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Nomenclature
e Small distance

D Average fault slip

fij(q) Azimuthal dependence of a near-tip stress

field

T̂ Temperature scale

w Nondimensional width of the fault

slip zone

sij
0 Stress tensor prior to crack propagation

sij
1 Stress tensor after crack propagation

A Rupture area

c Specific heat

D(x) Fault slip

Dc Critical weakening displacement

Dm Maximum coseismic displacement

F Half-length of a developed part of a crack

on which friction has dropped to a

residual level sd
fi Body force

fs Coefficient of static friction

G Release rate of mechanical energy (per

unit crack length)

Gc Effective fracture energy (per unit crack

length)

ℑ Imaginary part of a complex argument

K Stress intensity factor

Kc Critical stress intensity factor, fracture

toughness

L Crack half-length or full length of a self-

healing pulse

L* Dynamic pulse length

Lc Critical crack length

M0 Scalar seismic moment

p Pore fluid pressure

Q Rate of heat generation

R Length of the process zone at the crack tip

r Distance to the crack tip
atise on Geophysics, Se
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ℜ Real part of a complex argument

R* Dynamic length of the process zone at the

crack tip

r0 Effective radius of the crack tip

S Minor axis of an elliptical cavity

Sf Boundary between elastically and

inelastically deforming materials

T Temperature

t Time

Ue Elastic strain energy

Uf Frictional losses

UG Fracture energy

ui Displacement vector

Ul Potential energy of remotely applied

stresses

Ur Radiated energy

Vl Limiting rupture velocity

Vp P-wave velocity

Vr Rupture velocity

Vs S-wave velocity

w Half-width of the fault slip zone

x, y, z(x1, x2, x3) Spatial coordinates

a Nondimensional factor

g Nondimensional factor

dij Kronecker delta function

DS1 Surface bounding a prospective

increment of the process zone at the crack

tip in the result of crack growth

DS2 Surface bounding a prospective

decrement of the process zone at the

crack tip in the result of crack growth

DUp Change in the potential energy

dW Work done by external forces

Ds Stress drop

eij Strain tensor

u Nondimensional temperature

k Thermal diffusivity
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m Shear modulus

n Poisson ratio

j Dummy variable

r Density

§ Complex variable

s0 Remotely applied stress

sd Residual stress on the developed part of a

crack

sij Stress tensor
sn Normal stress resolved on a fault

ss Static strength, or the yield stress in the

crack tip process zone

st Shear stress resolved on a fault

x Nondimensional along-crack coordinate

c Nondimensional half-length of the

developed part of a crack

f Analytic function of a complex argument
4.03.1 Introduction

Seismic and geodetic observations indicate that most earth-

quakes are a result of unstable localized shear on quasiplanar

faults (Dahlen and Tromp, 1998; Gutenberg and Richter,

1949). Because the thickness of earthquake rupture zones

that accommodate slip is much smaller than their characteristic

in-plane dimensions, it is natural to idealize earthquake rup-

tures as shear cracks. Development, propagation, and arrest of

shear cracks are subject of the earthquake fracture mechanics.

Unlike the engineering fracture mechanics that mainly con-

cerns itself with criteria and details of failure at the tip of tensile

cracks propagating through ‘intact’ solids (Freund, 1998; Lawn,

1993), the earthquake fracture mechanics must consider both

the inelastic yielding at the rupture fronts and the evolution of

friction (in general, rate- and slip-dependent) on the rest of the

slipping surface (see Chapters 4.04, 4.05 and 4.06). Although

a distinction is sometimes made between the crack models and

friction models of an earthquake source (e.g., Kanamori and

Brodsky, 2004), the two processes are intrinsically coupled and

should be considered jointly. Note that the shear crack propa-

gation does not necessarily imply creation of a new fault in

intact rocks, but also refers to slip on a preexisting (e.g., previ-

ously ruptured) interface. Mathematically, the crack growth in

unbroken media and on preexisting faults is very similar, pro-

vided that the slip surface is planar. While shear cracks in

unconfined intact media tend to propagate out of their initial

planes, such tendency is suppressed at high confining pressures

(e.g., Broberg, 1987; Lockner et al., 1992; Melin, 1986), and in

the succeeding text, we limit our attention to planar ruptures.

The redistribution of stress and strain due to a spatially

heterogeneous fault slip can be described using either kine-

matic (displacement-controlled boundary conditions) or

dynamic (stress-controlled boundary conditions) approach.

Kinematic (e.g., dislocation) models are useful if the fault slip

is known or can be inferred with sufficient accuracy, for

instance, from seismological, geodetic, or geologic observa-

tions (Bilby and Eshelby, 1968; Okada, 1985; Savage, 1998;

Steketee, 1958; Vvedenskaya, 1959). Dynamic (fracture

mechanics) models potentially have a greater predictive

power, as they solve for, rather than stipulate, the details of

fault slip for given initial stress conditions (Andrews, 1976a;

Ben-Zion and Rice, 1997; Burridge and Halliday, 1971; Day,

1982; Freund, 1979; Madariaga, 1976). The time-dependent

boundary conditions on the fault are usually deduced by using

constitutive laws that relate kinetic friction to the magnitude

and velocity of fault slip, preseismic stress, temperature, and

other state variables pertinent to the evolution of stress on a
slipping interface. The kinematic and dynamic approaches give

rise to identical results for the same slip distribution. Disloca-

tion models are well understood and are widely employed in

inversions of seismic and geodetic data for the rupture geom-

etry and spatiotemporal details of slip (e.g., Delouis et al.,

2002; Fialko et al., 2005; Hartzell and Heaton, 1983). Fracture

mechanics models are intrinsically more complex and less

constrained but nonetheless increasingly used to interpret

high-quality near-field seismic data (Aochi and Madariaga,

2003; Oglesby and Archuleta, 2001; Peyrat et al., 2001). This

chapter will focus on the fracture mechanics approach, and

kinematic models will not be discussed. Consequently, the

term ‘dynamic’ will be used to describe time-dependent aspects

of rupture for which inertial effects are important, that is, in a

meaning that is opposite to ‘static’ (rather than ‘kinematic’)

descriptions. There exist a number of excellent texts covering

the fundamentals of fracture mechanics, with applications to

the earthquake source seismology, including Cherepanov

(1979), Rice (1980), Rudnicki (1980), Li (1987), Segall

(1991), Scholz (2002), and Ben-Zion (2003), among others.

This chapter will give an overview of basic aspects of fracture

mechanics and some recent theoretical developments.
4.03.2 Linear Elastic Fracture Mechanics

It is well known that structural flaws and discontinuities such as

cracks, voids, and inclusions of dissimilar materials give rise to

local stress perturbations that may significantly amplify the aver-

age applied stress. A classic example is an elliptical cavity in an

elastic plate subject to a uniform extension (Inglis, 1913; Lawn,

1993). Provided that the major andminor axes of the cavity are L

and S, respectively, the orientation of the remote tensile stress

s0 is orthogonal to the major axis, and the cavity walls are stress-

free, the component of stress parallel to the remote tension

assumes a value of s0 1 + 2L=Sð Þ¼ s0 1 + 2
ffiffiffiffiffiffiffi
L=r

p� �
at the cavity

tip, where r¼S2/L is the radius of the cavity tip. For an extreme

case of a sharp slit, S/L!0, the stress at the tip scales as

s0
ffiffiffi
L

p
=
ffiffi
r

p
, i.e., becomes unbounded for however small remote

loading s0. Full analytic solutions for the stress distribution

around sharp cracks (see Section 4.03.4; also, Freund, 1998;

Lawn, 1993; Rice, 1968a) indicate that the stress field indeed

has a characteristic square root singularity

sijjr!0 � Kffiffiffiffiffiffiffiffi
2pr

p fij #ð Þ [1]

where K �O Ds
ffiffiffi
L

p� �
is the stress intensity factor that depends

on the crack geometry and loading configuration, Ds being the
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difference between the far-field stress and stress resolved on the

crack walls (hereafter referred to as the stress drop; for an

empty crack under remote tension, Ds¼s0), r is now the

distance to the crack tip measured from the crack exterior,

and fij(#) is a function characterizing the azimuthal depen-

dence of the near-tip stress field (Lawn, 1993; Rice, 1980).

Because the governing equations and mathematical structure

of solutions are identical for the tensile (mode I), in-plane

shear (mode II), and antiplane shear (mode III) cracks (see

Section 4.03.4), we will use examples of both tensile and shear

cracks to highlight universal features of and important differ-

ences between the shear and tensile rupture modes. Such a

comparison is instructive because many concepts of fracture

mechanics have been developed for tensile failure that is most

common in engineering applications and subsequently bor-

rowed for seismologic applications that mostly deal with shear

failure. Significant differences in the ambient conditions war-

rant a careful evaluation of the range of applicabilities of basic

assumptions behind the fracture mechanics models (e.g.,

Rubin, 1993).
4.03.2.1 Singular Crack Models

The square root singularity in the stress field (eqn [1]) is a

common feature of all crack models assuming a constant stress

drop and elastic deformation of the ambient solid, regardless

of the mode of failure, and rupture velocity (as long as the

latter remains subsonic, see Section 4.03.5). While this stress

singularity is admissible on thermodynamic grounds (in par-

ticular, it is integrable, so that the elastic strain energy is finite

in any closed volume containing the crack tip), it is clearly

unrealistic as no material is able to support infinite stresses.

Theoretical arguments supported by a large number of obser-

vations suggest that the assumption of a perfect brittle behavior

(i.e., elastic deformation of the unbroken host up to the onset

of fracture) is violated in some zone around the crack tip

(Atkinson, 1987; Irwin, 1957; Lawn, 1993) (Figure 1).

In this zone (commonly referred to as the process or break-

down zone), inelastic yielding prevents stress increases in

excess of a certain peak value ss that presumably represents

the microscopic strength of a material. The size of the process

zone r0 that corresponds to equilibrium (i.e., a crack on a verge

of propagating) may be interpreted as the effective radius of the

crack tip. Outside of the process zone (at distances r> r0),
Mode III

r0

s0

ss

s

r

Mode II

Figure 1 An idealized view of stress variations and yielding at the crack
tip. r0 is the characteristic dimension of a inelastic zone in which stresses
exceed the yield threshold ss. Solid curve shows the theoretically
predicted stress increase with a characteristic 1=

ffiffi
r

p
singularity. The

theoretical prediction breaks down at distances r< r0 but may be
adequate for r> r0.
stresses are below the failure envelope, and the material

deforms elastically. If the size of the equilibrium process zone

is negligible compared to the crack length, as well as any other

characteristic dimensions (e.g., those of an encompassing

body), a condition termed small-scale yielding (Rice, 1968a)

is achieved, such that the stress and strain fields in the intact

material are not appreciably different from those predicted in

the absence of a process zone. This is the realm of the linear

elastic fracture mechanics (LEFM). According to LEFM, the

near-tip (r0< r�L) stress field is completely specified by the

scalar multiplier on the singular stress field, the stress intensity

factor K (eqn [1]), which can be found by solving an elastic

problem for a prescribed crack geometry and loading condi-

tions. The crack propagation occurs when the stress intensity

factor exceeds a critical value, K>Kc. The critical stress intensity

factor, or the fracture toughness Kc, is believed to be a material

property, independent of the crack length and loading config-

uration (although fracture properties may vary for different

modes of failure, e.g., KIc and KIIc, similar to differences

between macroscopic tensile and shear strengths). To the

extent that the microscopic yield strength ss and the effective

equilibrium curvature of the crack tip, r0, may be deemed

physical properties, the fracture toughness Kc may be inter-

preted as a product ss
ffiffiffiffi
r0

p ¼ const.

The critical stress intensity factor is a local fracture criterion,

as it quantifies the magnitude of the near-tip stress field on the

verge of failure. However, it can be readily related to global

parameters characterizing changes in the elastic strain energy

@Ue and potential energy of applied stresses @Ul in the entire

body due to a crack extension @L, such as the energy release rate

Gc¼�(@Ue+@Ul)/@L,

Gc ¼ aK2
c

2m
[2]

where m is the shear modulus of an intact material and a
assumes values of (1�n) and unity for mode II and mode III

loading, respectively (Irwin, 1957). For ideally brittle mate-

rials, the energy release rate may be in turn associated with

the specific surface energy spent on breaking the intermolecu-

lar bonds (Griffith, 1920; Lawn, 1993). Further analysis of the

breakdown process at the crack tip requires explicit consider-

ation of the details of stress concentration in the tip region.
4.03.2.2 Planar Breakdown Zone Models

A simple yet powerful extension of the LEFM formulation is the

displacement-weakening model, which postulates that (i) the

breakdown process is confined to the crack plane, (ii) inelastic

deformation begins when stresses at the crack tip reach some

critical level ss, and (iii) yielding is complete when the crack

wall displacement exceeds some critical value Dc (Barenblatt,

1959; Dugdale, 1960; Leonov and Panasyuk, 1959). In case of

tensile (mode I) cracks, ss represents the local tensile strength

in the breakdown zone, and Dc is the critical opening displace-

ment beyond which there is no cohesion between the crack

walls. In case of shear (modes II and III) cracks (Figure 2), ss
represents either the shear strength (for ruptures propagating

through an intact solid) or the peak static friction (for ruptures

propagating along a preexisting fault), and Dc is the
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Figure 2 Schematic view of a shear rupture expanding at a constant
velocity V. Conditions corresponding to the two-dimensional mode II and
mode III loading are approximately satisfied at the rupture fronts
orthogonal and parallel to the local slip vector, respectively. For a
cracklike rupture, slip occurs on the entire area bounded by the rupture
front. For a pulse-like rupture, slip is confined to an area between the
rupture front (solid line) and a trailing healing front (dashed line).

DDC

s (D)

ss

sd

s0

Figure 3 Possible dependence of the breakdown stress s on the crack
wall displacement D within the crack tip process zone. Solid line: a
schematic representation of the experimentally measured displacement-
weakening relations for rocks (Hashida et al., 1993; Li, 1987). Dashed
and dotted lines: approximations of the displacement-weakening relation
assuming no dependence of the yield stress on D (dotted line) and linear
weakening (dashed line). The area beneath all curves is the same and
equals to the fracture energy Gc¼assDc, where a is a numerical factor
that depends on the particular form of the displacement-weakening
relationship. For example, a¼1 for the constant yield stress model, and
a¼0.5 for the linear weakening model.
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slip-weakening distance at which a transition to the kinetic

friction is complete (Ida, 1972; Palmer and Rice, 1973).

Under these assumptions, the fracture energy may be defined

as work required to evolve stresses acting on the crack plane

from ss to the residual value sd and is of the order of (ss�sd)
Dc, depending on the details of the displacement-weakening

relation (Figure 3). For an ideal brittle fracture that involves

severing of intermolecular bonds ahead of the crack tip, ss may

approach theoretical strength, m/10�O(109–1010 Pa), and Dc

may be of the order of the crystal lattice spacing (10�10–

10�9 m), yielding Gc�O(1 J m�2). This is close to the experi-

mentally measured fracture energies of highly brittle crystals

and glasses (Griffith, 1920; Lawn, 1993). At the same time,

laboratory measurements of polycrystalline aggregates (such as
rocks, ceramics, and metals) reveal much higher fracture ener-

gies ranging from 10–102 J m�2 (for tensile failure) to

103 J m�2 (for shear failure), presumably reflecting depen-

dence of the effective Dc on the material microstructure (e.g.,

texture, grain size, and distribution of inhomogeneities) and

the breakdown mechanism (e.g., grain unlocking, ligamentary

bridging, plasticity, off-plane yielding, or some other

deviations from the ideally brittle behavior) (Fialko and

Rubin, 1997; Hashida et al., 1993; Li, 1987). Indirect infer-

ences of fracture energies associated with in situ propagation of

tensile cracks such as man-made hydrofractures and magmatic

dikes (Rubin, 1993) and earthquake ruptures (Abercrombie

and Rice, 2005; Chester et al., 2005; Husseini, 1977; Wilson

et al., 2004) reveal significantly larger fracture energies com-

pared with those measured in the laboratory experiments. This

disagreement may be indicative of some scaling of fracture

energy with the rupture size or rupture history and perhaps

the significance of dynamic effects on cracking and damage

that are not captured in laboratory tests. In the context of an

in-plane breakdown zone model, the inferred scale depen-

dence of fracture energy is usually interpreted in terms of

increases in the effective weakening displacement Dc with the

rupture length L. Possible mechanisms of scale dependence of

Dc include continued degradation of the dynamic fault

strength with slip (e.g., due to thermal or rheological weaken-

ing) (Abercrombie and Rice, 2005; Brodsky and Kanamori,

2001; Di Toro et al., 2004; Lachenbruch, 1980) or fractal

nature of the fault roughness (e.g., Barton, 1971; Power and

Tullis, 1995). It should be pointed out that the common

interpretation of the scale dependence of Gc in terms of the

scale dependence of Dc may be too simplistic, as the assump-

tion of a thin process zone unlikely holds under in situ stress

conditions for either tensile or shear cracks, as suggested by

both theoretical arguments (Fialko and Rubin, 1997; Poliakov

et al., 2002; Rice et al., 2005; Rubin, 1993) and observations

(Chester et al., 2005; Fialko, 2004b; Fialko et al., 2002;

Manighetti et al., 2001; Wilson et al., 2004). A more detailed

quantitative treatment of the energetics of fracture and break-

down processes is presented in Section 4.03.7.

Nonsingular crack models postulating a thin in-plane pro-

cess zone are mathematically appealing because they allow one

to treat the fracture problem as an elastic one by removing

nonlinearities associated with failure from the governing

equations and incorporating them into boundary conditions

on a crack plane. For example, elastic solutions can be readily

used to determine the size of the process zone at the crack tip.

Dimensional arguments indicate that the strain associated with

the material breakdown is of the order of Dc/R, where R is the

characteristic size of the breakdown zone. This strain must be

of the order of the elastic strain associated with the strength

drop, (ss�sd)/m, implying

R¼ g
m

ss�sd
Dc [3]

where g is a nondimensional factor of the order of unity that

depends on the displacement-weakening relation (e.g., as

shown in Figure 3). The small-scale yielding condition

requires R�L. Parallels may be drawn between the size of

the breakdown zone R in the displacement-weakening model

and the critical radius of the crack tip r0 in the LEFM model
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(Figure 1; also, see Khazan and Fialko, 1995), in that both

parameters demarcate the near-tip region that undergoes fail-

ure from the rest of the material in which the deformation is

essentially elastic. On a larger scale, the assumption of elasticity

postulates a direct proportionality between the stress drop Ds
and the average fault slip D:

D�Ds
m
L [4]

where L is the characteristic fault dimension (for isometric

ruptures) or the least dimension of the slip area (in case of

ruptures having irregular shape or high aspect ratios). The

assumption of a predominantly elastic behavior of the Earth’s

crust appears to be in a good agreement with seismic (Aki and

Richards, 1980; Gutenberg and Richter, 1949; Vvedenskaya,

1959) and geodetic (Fialko, 2004b; Reid, 1910) observations

of the instantaneous response of crustal rocks to major earth-

quakes. The brittle–elastic model gives rise to several funda-

mental scaling relationships used in earthquake seismology.

For example, the scalar seismic momentM0 is a measure of the

earthquake size:

M0 ¼DAm [5]

where A is the rupture area (Aki, 1967; Kostrov, 1974; also, see

Chapter 4.02). The seismic moment is related to a coseismic

change in the potential energy of elastic deformation DUe (e.g.,

Kanamori, 2004),

DUe ¼Ds
2m

M0 [6]

For isometric ruptures, A�L2, and by combining eqns [4]

and [5], one obtains a well-known scaling between the scalar

seismic moment, the rupture size, and the stress drop (e.g.,

Dahlen and Tromp, 1998; Kanamori and Anderson, 1975,

Chapter 4.02):

M0 �DsL3 [7]
4.03.3 The Governing Equations

Consider a three-dimensional medium which points are

uniquely characterized by Cartesian coordinates xi (i¼1, 2, 3)

in some reference state prior to the fault-induced deformation.

Fault slip gives rise to a displacement field ui. The displace-

ments ui are in general continuous (differentiable), except

across the slipped part of the fault. The strain tensor is related

to the displacement gradients as follows:

Eij ¼ 1

2
ui, j + uj, i
� �

[8]

where the comma operator as usual denotes differentiation

with respect to spatial coordinates, a,i¼@a/@xi. Equation [8]

assumes that strains are small (Eij�1), so that terms that are

quadratic in displacement gradients can be safely neglected

(e.g., Landau and Lifshitz, 1986; Malvern, 1969). The assump-

tion of an infinitesimal strain implies no difference between

the material (Lagrangian) and spatial (Eulerian) reference

frames. Typical strains associated with earthquake ruptures
are of the order of 10�4–10�5 (Kanamori and Anderson,

1975; Scholz, 2002) so that the infinitesimal strain approxi-

mation is likely justified. For sufficiently small strain changes

(with respect to some reference state), laboratory data and

theoretical arguments suggest a linear dependence of strain

perturbation on the causal stress change. For an isotropic

homogeneous elastic material, the corresponding relationship

between stresses and strains is given by Hooke’s law (e.g.,

Landau and Lifshitz, 1986; Timoshenko and Goodier, 1970):

Eij ¼ 1

2 1+ nð Þm 1 + nð Þsij� ndijskk
� �

[9]

where m and n are the shear modulus and Poisson’s ratio,

respectively, dij is the Kronecker delta function, and repeating

indexes imply summation.

Conservation of a linear momentum in continuous media

gives rise to the Navier–Cauchy equations of equilibrium

(Malvern, 1969):

sij, j + fi ¼ @2ui
@t2

[10]

where fi is the body force (e.g., due to gravity) and t is time. Due

to the linearity of equilibrium equations [10], it is possible to

represent the full stress tensor as a superposition of some

background (e.g., lithostatic and regional tectonic) stress and

a perturbation due to fault slip, such that the latter satisfies a

homogeneous case of eqns [10]. Unless noted otherwise, in the

succeeding text, we assume that the stress tensor sij denotes
only stress perturbations due to fault displacements. For con-

venience, the indicial nomenclature for spatial coordinates (x1,

x2, x3) will be used interchangeably with the traditional com-

ponent notation (x, y, z) throughout the rest of the text.

In order to close the problem formulation, some constitu-

tive law relating slip D, slip velocity @D/@t, resolved shear and

normal stresses, st and sn, pore fluid pressure p, temperature T,

etc. needs to be prescribed on surfaces that violate assumptions

of continuity, for example, faults and cracks. Examples are the

Mohr–Coulomb (Byerlee, 1978) and rate-and-state friction

(see Chapter 4.04), flash melting (Molinari et al., 1999; Rice,

2006), thermal pressurization (Andrews, 2002; Segall and Rice,

1995; Sibson, 1973), viscous rheology (Fialko and Khazan,

2005), etc.
4.03.4 Exact Solutions for Quasistatic
Two-Dimensional Planar Cracks

In case of two-dimensional deformation (e.g., plane or anti-

plane strain or plane stress), elastic solutions for stresses and

displacements can be generally expressed in terms of two ana-

lytic functions of a complex variable z¼x+ iy (Kolosoff, 1909;

Muskhelishvili, 1953). For simplicity, here, we consider load-

ing that is symmetric about the center of the crack x¼0. In this

case, both stresses sij and displacements ui can be expressed

through a single analytic function f(z) (Westergaard, 1939).

First, we demonstrate that the mathematical structure of solu-

tions for stresses and displacements in the crack plane (y¼0) is

identical for tensile (mode I), in-plane shear (mode II), and

antiplane shear (mode III) cracks. In particular, for tensile
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(mode I) cracks, stresses and displacements can be found from

f(z) as (e.g., Khazan and Fialko, 2001; Muskhelishvili, 1953)

syy ¼ 2 ℜf0 + yJf00ð Þ [11]

sxy ¼�2yℜf00 [12]

uy ¼ 1

m
2 1� nð ÞJf� yℜf0ð Þ [13]

where ℜ and ℑ denote the real and imaginary parts of a

complex argument. For plane strain shear (mode II) cracks,

conditions of symmetry imply that syy¼0 on the crack plane

(y¼0), and the corresponding equilibrium equations are

sxy ¼�2 Jf0 + yℜf00ð Þ [14]

ux ¼ 1

m
2 1� nð Þℜf + Jfð Þ [15]

Upon making a substitution f¼� if1, one can see that the

unknown shear stress sxy and displacement ux on the crack

plane may be expressed through a new function f1 in the

same manner as the normal stress syy and displacement uy are

expressed through f (eqns [11] and [13]),

sxy ¼ 2 ℜf0
1� yJf00

1

� �
[16]

ux ¼ 1

m
2 1� nð ÞJf1� yℜf0

1

� �
[17]

For antiplane shear (mode III) cracks, expressions for the

relevant stress and displacement components are

syz ¼�Jf0 [18]

uz ¼ 1

m
ℜf [19]

Upon making a substitution f¼�2if2, one can see that

the dependence of the unknown quantities syz and (1�n)uz on
the analytic function f2 is analogous to the dependence of sxy
and ux on f1 obtained for the in-plane shear crack for y¼0

(eqns [16]–[17]). This analogy mandates that the mathemati-

cal structure of solutions for the tensile, in-plane, and anti-

plane components of stress for the corresponding crack modes

is identical, provided that the boundary conditions on the

crack plane (the along-crack distribution of the driving stress

and the displacement-weakening relationship) are analogous.

Solutions for the crack wall displacements are also identical for

different modes, although expressions for displacements for

mode III cracks will differ from those for mode I and mode II

cracks by a factor of (1�n). Hence, we focus on a particular

case of an in-pane shear (mode II) crack. The boundary

conditions for the potential function f1 are as follows:

ℜf0
1 ¼ s xð Þ=2 for xj j< L [20]

Jf0
1 ¼ 0 for xj j> L [21]

f0
1 !s0=2 for zj j!1 [22]

where s(x) is the distribution of shear stress on the crack surface

and s0 is the applied shear stress at infinity (hereafter referred to

as prestress). The boundary condition [21] postulates no slip

beyond the rupture front (see eqn [17]). An explicit solution for

the function f1 that is analytic in the upper half plane and

satisfies the boundary conditions [20]–[22] is given by the
Keldysh–Sedov formula (Gakhov, 1966; Khazan and Fialko,

1995, 2001; Muskhelishvili, 1953):

f0
1 zð Þ¼ 1

2pi
z+ L
z�L

	 
1=2ðL
�L

dx
x�L

x+ L

	 
1=2 s xð Þ
x� z

+
s0
2

z+ L
z�L

	 
1=2

+
C

z2�L2
� �1=2 [23]

where C is an arbitrary constant. From eqn [16], an asymptotic

behavior of f1
0 at infinity is

lim
zj j!1

f0
1 zð Þ¼� 1

2pi zj j
ðL
�L

dx
x�L

x + L

	 
1=2

s xð Þ + s0
2

+
Ls0 +C

zj j
[24]

One can readily determine the unknown constant C from

eqn [16] by satisfying the boundary condition [22]. The final

expression for the derivative of analytic function f1 is

f0
1 zð Þ¼ 1

2pi
z+ L
z�L

	 
1=2ðL
�L

dx
x�L

x+ L

	 
1=2 s xð Þ
x� z

+
s0
2

z+ L
z�L

	 
1=2

+
1

2p z2�L2
� �1=2

ðL
�L

dx
s xð Þ�s0

L2�x2
� �1=2 [25]

For any physically admissible failure model, the maxi-

mum stress within the slipped region is bounded by the

yield strength, sxy<ss for jxj<L. Furthermore, it is reason-

able to expect that sxy!ss as jxj!L. The shear stress sxy(z)
in the ‘locked’ region ahead of the rupture front is then

given by the real part of f1 (see eqn [16]). Sufficiently close

to the crack tip (i.e., for z¼L+ E, such that ℑE¼0, 0<E�L),

we obtain

sxy L + Eð Þ¼ 1

p
L

2E

	 
1=2ðL
�L

dx
s xð Þ�s0

L2�x2
� �1=2 +ss +O E1=2

� �
[26]

The first term on the right-hand side of eqn [26] is of the

order of 1=
ffiffi
E

p
and represents the LEFM approximation (see

Section 4.03.2). By comparing eqns [26] and [1], one can

formally introduce the stress intensity factor,

K ¼ 1

p
L

2E

	 
1=2ðL
�L

dx
s xð Þ�s0

L2�x2
� �1=2 [27]

which exhibits the expected scaling K∝Ds
ffiffiffi
L

p
. Physically plau-

sible crack models require that stresses are finite everywhere.

From eqns [26] and [27], the requirement of the absence of a

stress singularity is met if (and only if )ðL
�L

dx
s xð Þ�s0

L2�x2
� �1=2 ¼ 0 [28]

Any realistic distribution of the driving stress resolved the

crack surface must satisfy the integral constraint [28]. This

implies that the driving stress (s(x)�s0) must change sign

along the crack (jxj<L). For example, the stress drop

(s(x)<s0) in the central part of the crack needs to be balanced

by the material strength or the high transient friction

(ss�s(x)>s0) within the process zone.

Displacements of the crack walls ux(x) corresponding to the

instantaneous shear stress s(x) can be found by differentiating

equation [17] for y¼0,
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dux
dx

¼ 2 1� nð Þ
m

Jf0
1 [29]

and making use of expression [26] to integrate the resulting

differential equation [29] with the initial condition ux(�L)¼0.

The respective solution is

D xð Þ¼ 2 1� nð Þ
pm

ðL
x

L2�x2
� �1=2

dx
ðL
�L

s tð Þdt
L2� t2ð Þ1=2 t�xð Þ

[30]

where D(x)¼2ux(x) is slip between the crack walls. The prob-

lem is closed by specifying a constitutive relationship between

slip D and kinetic friction s. In general, such a relationship

may include dependence of friction on slip rate, slip history,

local temperature, and other state variables (Dieterich, 1979;

Blanpied et al., 1995; Ruina, 1983, Chapters 4.04, 4.05 and

4.06). To gain a further analytic insight, here, we consider a

simple slip-weakening relationship

s xð Þ¼ ss forD xð Þ<Dc

s xð Þ¼ sd forD xð Þ>Dc

[31]

where ss is the yield strength or static friction in the process

zone, sd is the residual kinetic friction on the developed part of

the crack, and Dc is the critical slip-weakening displacement

corresponding to a transition from ss to sd (see Figure 3). The
size of the process zone, R, is defined by a requirement that the

fault slip is subcritical within the process zone, D(jFj)¼Dc,

where F¼L�R is the length of the developed part of a crack

on which the friction has dropped to a residual value sd.
Figure 4 illustrates the geometry of the problem. In case of a

piece-wise constant distribution of shear stress along the crack

s(x) given by eqn [32], as shown in Figure 4, expressions [28]

and [30] can be readily integrated to provide closed form

analytic solutions. In particular, integration of expression [28]

allows one to determine a relative size of the process zone with

respect to the crack half-length:

R

L
¼ 2sin2 p

4

s0�sd
ss�sd

	 

[32]

Evaluation of integral [30] gives rise to

D xð Þ¼ 2 1� nð ÞL
pm

s0�sdð ÞI w,cð Þ [33]

where w¼x/L and c¼F/L are the nondimensional along-crack

coordinate and the half-length of the developed part of the

crack, respectively, and function I is given by the following

equation:
Shear stress s (x)

Vr

y

Process
zone

R F

L

Figure 4 A two-dimensional plain strain shear crack in an infinite elastic med
the crack is assumed to have a constant residual shear stress sd. At the crac
I U, Vð Þ¼ V +Uð Þ log 1 +UV +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�U2ð Þ 1�V2ð Þp
V +U

�����
�����

+ V�Uð Þ log 1�UV +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�U2ð Þ 1�V2ð Þp

V�U

�����
�����
[34]

At the base of the process zone, w¼c, eqn [33] reduces to

D Fð Þ¼4 1� nð Þ
pm

F ss�sdð Þ log 1

c
[35]

For a crack that is on the verge of propagating, slip at the

base of the process zone (x¼F) equals the critical weakening

displacement Dc. A simple dimensional analysis of eqn [35]

then reveals a characteristic length scale Lc:

Lc ¼ pDc

4 1� nð Þ
m

ss�sd
[36]

Using eqn [36], eqn [35] may be written

Lc
F
¼ log

L

F
[37]

A further rearrangement of eqn [37] yields an explicit

expression for the length of the process zone R:

R¼ F exp
Lc
F

	 

�1

	 

[38]

It is instructive to consider two end-member cases, the long

crack limit, F�Lc, and the microcrack limit, F�Lc. In case of

sufficiently long cracks (F�Lc), an asymptotic expansion of

eqn [38] (i.e., exp(x)�1+x for x�1) indicates that the process

zone length is independent of the crack length and equals Lc.

This is the realm of small-scale yielding, R¼const¼Lc�L,

F�L, in which cracks propagate by preserving the structure of

the near-tip stress field. By comparing eqns [37] and [3], one

can see that the general scaling relationship suggested by

dimensional arguments holds; for the case of a constant break-

down stress ss within the process zone, the nondimensional

coefficient g in estimate [3] equals p/4(1�n). Exact analytic
solutions assuming small-scale yielding give rise to g¼p/2
(1�n) for a linear slip-weakening relationship (see Figure 3)

(e.g., Chen and Knopoff, 1986) and g¼9p/16(1�n) for a

breakdown stress that linearly decreases with distance away

from the crack tip (Palmer and Rice, 1973). In the microcrack

limit, the length of the equilibrium process zone is not con-

stant even if the critical weakening displacement Dc and the

strength drop (ss�sd) are intrinsic material properties
sd

ss

s0

Slip D(x,t) Vr

Slipping Locked

x

x

ium. The imposed shear stress at the infinity is s0. The developed part of
k tips, there are process zones having length R and shear stress ss.
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independent of the ambient stress and loading conditions. In

particular, R is predicted to exponentially increase as the length

of the stress drop region F decreases. Equations [38] and [32]

suggest that the presence of sufficiently short cracks (such that

F<Lc) has no effect on the macroscopic ‘strength’ of rocks. In

particular, the prestress required for the crack extension must

approach the static yield limit, s0!ss, and the size of the yield

zone increases without bound, L�R!1, for F!0 (see

eqn [38]).

Quantitative estimates of the critical length scale Lc are not

straightforward because it is not clear whether the slip-weakening

distanceDc is indeed a scale-independent material constant (e.g.,

Barton, 1971; Ohnaka, 2003; Rudnicki, 1980). Laboratory mea-

surements of the evolution of friction on smooth slip interfaces

indicate that Dc may be of the order of 10�5 m (Dieterich, 1979;

Li, 1987; Marone, 1998). For m�1010 Pa and (ss�sd)�107–

108 Pa (likely spanning the range of strength drops for both

‘strong’ and ‘weak’ faults), from eqn [36], one obtains

Lc�10�3–10�1 m, negligible compared to the characteristic

dimension of the smallest recorded earthquakes but comparable

to the typical sample size used in the laboratory experiments. An

upper bound on Lc may be obtained from estimates of the

effective fracture energies of earthquake ruptures. For large

(moment magnitude >6) earthquakes, the seismically inferred

fracture energies Gc¼(ss�sd)Dc are of the order of 106–

107 J m�2 (Abercrombie and Rice, 2005; Beroza and Spudich,

1988; Husseini, 1977; Ida, 1972), rendering the effective

Dc�0.01–1 m. Assuming that the seismically inferred values of

Dc are applicable to quasistatic cracks, eqn [36] suggests that a

transition from ‘micro’ to ‘macro’ rupture regimes occurs at

length scales of the order of 1–103 m.

The magnitude of a prestress required to initiate the crack

propagation can be found by combining eqns [37] and [32]:

ss�s0
ss�sd

¼ 2

p
arcsin exp �Lc

F

	 

[39]

In the microcrack or large-scale yielding limit, F�Lc,

eqn [39] predicts s0�ss, that is, the crack propagation requires

ambient stress comparable to the peak static strength of crustal

rocks, as discussed in the preceding text. In the small-scale

yielding limit, F�Lc, eqn [39] gives rise to a well-known

inverse proportionality between the stress drop (s0�sd) and

the square root of the crack length F (e.g., Cowie and Scholz,

1992; Kostrov, 1970; Rice, 1968a):

s0 ¼ sd +
2

p
ss�sdð Þ 2Lc

F

	 
1=2

[40]

It follows from eqn [40] that for sufficiently large ruptures,

the background tectonic stress required for the rupture propa-

gation does not need to appreciably exceed the residual friction

on the slipped surface sd. That is, the stress drop associated

with the rupture propagation, (s0�sd), may be much smaller

than the strength drop, (ss�sd), provided that the rupture size

significantly exceeds the critical nucleation size Lc. This state-

ment forms the basis of the ‘statically strong, but dynamically

weak’ fault theory (Lapusta and Rice, 2004). According to this

theory, major crustal faults may operate at relatively low driv-

ing stresses (e.g., sufficient to explain the so-called heat flow

paradox of the San Andreas fault (Brune et al., 1969;
Lachenbruch, 1980)), even if the peak failure stress required

for the onset of dynamic weakening is consistent with Byerlee’s

law and hydrostatic pore pressures (Byerlee, 1978; Marone,

1998; Scholz, 2002), provided that sd�ss. If so, earthquake
ruptures must nucleate in areas where s0 approaches ss (due to
either locally increased ambient stress or decreased static

strength, e.g., due to high pore fluid pressures) and propagate

into areas of relatively low ambient stress. Under this scenario,

the overall fault operation must be such that the average stress

drop Ds remains relatively small (of the order of 0.1–10 MPa)

and essentially independent of the rupture size (Abercrombie,

1995; Kanamori and Anderson, 1975; Scholz, 2002). Because

the overall seismic moment release is dominated by the largest

events, the implication from the Lapusta and Rice (2004)

model is that the Earth crust is not able to support high

deviatoric stresses in the vicinity of large active faults. Phenom-

enologically, this is consistent with the ‘weak fault’ theory

maintaining that the average shear stress s0 resolved on mature

faults is of the order of the earthquake stress drops (i.e., up to a

few tens of megapascals) and is considerably less than pre-

dictions based on Byerlee’s law (a few hundreds of megapas-

cals) (e.g., Kanamori and Heaton, 2000). The ‘statically strong

but dynamically weak’ fault theory seeks to reconcile labora-

tory results from rock friction experiments with seismic obser-

vations. Neither the peak shear stress ss nor the residual

dynamic friction sd can be estimated from seismic data. Both

parameters are likely scale-dependent; for example, the peak

shear stress ss may vary from gigapascals on the scale of micro-

asperities and gouge particles (10�6 m) to the Mohr–Coulomb

stress fs(sn�p), where fs is the static coefficient of friction, sn is
the fault-normal stress, and p is the pore fluid pressure, on the

scale of centimeters to meters (i.e., consistent with laboratory

data), to values that may be lower still on scales of hundreds of

meters to kilometers. Similarly, the residual dynamic friction

may depend on the amount of slip (and the rupture size) (e.g.,

Abercrombie and Rice, 2005; Brown and Fialko, 2012;

Kanamori and Heaton, 2000; Rice, 2006); implications from

such behavior are further discussed in Section 4.03.7.
4.03.5 Shear Cracks Governed by Rate-and-State
Friction Laws

More sophisticated models of earthquake faults combine elas-

ticity with empirical friction laws that relate shear stress to

normal stress and slip velocity and slip history. In particular,

the rate-and-state phenomenology (Dieterich, 1979; Ruina,

1983) provides a system of differential equations that can be

used to define shear stress (e.g., s in eqn [30]) on a fault plane

without oversimplifying assumptions, such as eqns [32]. The

resulting system of equations precludes analytic solutions, and

numerical experiments are required to investigate the evolu-

tion of stress and slip rate on a fault. In the framework of rate-

and-state friction, material properties that govern fault slip are

a (rate parameter), b (state parameter), and the characteristic

evolution distance analogous to the critical weakening dis-

placement Dc discussed in the preceding text (e.g., Figure 3;

also, see Chapter 4.04).

In particular, numerical simulations performed by

Dieterich (1992) revealed that slip instabilities on a
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rate-and-state fault require a nucleation zone having a charac-

teristic size greater than Lb¼Dcm/[(1�n)bsn], where sn is the

fault-normal stress (see Figure 4 in Chapter 4.04). The exis-

tence of a minimum nucleation length scale was previously

suggested based on a conditional stability of a spring-box slider

(e.g., Gu et al., 1984; Rice, 1993; Ruina, 1983). However, the

spring-box slider model predicts that the minimum nucleation

length should scale as (b�a)�1, rather than b�1, as reported by

Dieterich (1992). This discrepancy may stem from the fact that

slip on a deformable fault is intrinsically a higher dimensional

(2-D or 3-D) problem compared with a (1-D) problem of

motion of a spring-box slider.

Rubin and Ampuero (2005) showed that Lb is in fact the

minimum nucleation length and that for a weakly weakening

(a/b!1, that is, nearly velocity neutral) friction, larger nucle-

ation areas can exist, with the characteristic length of the order

of b2/(b�a)2Lb. The latter can be reached under quasi-steady-

state conditions (such that the state variable is nearly con-

stant), while Lb is the minimum nucleation length when

the fault is well above steady state (the state variable is

rapidly changing) (Ampuero and Rubin, 2008; Rubin and

Ampuero, 2005).

Some parallels may be drawn between the analytic solu-

tions presented in Section 4.03.4 and numerical results for

rate–state faults (Ampuero and Rubin, 2008; Dieterich, 1992;

Rubin and Ampuero, 2005). If one approximates the velocity

change at the tip of a slipping patch on a rate–state fault by a

step function (e.g., see Figure 8 in Chapter 4.02), then param-

eters asn and bsn of rate-and-state friction are analogous to the

difference between the yield strength and the background

stress (ss�s0) and the strength drop (ss�sd), respectively

(see Figure 4 in this chapter and Figure 1 in Chapter 4.04).

The characteristic length of the process zone Lc (eqn [36]) is

then essentially coincident with the minimum nucleation size

Lb established by Dieterich (1992) based on numerical simu-

lations coupling the rate-and-state friction and elasticity. The

correspondence between the two length scales may be inter-

preted as indicating that no elastodynamic instability is

possible in the microcrack regime (F<Lc). On the other

hand, a condition a/b!1 implies s0�sd, that is, small-scale

yielding (see eqn [40]). Indeed, such conditions were satisfied

prior to the onset of elastodynamic instability in numerical

experiments of Rubin and Ampuero (2005) performed

under the assumption of weak velocity weakening. Using

eqns [32] and [38], one can see that in the limit R/L�1,

b2/(b�a)2Lc�L/R Lc¼L, that is, the ‘velocity neutral’ nucle-

ation length of Rubin and Ampuero (2005) is essentially the

length of a quasistatic crack on the verge of propagation under

a constant remote stress s0. This is the maximum length of a

slip patch satisfying conditions of a quasistatic equilibrium.

The main differences between the rate–state model and that

shown in Figure 4 is that the latter assumes a piece-wise

constant stress distribution on the crack surface and zero slip

velocity ahead of the crack tip, while in the rate–state model,

the shear stress is a continuous function of distance along the

fault, and the fault slip rate is never zero. This analogy between

the analytic solution for a static crack and a deformable rate–

state fault may hold because of large (orders of magnitude)

increases in the slip velocity at the tip of an accelerating slip

patch compared to the nominally locked region ahead of the
tip; variations in slip rate behind the rupture front are much

smaller in comparison, so that a steplike change in slip rate

may be a reasonable approximation.
4.03.6 Dynamic Effects

Quasistatic solutions considered in Section 4.03.4 are valid

only for rupture speeds that are well below the shear wave

velocity Vs. As the rupture velocity increases, the inertial term

in the equilibrium equations [10] eventually becomes non-

negligible, and the near-tip stress field is significantly altered

when Vr becomes a sizeable fraction of Vs (Andrews, 1976a;

Broberg, 1978; Freund, 1979; Rice, 1980). The most pro-

nounced effects of a high rupture speed are the relativistic

shrinking of the in-plane process zone R and simultaneous

increase of stress perturbations off the crack plane (Kame and

Yamashita, 1999; Poliakov et al., 2002; Rice et al., 2005). The

net result is an increased tendency for branching, bifurcation,

and nonsteady propagation, all of which significantly compli-

cate the analytic and numerical treatment of the elastodynamic

rupture problem. In particular, the intermittent propagation of

the rupture front invalidates the equivalence between the

LEFM and slip-weakening formulations (e.g., Freund, 1979),

implying a greater dependence of the model results on a spe-

cific choice of fracture criteria.

Analysis of the full elastodynamic equilibrium equa-

tions [10] reveals that solutions exist for rupture velocities

below a limiting speed Vl, which equals to the Rayleigh wave

velocity VR for mode II cracks and shear wave velocity for mode

III cracks (e.g., Freund, 1979; Kostrov and Das, 1988). Solu-

tions become singular as Vr!Vl; in particular, the dynamic

stress intensity factor and the energy release rate at the crack tip

asymptotically vanish. Main fracture mechanics parameters of

a steady-state elastodynamic rupture (such as the process zone

size and the stress intensity factors) may be readily obtained by

multiplying or dividing the respective results from quasistatic

solutions by dimensionless coefficients that depend on rupture

velocity only. The corresponding coefficients are

fII ¼ 1� nð Þ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

r

V2
p

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

r

V2
s

s
� 2�V2

r

V2
s

	 
2

Vr

Vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

r

V2
s

s [41]

fIII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

r

V2
s

s
[42]

for the mode II and mode III loading, respectively (e.g.,

Freund, 1998; Rice, 1980). In eqn [41], Vp is the P-wave veloc-

ity. Coefficients fII and fIII monotonically decrease from unity

at Vr¼0 to zero at Vr¼Vl. For instance, the length of the

dynamic process zone R* is given by R*(Vr)¼ fII,III(Vr)R, and

the dynamic stress intensity factor for a self-similar expanding

crack is KII,III(Vr)¼ fII,III(Vr)KII,III(0). Note that for a steady-state

self-healing pulse with a fixed stress distribution in the refer-

ence frame of a moving pulse, the process zone shortens at

high rupture velocity, similar to the case of a self-similar crack,

but the dynamic stress intensity factor is independent of Vr.
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Rice et al. (2005) confirmed these results with full analytic

solutions for a self-healing pulse with a linearly weakening

process zone, propagating at a constant rupture speed. They

found that the ratio of the dynamic process zone R* to the

pulse length L* is independent of the rupture speed but is

dependent on the ratio of stress drop to strength drop:

s0�sd
ss�sd

¼ x
p
� x� sinx
2psin2 x=2ð Þ [43]

where x¼ 2arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R*=L*

p
(cf. eqn [32]). The velocity invari-

ance of the relative size of the process zone gives rise to a

somewhat unintuitive result that the pulse length L* vanishes

as the rupture accelerates to a limiting speed. At the same time,

the amount of slip produced by a self-healing pulse is also

invariant with respect to the rupture velocity. Thus, the dynam-

ically shrinking rupture size gives rise to a dramatic increase in

the near-field coseismic strain. Figure 5 shows the dependence

of the near-tip stress concentration on the rupture speed

inferred from the Rice et al. (2005) model. As one can see

from Figure 5, the extent of the off-plane yielding and damage

substantially increases at high rupture speeds, so that the

assumption of a thin in-plane process zone ceases to be valid.

Similar results were reported for a semi-infinite crack by

Poliakov et al. (2002). Note that the deduced areas of yielding
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likely underestimate the extent of off-fault damage, as stresses

inside the shaded areas in Figure 5 are beyond the failure

envelope. By explicitly allowing inelastic deformation, the

excess stresses will be relaxed, and the yielding zone will further

expand. The enhanced off-fault damage may be one of the

mechanisms preventing extreme contractions of the rupture

length at high propagation velocities. It may also appreciably

modify the expenditure part of the earthquake energy balance,

as discussed in the following section.

Elastodynamic slip instabilities with rupture velocity below

the limiting speed Vl are referred to as subsonic or subshear

rupture. The majority of earthquakes for which high-quality

measurements of the rupture speed are available appear to be

subsonic. Theoretical models indicate that immediately above

the limiting rupture speed Vl, the flux of mechanical energy

into the crack tip region becomes negative for tensile andmode

II shear cracks, effectively prohibiting self-sustained fracture

(Broberg, 1999; Freund, 1998). However, physically admissi-

ble solutions do exist for shear cracks with rupture speeds

spanning the interval between the S-wave and P-wave veloci-

ties; such mode of propagation is referred to as intersonic,

transonic, or supershear rupture (Andrews, 1976b; Broberg,

1989; Burridge, 1973; Simonov, 1983). Although the mechan-

ics of transition from the subsonic (Vr<Vl) to transonic
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(Vr>Vs) propagation is not fully understood, there is experi-

mental (Samudrala et al., 2002; Xia et al., 2004) and seismo-

logic (Archuleta, 1984; Bouchon and Vallee, 2003; Dunham

and Archuleta, 2004; Wald and Heaton, 1994) evidence that

transonic rupture speeds may be achieved under certain con-

ditions. The spatial structure of the near-tip stress field and the

radiation pattern in the transonic regime are markedly differ-

ent from those due to subsonic ruptures (see Chapter 4.08).
Dc

Sf

S1

S2
(a) (b)

R

dL

Figure 6 Schematic view of inelastic deformation associated with
crack propagation. (a) Finite damage zone extending off the fault plane.
(b) Thin in-plane damage zone.
4.03.7 Fracture Energy

The concept of fracture energy was originally introduced for

tensile cracks by Griffith (1920) to quantify the irreversible

work associated with breaking of the intermolecular bonds

and creation of a stress-free crack surface. Griffith’s definition

based on a global energy balance was subsequently shown to

be equivalent to local definitions based on the LEFM and

small-scale yielding models (Rice, 1968a; Willis, 1967). For

example, for a Barenblatt-type process zone model, the fracture

energy is the work spent against the cohesive stress ss in the

process zone on separating the crack walls by the critical open-

ing distance Dc. An elegant demonstration of the equivalence

of global and local definitions of fracture energy for tensile

cracks was provided by Rice (1968b) in a form of the path-

independent J-integral (also, see Cherepanov, 1968; Eshelby,

1956). Palmer and Rice (1973) extended this technique to the

case of shear cracks and defined the shear fracture energy as

work required to evolve shear stress on the slip interface from

the yield stress (or static friction) ss to the residual dynamic

friction sd:

Gc ¼
ðDc

0

s Dð Þ�sdð ÞdD [44]

where s(D) varies between ss and sd for 0<D<Dc, respec-

tively. A similar formulation was introduced by Ida (1972).

Equation [44] allows a simple insight into the fracture process

and has been widely used for interpretations of seismic data.

However, several factors may limit its application to the anal-

ysis of earthquake ruptures. First, the displacement-weakening

model assumes that all inelastic deformation is limited to the

slip plane. Both theoretical models (Andrews, 2005; Rice et al.,

2005; Rudnicki, 1980) (Figure 5) and field observations

(Chester et al., 2005; Fialko, 2004b; Fialko et al., 2002; Li

et al., 1998) suggest that the earthquake-induced damage likely

extends well off of the fault plane, and the energy dissipated in

the fault damage zone may be quite significant (e.g., Andrews,

2005; Ben-Zion and Shi, 2005; Wilson et al., 2004). Second,

the fracture energy given by eqn [44] has a clear physical

interpretation if the residual dynamic stress sd is constant (or

at least if the along-fault variations in sd are small compared to

the strength drop, ss�sd). The second point can be illustrated

by considering a traditional representation of the earthquake

energy budget:

DUp ¼Ur +Uf +UG [45]

where DUp is the change in the total potential energy (which

includes changes in the elastic strain energy DUe and gravita-

tional potential energy); Ur is the energy radiated in seismic
waves; Uf is the energy dissipated on the well-slipped portion

of the fault due to friction, comminution, phase transitions,

and other irreversible losses; and UG is the fracture energy

spent on overcoming high resisting stresses near the crack tip

(Dahlen, 1977; Kostrov, 1974; Rivera and Kanamori, 2005;

Rudnicki and Freund, 1981). A significant part ofUf is believed

to be ultimately converted into heat (Fialko, 2004a; Sibson,

1980). Under the approximation of the displacement-

weakening model, UG∝ssDc, and Uf∝sdDm. Assuming that

the residual friction is of the order of the peak strength,

sd�O(ss), and the critical slip-weakening distance is much

smaller than the coseismic offset, Dc�Dm, the fracture energy

is negligible compared to frictional losses in the earthquake

energy balance equation [45]. However, if the fault friction

progressively decreases with slip, as suggested by the experi-

mental observations and theoretical inferences of the dynamic

weakening (Abercrombie and Rice, 2005; Di Toro et al., 2004;

Fialko and Khazan, 2005; Goldsby and Tullis, 2002; Tsutsumi

and Shimamoto, 1997), the effective slip-weakening distance

Dc is expected to scale with the slip magnitude, and the fracture

energy UG may not be small compared to Uf. Because neither

the slip-weakening distance Dc nor the residual friction sd in

this case are material properties (in particular, they may

depend on the details of slip history, thickness and permeabil-

ity of the slip zone, etc.), a distinction betweenUG andUf terms

in the earthquake energy balance equation [45] becomes

somewhat arbitrary. Note that for a rupture on a preexisting

fault, there is little physical difference between UG and Uf, as

both terms represent spatially and temporally variable fric-

tional losses associated with fault slip; both UG and Uf ulti-

mately contribute to wearing and heating on the slip interface.

The situation is further complicated if the dynamic friction is a

nonmonotonic function of slip (e.g., Brune and Thatcher,

2002; Hirose and Shimamoto, 2005; Rivera and Kanamori,

2005; Tinti et al., 2005). While a formal distinction between

the frictional and fracture losses associated with shear ruptures

may be problematic, the entire amount of work spent on

inelastic deformation of the host rocks during the crack prop-

agation is unambiguous and can be readily quantified. For

simplicity, here, we consider the case of a quasistatic crack

growth. Formulation presented in the succeeding text can be

also generalized to the case of dynamic cracks.

Consider an equilibriummode II crack in amedium subject

to initial stress sij
0. The medium is elastic everywhere except

inside the crack and within a finite process zone near the crack

tips (Figure 6(a)). The inelastic zone is demarcated by a surface

Sf. Let external forces do some work dW on a medium, in the
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result of which the crack acquires a new equilibrium configu-

ration. In the new configuration, some area ahead of the crack

front undergoes inelastic yielding and joins the process zone

(see an area bounded by surfaces DS1 and Sf in Figure 6(a)). At

the trailing end of the process zone, slip exceeds Dc, and some

fraction of the process zone (bounded by surface DS2 in

Figure 6(a)) joins the developed part of the crack. The external

work dW is spent on changes in the elastic strain energy dUe

and irreversible inelastic deformation dUG (which includes

friction, breakdown, and comminution):

dW ¼ dUe + dUG [46]

Changes in the elastic strain energy are given by (e.g.,

Landau and Lifshitz, 1986; Timoshenko and Goodier, 1970)

dUe ¼ 1

2
s1ijE

1
ij�s0ijE

0
ij

� �
[47]

where sij
1 and Eij

1 are stresses and strains, respectively, in the

elastic part of a medium after the crack extension. The assump-

tion of linear elasticity [9] implies that

s0ijE
1
ij � s1ijE

0
ij [48]

for any sij
k and Eij

k. The identity eqn [48] allows one to write

eqn [47] as follows:

dUe ¼ 1

2
s1ij + s

0
ij

� �
E1ij�

1

2
s1ij +s

0
ij

� �
E0ij ¼

1

2
s1ij +s

0
ij

� �
dui

h i
, j

[49]

where dui¼ui
1�ui

0 is the displacement field produced by crack

propagation. Expressions [47] and [49] assume that the strains

are infinitesimal, so that the relationship between strain and

displacement gradients is given by eqn [8]. Also, expres-

sion [49] makes use of the fact that under quasistatic condi-

tions, the divergence of stress is zero, sij, j¼0 (see the

equilibrium equations [10]; note that the body forces may be

excluded from consideration by incorporating the effects of

gravity in prestress). Using the Gauss theorem along with a

condition that the crack-induced deformation must vanish at

infinity, from the energy balance equation [46], one obtains

the following expression for the work done on inelastic

deformation:

dUG ¼ dW�dUe

¼�
ð
Sf

s0ijnjduidS�
1

2

ð
DS1 +DS2

s0ij + s
1
ij

� �
njduidS [50]

In the limit of an ideally brittle fracture, the area of inelastic

yielding has a negligible volume (i.e., Sf!0), so that the first

integral on the right-hand side of eqn [50] vanishes. In the

second integral, the surface DS2 also vanishes, while the surface

DS1 becomes the crack length increment dL (Figure 6(b)).

Within dL, the stresses are weakly singular, sij∝1=
ffiffi
r

p
, where r

is distance to the crack tip, and the crack wall displacements

scale as dui∝
ffiffi
r

p
, so that the product of stresses and displace-

ments is of the order of unity, and the corresponding integral

in eqn [50] is of the order of DS1¼dL. This is the well-known

LEFM limit, for which the fracture energy is given by eqn [2].

For more realistic models that explicitly consider failure at

the crack tip, the stresses are finite everywhere, so that the
second integral on the right-hand side of eqn [50] is of the

order of sij
0dui(DS1+DS2), that is, negligible compared to the

integral over the finite inelastic zone �O(sij
0duiSf). Provided

that the displacement field associated with the crack extension

can be represented as dui¼dL@ui/@L, eqn [50] allows one to

introduce the fracture energy Gc as the total inelastic work per

increment of the crack length or the energy release rate:

Gc ¼ @UG

@L
¼�1

2

ð
Sf

@ui
@L

s0ijnjdS [51]

Factor of 1/2 in eqn [51] stems from the assumption of a

bilateral crack propagation. Equation [51] in general cannot be

readily evaluated analytically because the size and geometry of

the inelastic zone Sf are not known in advance and have to be

found as part of a solution. Further insights are possible for

special cases. For example, assuming that all yielding is con-

fined to a crack plane (Figure 6(b)), eqn [51] reduces to

Gc ¼
ðL
0

s xð Þ@D xð Þ
@L

dx [52]

where we took into account that the total offset between the

crack walls is D(x)¼2ux, and the sense of slip is opposite to

that of the resisting shear tractions acting on the crack walls.

The integral equation [52] is still intractable for an arbitrary

loading, as the derivative @D(x)/@L must be calculated along

the equilibrium curve (e.g., see eqn [33]). Closed form analytic

solutions can be obtained for limiting cases of small-scale

(L�R) and large-scale (L�R) yielding. First, consider a crack

that is much longer than the critical size Lc [36] and has a

complete stress drop, s(x)¼0 for D>Dc. As shown in

Section 4.03.2, for such a crack the size of the process zone is

independent of the crack length, R¼Lc, and the crack propa-

gation does not modify the slip distribution within the pro-

cess zone in the reference frame of a propagating crack tip. In

this case,

@D xð Þ=@L¼�@D xð Þ=@x [53]

so that eqn [52] gives rise to

Gc ¼
ðL
L�R

s xð Þ@D xð Þ
@L

dx¼
ðDc

0

s Dð ÞdD [54]

Expression [54] is analogous to the result obtained using

the J-integral technique (Rice, 1968b). An expression for the

J-integral contains a derivative of the crack wall displacement

with respect to the integration variable, rather than the crack

length. As noted by Khazan and Fialko (2001), the two deriv-

atives coincide (up to a sign) in a limiting case of a very long

crack (for which the J-integral was derived), but the difference

may be significant if the small-scale yielding approximation

does not hold (also, see Rice, 1979).

For a case of a constant, but nonvanishing, residual friction,

s(x)¼sd for Dc<D<Dm, evaluation of integral equation [52]

gives rise to

Gc ¼ sd Dm�Dcð Þ+
ðDc

0

s Dð ÞdD [55]

thanks to self-similarity of the along-crack displacement D(x)

over the interval 0<x<L�R for long cracks, such that the
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relationship [53] still holds. For a constant yield stress within

the process zone, s(x)¼const¼ss (e.g., Figure 4), eqn [55]

gives rise to a simple expression Gc¼(ss�sd)Dc+sdDm, in

which the first and second terms may be recognized as the

traditionally defined fracture energy UG and the frictional

work Uf, respectively (cf. eqn [45]).

In case of a large-scale yielding, relationship [53] is gener-

ally not applicable. Assuming ss¼const, expression [52] can

be integrated by parts to yield

Gc ¼ ss
@

@L

ðL
0

D xð Þdx�ss

ðF
0

@D

@L
dx [56]

In the developed part of the crack with the full stress drop

(x<F), slip is essentially constant and equals to Dc, so that the

second integral on the right-hand side of eqn [56] can be

neglected. Taking advantage of expressions [33] and [35] to

evaluate the first term in eqn [56], one obtains (Khazan and

Fialko, 2001)

Gc ¼ pF
2Lc

ssDc [57]

Equation [57] indicates that the fracture energy for the case

of small cracks (or large-scale yielding, F�Lc) is substantially

different from the fracture energy for large cracks (or small-

scale yielding, F�Lc). In case of large-scale yielding, the frac-

ture energy is not constant even if both the yield strength ss
and the critical slip-weakening displacement Dc are material

constants independent of loading conditions. In particular, Gc

is predicted to linearly increase with the size of the developed

part of the crack F. A linear scaling of fracture energy implies

increases in the apparent fracture toughness Kq proportional to

a square root of the developed crack length, KQ∝
ffiffiffi
F

p
(see

eqn [2]), in the large-scale yielding regime. Increases in the

apparent fracture toughness for small cracks are well known

from laboratory studies of tensile fracture (e.g., Bazant and

Planas, 1998; Ingraffea and Schmidt, 1978).

The apparent scaling of the earthquake fracture energy with

the earthquake size has been inferred from seismic data (e.g.,

Abercrombie and Rice, 2005; Husseini, 1977; Kanamori and

Heaton, 2000). Arguments presented in the preceding text

indicate that several mechanisms may be responsible for the

observed increases in the seismically inferred fracture energies

with the rupture length, in particular, (1) off-fault damage that

scales with the rupture length (larger ruptures are expected to

produce broader zones of high stress near the rupture fronts,

presumably advancing the extent of off-fault damage (see

Figure 5 and eqn [51])); (2) a continuous degradation of

dynamic friction on a fault plane, for example, due to thermal

pressurization or any other slip-weakening mechanism; and

(3) rupture propagation under conditions of large-scale yield-

ing (eqn [57]), although it remains to be seen whether elasto-

dynamic instability can occur when the process zone

comprises a substantial fraction of the crack length (see

Section 4.03.4). These mechanisms are not mutually exclusive

and may jointly contribute to the observed scaling Gc∝F. For

example, the third mechanism might be relevant for small

earthquakes, while the first and second ones perhaps dominate

for large events. Note that the second mechanism is ultimately

limited by a complete stress drop, beyond which no further
increase in fracture energy is possible. The same limit may also

apply to the first mechanism, as the size of the dynamic dam-

age zone scales with the quasistatic one for a given

displacement-weakening relationship (Rice et al., 2005). Estab-

lishing the relative importance of contributions of various

mechanisms to the effective fracture energy is an important

but challenging task. In particular, if contributions from the

off-fault yielding are substantial, interpretations of seismic data

that neglect such yielding may systematically overestimate the

magnitude of the effective slip-weakening distance Dc. Unfor-

tunately, distinguishing between different contributions to the

overall value of Gc can be unlikely accomplished based on the

seismic data alone.

In summary, the fracture energy defined by eqn [51] is

analogous to Griffith’s concept for tensile cracks, provided

that the stress drop is complete (sd¼0) and the small-scale

yielding condition is met. For a nonvanishing friction on the

crack surface, eqn [51] combines inelastic work spent against

residual friction and work spent on evolving the shear stress on

a fault to a residual level (i.e., the traditionally defined fracture

energy). Separation between these two contributions is justi-

fied if small-scale yielding condition applies but may be ill-

defined otherwise. For models with a continuous strength

degradation, there is a continuous repartitioning of the energy

budget, such that the effective fracture energy increases at the

expense of a diminishing frictional dissipation.
4.03.8 Coupling between Elastodynamics
and Shear Heating

One of the factors that can strongly affect the dynamic friction

on the slipping interface and, thereby, the seismic radiation,

efficiency, and stress drop is the coseismic frictional heating.

Rapid slip during seismic instabilities may substantially raise

temperature on a fault surface. The dependence of dynamic

friction on temperature may stem from several mechanisms,

including thermal pressurization by pore fluids (Lachenbruch,

1980; Mase and Smith, 1987; Sibson, 1973), frictional melting

( Jeffreys, 1942; Maddock, 1986; McKenzie and Brune, 1972;

Sibson, 1975), and flash heating of contact asperities (Rice,

2006). Recent experimental measurements confirm apprecia-

ble variations in the dynamic friction at slip velocities

approaching the seismic range of order of a meter per second

(Brown and Fialko, 2012; Di Toro et al., 2004; Goldsby and

Tullis, 2002, 2011; Hirose and Shimamoto, 2003; Reches and

Lockner, 2010; Spray, 2005). The documented variations are

significantly larger than predictions of the rate-and-state fric-

tion (Dieterich, 1979; Ruina, 1983) extrapolated to seismic slip

rates. The likely importance of the thermally induced varia-

tions in friction warrants a quantitative insight into the dynam-

ics of fault heating during seismic slip. Major questions include

the following: What are the dominant mechanisms of fault

friction at high slip rates? How do increases in temperature

affect the dynamic shear stress on a slipping interface? How

robust is the thermally activated weakening? Is dynamic fric-

tion a monotonically decaying function of temperature? If not,

what are the mechanisms, conditions, and significance of the

thermally activated strengthening? When and where is the

onset of the thermally induced weakening or strengthening
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Figure 8 Variations of the nondimensional excess temperature y(w)
along a mode II crack propagating at a constant rupture speed under
constant frictional stress. Labels denote the nondimensional thickness of
a slipping zone w (see eqn [62]).
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likely to occur on a slipping interface? And what are the impli-

cations for the dynamics of earthquake ruptures?

In a simple case of the LEFM crack with a constant residual

shear stress, the frictional heating problem admits closed ana-

lytic solutions (Fialko, 2004a; Richards, 1976). Consider a

mode II (plain strain) crack rupturing bilaterally at a constant

speed Vr (Figure 7), so that L(t)¼ tVr. The thickness of the

gouge layer that undergoes shear, and the shear strain rate

across the gouge layer are assumed to be constant (Cardwell

et al., 1978; Mair and Marone, 2000). Because the thickness of

the gouge layer 2w is negligible compared with any other

characteristic length scale in the problem (e.g., the rupture

size 2L and the amount of slip D), the temperature evolution

in the gouge layer and in the ambient rock is well described by

the one-dimensional diffusion equation with a heat source:

@T

@t
¼ k

@2T

@y2
+
Q

cr
[58]

where y is the crack-perpendicular coordinate and Q is the rate

of frictional heat generation within the slipping zone,

Q x, y, tð Þ¼
sd xð Þ
2w xð Þ

@D x, tð Þ
@t

, t> 0, yj j<w

0, yj j>w

8<
: [59]

@D/@t being the local slip velocity. A solution to eqn [58]

subject to the initial condition T(x, y, 0)¼T0, where T0 is the

temperature of the host rocks prior to faulting, is (Fialko,

2004a)

T�T0 ¼ 1

4crw

ðt
x=Vr

erf
y +w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k t� tð Þp

" #
�erf

y�w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k t� tð Þp

" # !

@D x, tð Þ
@t

sd xð Þdt [60]

Dimensional arguments suggest the following similarity

variables:

Nondimensional along-fault coordinate w¼ x

tVr
[61]

Nondimensional fault thickness w¼
ffiffiffiffiffiffiffiffi
2

kt
w

r
[62]

For the LEFM crack with a constant stress drop, the along-

crack displacement profile D(x, t) is self-similar in that it may

be expressed in terms of a single similarity variable w¼w(x, t):

D x, tð Þ¼ L tð ÞE
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2

p
, t> 0, wj j< 1 [63]

where E is the characteristic shear strain due to the crack,

E¼D(0, t)/L(t)¼2(1�n)(s0�sd)/m. Here, E is taken to be

independent of L, as the earthquake stress drops (s0�sd) do
Rupture
velocity

T0

Te
m

p
er

at
ur

e

2w

y
Vr

Figure 7 A schematic view of a dynamically propagating mode II crack. The
dL/dt¼Vr.
not exhibit any scale dependence across a wide range of earth-

quake magnitudes (Abercrombie, 1995; Kanamori and

Anderson, 1975; Scholz, 2002). The local slip rate in terms of

new variables is

@D

@t
¼ VrEffiffiffiffiffiffiffiffiffiffiffiffiffi

1�w2
p [64]

Equations [60] and [64] suggest the following similarity

variable for temperature:

Nondimensional temperature y¼ T�T0

T̂
[65]

where

T̂ ¼ sdVrE
cr

ffiffiffiffiffiffi
t

pk

r
[66]

is a characteristic temperature scale for frictional heating

assuming a perfectly sharp fault contact.

Substituting eqn [64] into eqn [60] and making use of the

similarity variables [62] and [65], one obtains the following

expression for the along-crack temperature distribution in the

middle of the slip zone (y¼0):

y wð Þ¼
ffiffiffi
p

p

w
ffiffiffi
2

p
ð1
w
erf

w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1�xð Þp

" #
xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�w2

p [67]

Solutions to eqn [67] are shown in Figure 8. A family of

curves in Figure 8 illustrates a spatiotemporal evolution of

temperature on the slipping fault surface. For faults that are
Slip D(x,t)

x

L(t)=tVr
Slipping Locked

Vr

crack has a thickness 2w and is rupturing bilaterally at a constant velocity
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Figure 9 Variations of the nondimensional excess temperature y(w)
along a self-healing pulse. Labels denote the nondimensional thickness
of a slipping zone w (see eqns [71]).
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thicker than the thermal diffusion length scale or at early stages

of rupture (i.e., w> 1), the temperature increase along the fault

is proportional to the amount of slip. For thin faults or later

during the rupture w�1ð Þ, the temperature is maximum near

the crack tip and decreases from the tip to the crack center.

However, the instantaneous temperature maximum near the

crack tip does not imply cooling of the crack surface behind

the tip; at any given point, the temperature on the crack surface

T(x, 0, t) steadily increases with time (Fialko, 2004a). For the

nondimensional fault thickness w of the order of unity, the

maximum temperature is reached somewhere between

the crack center and the rupture front (Figure 8). The inferred

anticorrelation between the temperature and the amount of

slip stems from a competition between the rates at which the

frictional heat is generated at the crack surface and removed to

the ambient rocks by conduction. Generation of frictional heat

at the tip of the LEFM crack is singular as the thickness of the

conductive boundary layer is zero, while the slip velocity is

infinite (see eqn [64]). Nonetheless, the excess temperature at

the tip is zero for cracks having finite thickness w> 0ð Þ. For
cracks that are much thinner than the conductive boundary

layer w�1ð Þ, the temperature field develops a shock-like struc-

ture, with the tip temperature exceeding the temperature at the

crack center by about 10% (Figure 8). Assuming that the

thickness of the slip zone is constant during an earthquake,

eqn [67] predicts that the maximum temperatures are initially

attained at the center of a cracklike shear instability. As the

earthquake rupture expands, the temperature maximum may

migrate toward the rupture fronts. For the thermal diffusivity of

the ambient rocks k¼10�6 m2 s�1 and rupture durations of

t¼1–10 s (corresponding to the rupture sizes of �5–50 km),

this transition will occur for faults that have thickness of

the order of
ffiffiffiffiffiffiffi
2kt

p � 2�5mm or less. The critical fault thick-

ness may be larger still if the heat removal from the fault

involves some advective transport by the pressurized pore

fluids, and the in situ hydraulic diffusivity exceeds the thermal

diffusivity k.
For sufficiently large ruptures, a model of a self-healing slip

pulse may be a better approximation than the cracklike models

(e.g., Beroza and Mikumo, 1996; Heaton, 1990; Kanamori and

Anderson, 1975; Olsen et al., 1997). A self-healing mode II

pulse having a constant length L (Freund, 1979) generates a

temperature field that is steady state in the reference frame of

a moving rupture front (Fialko, 2004a). The appropriate

similarity variables are

along-fault coordinate w¼ x� tVr

L
+1 [68]

nondimensional fault thickness w¼
ffiffiffiffiffiffiffiffiffiffiffi
2Vr

Lk
w

r
[69]

nondimensional temparature y¼ T�T0

T̂
[70]

T̂ ¼ sdE
cr

ffiffiffiffiffiffiffiffi
LVr

pk

r
[71]

The coseismic displacements and the rate of slip are

assumed to have the LEFM-like characteristics at the rupture

front (w¼1) and a nonsingular healing at the trailing edge

(w¼0):
D wð Þ¼ LE
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w2

p
[72]

@D

@w
¼ VrEwffiffiffiffiffiffiffiffiffiffiffiffiffi

1�w2
p [73]

As before, we assume a constant dynamic friction on the

slipping interface. Upon nondimensionalization using vari-

ables [71], eqn [60] gives rise to the following expression for

the along-fault temperature variations in the middle of the slip

zone (y¼0):

y wð Þ¼
ffiffiffi
p

p

w
ffiffiffi
2

p
ð1
w
erf

w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 w�xð Þp

" #
xdxffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p [74]

Solutions to eqn [74] are shown in Figure 9. The near-tip

structure of the temperature field due to a steady-state pulse is

similar to that due to a self-similar expanding crack (cf.

Figures 8 and 9). At the leading edge of an infinitesimally

thin shear pulse, there is a thermal shock of amplitude T̂

(eqn [71]). The fault temperature monotonically decreases

toward the healing front, where the temperature falls to

about one-half of the maximum value (Figure 9). For ‘thick’

pulses w�1ð Þ, the fault temperature increases toward the

healing front proportionally to the amount of slip. For inter-

mediate nondimensional fault thicknesses of the order of

unity, the fault surface initially heats up to a maximum

temperature and then cools down before the arrival of the

healing front. This behavior is qualitatively different from

that on a surface of an expanding crack, which indicates a

progressive heating at every point along the crack as long as

the rupture continues. The inferred cooling toward the healing

front of the steady-state pulse for w> 5 is caused by a decreas-

ing heat generation due to a vanishing slip velocity and effi-

cient removal of heat by thermal diffusion. For the

characteristic rise times L/Vr of the order of seconds, the steady-

state LEFM pulses need to be thinner than 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kL=Vr

p � 1cm to

experience maximum temperatures at the rupture front.

Several factors may accentuate the tendency for the temper-

ature peaks near the rupture front. First, higher stresses in the

process zone near the rupture tip imply enhanced heating.

Numerical simulations indicate that the thermal effect of the
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process zone can be significant even under conditions of small-

scale yielding; in particular, for thin faults, the instantaneous

temperature increase within the process zone is predicted to be

a factor of ss/sd greater than the temperature increase on the

rest of the slipping interface (Fialko, 2004a). Second, in the

presence of a continued dynamic weakening (e.g.,

Abercrombie and Rice, 2005), the frictional heating is expected

to progressively decay behind the rupture front, further sup-

pressing the excess temperature. In the context of thermal

weakening, such coupling between the coseismic heating and

dynamic friction may be conducive to self-sustained slip pulses

(Noda et al., 2009; Perrin et al., 1995; Zheng and Rice, 1998)

and to a transition to a pulse-like behavior for ruptures that

initially propagate in a cracklike mode.

Numerical simulations that allow for full coupling between

the shear stress, shear heating, pore fluid pressure, and elastic-

ity indicate a rich variety of slip behaviors and important

controls exerted by the effective thickness of the fault slip

zone w. For example, Garagash (2012) showed that in the

presence of thermal pressurization, spontaneous fault slip can

occur in the form of slip pulses, with the rupture speed Vr

inversely correlated with the thickness of the slip zone. For

the laboratory values of hydraulic and thermal properties of

fault gouge, the model predicts earthquake-like behavior for

slip zones having thickness of the order of centimeters (or

thinner), an aseismic episodic slip with characteristics similar

to those of the episodic slow slip events observed in subduc-

tion zones worldwide (Obara, 2002; Rogers and Dragert,

2003), assuming width of the slip zone of the order of 1 m

(Garagash, 2012).

If thermal weakening mechanisms that operate at relatively

small increases in the average fault temperature, such as ther-

mal pressurization and flash melting (e.g., Andrews, 2002;

Goldsby and Tullis, 2011; Lachenbruch, 1980; Lee and

Delaney, 1987; Rice, 2006), do not give rise to substantial

reductions in the dynamic friction, a continued dissipation

and heating due to a localized slip will result in macroscopic

melting on the slip interface and a transition from the asperity-

contact friction to viscous rheology. High transient stresses

associated with shearing of thin viscous films of melt have

been considered as one of possible mechanisms of thermally

induced strengthening (Fialko, 2004a; Koizumi et al., 2004;

Tsutsumi and Shimamoto, 1997). However, recent laboratory,

field, and theoretical studies suggest that transient viscous

braking may not be an efficient arresting mechanism, espe-

cially in the lower part of the brittle layer (Brown and Fialko,

2012; Di Toro et al., 2006; Fialko and Khazan, 2005). If so,

earthquakes that produced macroscopic melting and pseudo-

tachylites (e.g., Davidson et al., 2003; Sibson, 1975; Swanson,

1992; Wenk et al., 2000) must have been accompanied by

nearly complete stress drops. More generally, one may argue

that highly localized slip zones are an indicator of nearly

complete stress drops for sizeable earthquakes, regardless of

whether macroscopic melting took place. This stems from the

fact that melting of a narrow slip interface could have been

prevented only if the dynamic friction were already low

(Fialko, 2004a). Some theoretical arguments and experimental

data (Brown and Fialko, 2012; Di Toro et al., 2006; Fialko and

Khazan, 2005; Mitchell et al., 2013) also raise a question about

the mechanism of rupture arrest below the brittle–ductile
transition. A currently prevailing view is that the bottom of

the seismogenic layer represents a rheological transition

between the velocity-weakening friction and velocity-

strengthening friction (e.g., Marone, 1998; Scholz, 1998).

While this transition may well be caused by the temperature-

controlled onset of stable creep (although recent laboratory

data revealed a possibility of stick–slip behavior in granite at

temperatures well above 300 	C, at least under dry conditions;
see, e.g., Mitchell et al., 2013), it is unclear whether the velocity

strengthening is relevant for the arrest of seismic ruptures that

propagate into the ductile substrate from the brittle upper

crust. For highly localized ruptures, the onset of melting or

some other thermally activated mechanism may occur imme-

diately behind the rupture front (aided by high ambient tem-

perature and stress concentration), potentially overwhelming

the effect of rate-and-state friction. In this case, the rupture

arrest may require either delocalization of seismic slip near

the rupture front (thereby limiting the temperature rise and

increasing the effective fracture energy) or low deviatoric stress

below the brittle–ductile transition. Discriminating between

these possibilities may provide important insights into long-

standing questions about the effective mechanical thickness

and strength of tectonically active crust and lithosphere

(England and Molnar, 1997; Jackson, 2002; Lamb, 2002;

Takeuchi and Fialko, 2012).
4.03.9 Conclusions

Shear tractions on a slipping fault may be controlled by a

multitude of physical processes that include yielding and

breakdown around the propagating rupture front, rate- and

slip-dependent friction, acoustic fluidization, dynamic reduc-

tion in the fault-normal stress due to dissimilar rigidities of the

fault walls, thermally activated increases in the pore fluid pres-

sure, flash heating of the asperities, and macroscopic melting.

A traditional distinction between the fracture energy consumed

near the rupture front and frictional losses on a well-slipped

portion of a fault may be ill-defined if the slipping interface

undergoes a substantial yet gradual weakening behind the

rupture front. Both theoretical models and experimental data

indicate that a continuous degradation of the dynamic fault

strength is an expected consequence of a highly localized slip.

In this case, earthquake ruptures violate a basic assumption of

the LEFM, namely, that the zone of the material breakdown is

small compared to the rupture size. The assumption of small-

scale yielding is also violated if the extent of the off-fault

damage is not negligible compared to the characteristic length

of a slipping region. Field observations of kilometer-wide dam-

age zones around major crustal faults (Ambraseys, 1970; Chen

and Freymueller, 2002; Fialko, 2004b; Fialko et al., 2002) are

evidence that the off-fault yielding may constitute a significant

fraction of the earthquake energy balance (Wilson et al., 2004).

Both the dynamically induced variations in shear stress

along the slip interface and distributed inelastic deformation

off the primary slip surface affect the distribution of slip and

slip rate, dynamic stress drop, and radiated seismic energy.

Inferences from seismic data about constitutive properties of

the fault zone material, such as the peak breakdown stress and

critical slip-weakening distance, may be biased if the
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aforementioned phenomena are not taken into account. In

particular, simplified rupture models that neglect off-fault

damage likely overestimate the critical slip-weakening distance

Dc. Similarly, models that neglect the physics of high-speed slip

may attribute the dynamic (e.g., thermally induced) weakening

to large in situ values of Dc interpreted as an intrinsic rock

fracture property. Constitutive relationships governing evolu-

tion of the dynamic strength at seismic slip velocities are diffi-

cult to formalize, as temperature, pore fluid pressure, and shear

tractions on the fault interface are sensitive to a number of

parameters such as the effective thickness of the slip zone, fluid

saturation, dynamic damage and changes in the fault wall

permeability, and ambient stress. Many of these parameters

are also poorly constrained by the available data. Nonetheless,

further insights into the dynamics of earthquakes may require

fully coupled elastodynamic–thermodynamic models of seis-

mic rupture. Development of such models is a significant

challenge for future work.
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