (A20)

where the effective stress in the poroelastic composite is parame-
terized with the fluid dilatancy γ unlike in Biot’s formulation that
employs the pore pressure. Notice that eq. (A20) can be written

σi j = Ci jkl

(
εkl − 1

3
γ δkl

)
(A21)

with the isotropic elastic stiffness tensor

Ci jkl = λu δi jδkl + G(δi jδkl + δikδ jl ), (A22)

which corresponds to our formulation for stress in a viscoelas-
tic material with bulk viscosity, whereby εkl is the total strain,
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εi
kl = γ δkl/3 is the inelastic strain and the isotropic elastic ten-

sor Cijkl is for undrained condition. Combining eqs (A5), (A17) and
(A19) the Darcy’s equation for fluid diffusion becomes

γ̇ = D

[
(1 − β) γ − β

σ

κu

]
, j j

(A23)

and the boundary condition p = 0 at the surface of the half-space
becomes

γ = β

1 − β

σ

κu
, x3 = 0, t > 0. (A24)

The diffusivity D, in units of length2 × time−1, a combination of the
microscopic parameters, is given by

D = κu
Bx

α
= Mx, (A25)

where M is the Biot’s modulus, the reciprocal of a storage coefficient
(Detournay & Cheng 1993; Wang 2000). The parabolic eq. (A23) is
compatible with the general form of a viscoelastic constitutive rela-
tion with work-hardening γ̇ = f (σi j , γ ). Poroelasticity is therefore
an example of bulk viscosity and in this framework the coupling
parameter β can be thought of as a work-hardening parameter.

Finally, using conservation of momentum with formulation (A20)
one obtains the coupled governing equations

G

[
1

1 − 2νu
uk,ki + ui,kk

]
= κuγ,i ,

γ̇ = D

[
(1 − β) γ − β

σ

κu

]
, j j

, (A26)

where only two additional model parameters are required to describe
a poroelastic rebound compared to linear elasticity. Formulations
(A6), (A7) and (A26) of the governing equations of poroelastic-
ity are equivalent. Coupled eqs (A6) and (A7) make use of the
pore pressure p and the drained elastic moduli to parameterize the
time-dependent deformation, as suggested by Biot (1941), whereas
eq. (A26) uses the effective fluid density change γ and the undrained
elastic moduli.

One corollary from the presented analysis is that mod-
els of a poroelastic rebound from geodetic measurements can
at best constrain two macroscopic parameters (e.g. our pro-
posed parameters D and β). Inferences on microscopic param-
eters α, B and χ can only be attained with additional in situ
measurements.
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