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[1] Temperature is believed to have an important control on frictional properties of rocks, yet the amount of
experimental observations of time-dependent rock friction at high temperatures is rather limited. In this
study, we investigated frictional healing of Westerly granite in a series of slide-hold-slide experiments using
a direct shear apparatus at ambient temperatures between 20°C and 550°C. We observed that at room
temperature coefficient of friction increases in proportion to the logarithm of hold time at a rate consistent
with findings of previous studies. For a given hold time, the coefficient of friction linearly increases with
temperature, but temperature has little effect on the rate of change in static friction with hold time. We used
a numerical model to investigate whether time-dependent increases in real contact area between rough
surfaces could account for the observed frictional healing. The model incorporates fractal geometry and
temperature-dependent viscoelasoplastic rheology. We explored several candidate rheologies that have
been proposed for steady state creep of rocks at high stresses and temperatures. None of the tested laws
could provide an agreement between the observed and modeled healing behavior given material properties
reported in the bulk creep experiments. An acceptable fit to the experimental data could be achieved with
modified parameters. In particular, for the power-law rheology to provide a reasonable fit to the data, the
stress exponent needs to be greater than 40. Alternative mechanisms include time-dependent gouge com-
paction and increases in bond strength between contacting asperities.
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1. Introduction has been documented in laboratory experiments on

many rock types. Static coefficient of friction
[2] An important part of the seismic cycle is the increases with the duration of time of stationary
increase in fault strength after the occurrence of rapid ~ contact between rock surfaces under normal load
slip, also known as fault healing. Frictional healing  [Dieterich, 1972]. The pioneering experimental
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studies of frictional healing in rocks [Dieterich,
1972] were performed with a double direct shear
apparatus at room temperature. The key observation
was that static friction coefficient increases with the
logarithm of time that surfaces are left in stationary
contact. This is a reproducible phenomenon that is
observed in many rock types and other materials
such as metals, paper, glass, and acrylic for a wide
range of experimental conditions [Dieterich, 1972;
Dieterich and Kilgore, 1994; Baumberger and
Caroli, 2006]. Subsequent studies have investi-
gated the effects of humidity [Dieterich and Conrad,
1984; Frye and Marone, 2002], rock type, normal
stress [Dieterich, 1972], shear stress [Karner and
Marone, 2001], and loading rate [Kato et al., 1992]
on frictional healing. The effect of temperature was
also explored [Stesky et al., 1974; Blanpied, 1995;
Karner et al., 1997; Nakatani, 2001], but with the
exception of Nakatani [2001], experimental con-
straints on the temperature dependence of frictional
healing are rather limited. Recent findings from
high-speed frictional experiments suggest that dra-
matic variations in the coefficient of friction at slip
rates greater than 0.1 m/s may be thermally activated
[Tsutsumi and Shimamoto, 1997; Di Toro et al.,
2011; Brown and Fialko, 2012]. Because coseismic
heating effects can be significant [e.g., Fialko,
2004], one of the motivations of this study is to
better understand the effects of pure temperature
versus coupled temperature-slip rate dependence of
frictional strength. Also, the importance of temper-
ature control on the transition between velocity-
weakening and velocity-strengthening behavior and,
ultimately, the depth extent of the seismogenic layer
[Scholz, 2002] warrants more experimental studies.
Finally, quantifying the effect of temperature on
fault healing will improve our understanding of the
behavior of active faults at seismogenic depths.

[3] In this study, we focus on time-dependent evo-
lution of true contact area as a possible mechanism
of frictional healing. Dieterich and Kilgore [1994]
reported that for analog materials (glass and
acrylic), contact area increases with the logarithm
of hold time and agrees well with the observed
evolution of static friction. They argued that similar
time dependence is evidence for the control of true
contact area on frictional aging. If so, a similar
mechanism may be applicable to a wide range of
materials such as rock, metal, paper, glass, and
acrylic, which all exhibit logarithmic strengthening
with time [Baumberger and Caroli, 2006].

[4] A similar interpretation is provided by nanoin-
dentation studies [Goldsby et al., 2004]. Goldsby

et al. [2004] compared fractional contact area
calculated from indentation creep data on quartz
with fractional contact area inferred from slide-
hold-slide static friction tests on quartz. They found
that contact area increase from the indentation tests
was logarithmic in time and only 1.7 times larger
than that inferred from static friction experiments.
They suggested that the discrepancy was due to
shear relaxation during the reloading portion of
the slide-hold-slide tests. They argued that inelastic
flow at asperities, which increases real contact
area, is the most likely mechanism causing fric-
tional healing.

[s] Here we report results from a series of slide-
hold-slide laboratory experiments aimed to study
the effects of elevated temperature on fault healing
rates. We also evaluate the extent to which fric-
tional healing can be described by increases in real
contact area due to creep of asperities using a finite
element model with fractal contact geometry.

2. Experimental Setup

[6] We conducted experiments using a heated
direct shear apparatus (Figures la and 1b). Rect-
angular rock samples are pressed against each other
within steel sample holders of matching geometry.
The bottom sample holder is held stationary. The
top sample is shorter than the bottom sample, so
that it can slide over a distance of 40 mm while
maintaining constant contact area. The top sample
holder is pulled in the shear direction using a step-
per motor. The stepper motor is controlled with a
computer program (Shear Large), in which a series
of velocity steps can be specified. The normal load
is applied to the sample by a hydraulic pump which
presses a ram onto the top sample. The hydraulic
piston is attached to a track above the sample and
can slide in the shear direction freely while it exerts
a normal load. The normal load is held constant
using a proportional-integral-derivative (PID) con-
troller that is part of the data acquisition system.
Electrical strip heaters are attached to both the top
and bottom sample holders. We measure tempera-
ture using a thermistor that is inserted through a
hole in the top sample holder so that it touches the
sample. We built a furnace around the sample
holders using insulating materials to hold tempera-
ture constant. Normal stress is measured using a
load cell in compression that is directly connected
to the top sample holder. It is calibrated using a
pressure sensor on the hydraulic pump. The hydrau-
lic pump is accurate to within about 0.15 MPa. The
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shear stress is measured using a load cell in tension
that is connected between the stepper motor and the
bar that pulls the top sample. It is calibrated to the
normal load cell, assuming a sliding coefficient of
friction for Westerly granite of about 0.75. Both load
cell calibrations are linear with an R* of about 0.995
over the range of 0.5-20 MPa. The shear displace-
ment is measured using a linear voltage displacement
transducer (LVDT) that is connected directly to the
top and bottom sample holders. The LVDT is cali-
brated using the speed of the stepper motor. The
LVDT is accurate to within about 1 pm and is linear
with an R? of about 0.999 over the range of 10 mm.
The data are collected from the transducers and dig-
itized using Instrunet (http://www.instrunet.com/).
Variations in friction due to heterogeneity within the
sample shear zone are much larger (1, =0.77 4= 0.04)
than variations due to nonlinearity and analog-to-
digital conversions. When the sample is sheared, a
layer of gouge builds up between the rock surfaces.
There is no sleeve to confine the wear particles
between the samples, but very little gouge (about
5% of the total gouge by volume) is extruded out of
the samples during testing and re-setting the samples.

[7]1 The apparatus can operate at driving velocity
from less than 107> mm/s up to 0.1 mm/s. The
machine’s stiffness is 8.28 MPa/mm. We measured
coefficient of friction in the temperature range from
room temperature to 550°C. All the experiments
reported here were conducted at constant normal
stress of 15 MPa, driving speed of 0.01 mm/s, and

(a) Diagram of direct shear apparatus. (b) Photo of experimental setup. (c) Photo of Westerly granite.

room humidity. The nominal area of contact be-
tween samples is 2.64 x 10° square millimeters.
The samples have been ground to a flatness of
4 um/m and roughness of grit #80. We performed
experiments on several rock types. Results pre-
sented here are for Westerly granite, which has
been extensively used in previous studies. Westerly
granite was chosen because it has been previously
well characterized, and it is instructive to compare
friction results at similar laboratory conditions
[Lockner et al., 1986; Blanpied, 1995; Carter et al.,
1981; Tullis and Yund, 1977; Stesky, 1978; Beeler
et al., 1996]. Westerly granite consists of about
30% quartz, 30% oligoclase, 30% microcline, and
about 5-10% bioite, with an average grain size of
about 0.75 mm (Figure 1¢) [Tullis and Yund, 1977].

[8] The direct shear setup has several advantages
over other types of experimental apparatuses. It can
perform under a wide range of driving velocities
and significant slip distances (up to hundreds of
millimeters) compared to the widely used triaxial
apparatus, which can only produce small displace-
ments because of the geometry of the confining
jacket around the sample [Hoskins et al., 1968].
Large slip distances are beneficial because of sig-
nificant evolution of friction coefficient within the
first few tens of millimeters of slip, likely due to the
buildup of gouge (wear particles) [e.g., Beeler et al.,
1996]. A typical run-in displacement in our experi-
ments was about 80 mm, and the total cumulative
displacement in our experiments was about 440 mm.
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This is comparable to a “run-in” displacement of a
few tens of millimeters and total displacement of
greater than 400 mm reported by Beeler et al.
[1996]. In a study by Power et al. [1988], gouge
production was measured as a function of slip for
solid Westerly granite samples. Their results
showed an initial increase in wear particles with
displacement, but eventually gouge production
nearly stopped, and shear deformation was accom-
modated by the developed layer of granular mate-
rial. This implies that results should not depend on
total slip after the initial “run-in” displacement.
Gouge fabric plays an important role in the fric-
tional strength of faults [Collettini et al., 2009]. In
our experimental setup, initially bare rock surfaces
are sheared, and a gouge layer accumulates “natu-
rally.” This may be a better approximation of in situ
fault conditions than either bare or “simulated”
(ground and sieved) gouge, since the gouge has
undergone some amount of shearing and has devel-
oped some fabric.

3. Procedure

[9] Initially, the sample was run-in (slid under
normal stress) until friction reached a constant value.
We employed a slide-hold-slide routine [Dieterich,
1972; Beeler et al., 1994; Marone, 1998a). We
placed the top sample at the edge of the bottom
sample to allow the largest amount of slip in each
run. Upon applying the normal stress of 15 MPa,
we heated the sample to the desired ambient tem-
perature. During the first part of a hold test, we
applied the driving velocity until the sample either
stably slid at constant shear stress or stick-slipped
with nearly constant stress drop and recurrence
interval. Then we sharply reduced the driving
velocity (in case of stick-slip, right after a slip
event). We held the sample under constant normal
stress for the desired period of time. Then we
resumed pulling at the imposed driving velocity and
measured the peak value of shear stress right before
the next slip event. We calculated friction coeffi-
cient by dividing the measured shear stress by nor-
mal stress (Figure 2a). We recorded the value of
coefficient of friction right before the hold period,
the peak value of friction right before rapid slip (i)
(Figure 2b), the minimum value of friction right
after rapid slip (Umin), as well as the time during
quasi-stationary contact (hold time, #,). See Figure (S1)
of the Supplementary Materials for a description of
these different measures of friction. The steps of
slide, hold and slide were repeated to cover several
orders of magnitude of hold time. Then we changed

the ambient temperature and repeated the steps of
slide-hold-slide until the slip distance equaled the
difference in length between the top and bottom
samples (40 mm). Subsequently, we reduced the
normal stress to 0.5 MPa and moved the top sample
back to the original position. We repeated tests in
various sequences to ensure reproducible behavior.
We conducted most tests for hold times between 7 s
and 2 x 10’ s (a few days), and one test was held for
over a month (3.6 x 10° s). We applied temper-
ature increments in both increasing and decreasing
order to investigate possible temperature hysteresis
effects. Eight runs in total were completed, and we
kept track of the order in which the tests were
conducted to monitor any dependence of friction on
total slip. Figures (S2)—(S10) of the Supplementary
Materials illustrate the respective results.

4. Experimental Results

[10] All tests revealed a logarithmic increase in
static friction with hold time. On similar machines
with granite samples at room temperature and about
15 MPa normal stress, we calculate healing rates
similar to those reported by Dieterich [1972]: a few
percent increase in static friction per decade hold
time. For example, at room temperature, static co-
efficient of friction increases from 0.77 to 0.81 in 10°
s (or 17 min). We fit our experimental data using an
empirical expression proposed by Dieterich [1972]:

ty = H, + Plogyo(t) 1)

where i is static friction coefficient, y, is the value
of static friction coefficient at 1 s (also referred to as
“intercept” in this study), f is the logarithmic rate
of increase in static friction coefficient (also referred
to as “slope” in this study), and ¢, is hold time.
Equation (1) breaks down for hold times less than
a few seconds [Nakatani and Scholz, 2006], but in
our experiments the shortest hold times were about
7 s. Figure 3 shows all the p, data plus logarithmic
fits using Equation (1). The increase in static friction
coefficient with hold time represents an increase in
the shear strength of the samples. The logarithmic
rate of increase in shear strength with time can be
calculated by multiplying the normal stress by the
coefficient of friction and by the percent increase
in coefficient of friction per decade (15 MPa x 0.7 x
0.025 decade ' = 0.3 MPa/decade). Extrapolation
of these results to conditions at seismogenic depths
(effective normal stress of 100-200 MPa) gives
rise to strengthening rates of a few megapascals
per decade.
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Figure 2. (a) Friction coefficient versus time. The black line represents hold tests conducted at room temperature, the
magenta line represents tests conducted at 500°C. The arrow labeled #, marks the beginning and end of a hold during
which driving velocity decreased to zero for the room temperature test. The u, label indicates the maximum value of
friction reached before slip for that hold time (static coefficient of friction). Note that alternating periods of “slide” and
“hold” do not line up in time between the two different temperature runs. (b) Static coefficient of friction versus hold
time. The circled dots represent values picked from data shown in Figure 2a.

[11] The experimental results show that static fric-
tion increases linearly with increasing temperature
at about 0.02 per 140°C. For example, at room
temperature, u, is 0.77, and at 500°C it is 0.83
(Figure 4a), which is an increase in coefficient of
friction of 0.06. In the study of Nakatani [2001],
hold tests were performed on feldspar powder using
a double direct shear apparatus at similar pressure
and temperature conditions to our experiments
(Figure (S1la) of the Supplementary Materials).
U, can be calculated from the data he presented in
Table 1. Based on the data of Nakatani [2001],
U, increases from 0.62 at room temperature to 0.69
at 600°C, which is an increase of 0.07 (Figure (S11b)
of the Supplementary Materials). While our values
for u, seem to be slightly higher, the temperature
dependence of p, is in agreement with Nakatani’s
results.

[12] In the study of Chester [1995], the temperature
dependence of steady state friction of dry granite
gouge (from Lockner et al. [1986]) was compared
to that of wet granite gouge (from Blanpied et al.
[1991]). The coefficient of friction for dry granite

gouge increased with temperature from about 0.70
at room temperature to about 0.75 at 500°C and
continued to increase up to 900°C. The wet granite
gouge data followed the dry data up to about
300°C, after which the coefficient of friction
dropped dramatically between 300°C and 600°C to
about 0.58. The temperature dependence of , that
we report is in agreement with the temperature de-
pendence of sliding friction of dry granite gouge
reported by Lockner et al. [1986]. Caution must be
used in extrapolating laboratory results to natural
faults, especially considering the uncertainty in
pore fluid pressure and fluid saturation at depth.
Assuming dry conditions, the neglect of tempera-
ture dependence gives rise to underestimation of the
static fault strength by nearly 10%, (see Figures 3
and 4). However, the effect of temperature on fault
strength may be offset in the presence of water
[Blanpied et al., 1991].

[13] Our results suggest that temperature does not
significantly change the rate at which static friction
increases with time. This relationship holds all the
way up to the maximum tested temperature of
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Figure 3. Static coefficient of friction yu, versus hold time #,. Measurements are shown with dots, least squares fits are
shown with lines. Color represents temperature. Each plot consists of tests done in sequence without re-setting the
sample. The titles display the total slip accumulated at the end of each plot.

550°C (Figure 4b). Figure 4 shows u, and f§ as a
function of temperature for all of the data presented
in Figure 3. At room temperature, we calculate f3 to
be about 0.016, and at 500°C, we calculate 5 to be
about 0.021. For comparison, f can also be cal-
culated from the data of Nakatani [2001] (his
Table 1). Based on his data, f§ increases from about
0.007 at room temperature to 0.0293 at 600°C. At
room temperature, our value for f§ is higher than
the values reported by Nakatani, but our results
agree at higher temperature. Overall, Nakatani
reports a stronger increase in f§ with temperature
(Figure (S11c) of the Supplementary Materials).

[14] Our experimental results may be analyzed in
the context of the rate-state friction laws [Dieterich,
1979; Ruina, 1983]:

V.0

14
u—u*—l—alnz—i-bln D. 2)
do Ve
—=1-— 3
dt D. 3)

where u is the coefficient of friction, u, is the co-
efficient of friction at a reference velocity V,, V is

velocity, a is a constitutive parameter corresponding
to the direct effect, b is a constitutive parameter
corresponding to the evolution effect, 8 is a state
variable, and D, is the critical displacement. If
the conventional rate-state constitutive equations
(Equations 2 and 3) are applied to a simple spring-
slider model of friction, the parameter b can be cal-
culated directly from our experiments, assuming
that the state variable evolves according to an aging
law (Equation 3) and not a slip law [Beeler et al.,
1994].

[15] At long hold times, b can be approximated by
the following equation:

_ A
~ Aln 1y

€]

[16] We calculate b as the slope of the curves in
Figure 3 with logarithmic (base e) time. We esti-
mate that b increases from 0.0092 at room temper-
ature to 0.0118 at 500°C. We also fit the rate-state
equations to time series of slip and u from two of
our hold tests (Figure S12 in the Supplementary

572



“ i~ Geochemistry | R
_~ Geophysics Cj MITCHELL ET AL.: TEMPERATURE DEPENDENCE OF FRICTIONAL HEALING 10.1029/2012GC004241

" Geosystems

09 a

0.85

0.8

Intercept, L,

0.75

= 7.62e-01 + 1.38e-04 T

= 0.710

0'70 100 200

300 400 500 600

Temperature, T, C

0.03

0.02

(u-uo) / (Alogqg ty)

0.01

Slope,

¢

1.57e-02 + 135e-05 T

R2 = 0.200

0'0010 100 200

300 400 500 600

Temperature, T,” C

Figure 4.

(a) Static coefficient of friction extrapolated to 1 s hold time, p, versus temperature, 7. There is a linear

relationship of about 0.02 per 140°C. (b) Rate of increase in static friction § versus temperature 7. f is only weakly

dependent on T.

Materials). We found that the data can be fit well at
20°C and 500°C using the values for b calculated
using Equation (4) at those respective temperatures.
In the study of Blanpied et al. [1998], the rate-state
parameters a and b were fit to data from dry and
wet granite velocity-stepping tests. Blanpied et al.,
1998 performed inversions for a and b on dry
granite data from Lockner et al. [1986] and wet
granite data from Blanpied et al., [1991] and Blanpied
[1995]. Blanpied et al. [1998] reported that for the
dry granite data, b increased from 0.001 to 0.018
from 23°C to 845°C. The wet tests up to 350°C
could be fit by similar values. The wet tests above
350°C, however, had to be fit using a second state
variable, b,, which decreases from —0.03 to —0.14
from 350°C to 600°C. In the low temperature range,
the values for b that we report are higher than the
values reported by Blanpied et al. [1998] for dry

granite. In the high temperature range, the values for
b that we report are close to the values reported by
Blanpied et al. [1998] for dry granite. The following
are three possible reasons for the discrepancy
between our results and those of Blanpied et al.
[1998]. The first is that experiments were performed
on different kinds of samples (Lockner et al. [1986],
Blanpied et al. [1991], and Blanpied [1995] used
ground simulated granite gouge). The second is
that the experiments were performed using dif-
ferent machine geometries (Lockner et al. [1986],
Blanpied et al. [1991], and Blanpied [1995] used a
triaxial setup, which only allows for small cumu-
lative slip). The third is that the experimental pro-
cedures were different (Lockner et al. [1986],
Blanpied et al. [1991], and Blanpied [1995] per-
formed velocity-stepping tests under stable sliding
conditions).
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[17] Another result of the inversions of Blanpied
et al. [1998] was the value of (a — b) as a function
of temperature. For dry granite, (¢ — b) was
close to zero at all temperatures. For wet granite,
(a — by — by) rose from slightly negative to largely
positive from 250°C to 500°C. This suggests that
the dry granite may have had the potential for slip
instabilities at all temperatures but that the wet
granite became essentially stable above 350°C.
Given these results, the presence of water on a fault
may play an important role in the brittle-ductile
transition. While we did not invert for (¢ — b), we
observed increasingly unstable stick-slip with
higher temperature, all the way up to the highest
temperature we tested, 550°C. This implies that
(a — b) is most certainly negative and possibly
becoming more negative with higher temperature.
This result is unexpected, since it implies a greater
tendency for unstable slip at temperatures as high as
550°C and may highlight the control of water on
the deep limit of the seismogenic zone. The high
temperature stick-slip behavior observed in our
experiments will be addressed in a separate study;
here we are interested in the origin of an apparent
increase in static friction with temperature (Figure 4a).
We note that there is no consistent trend in static
friction with total slip, except a slight decrease in
slope after 360 mm total slip (Figure S10 of the
Supplementary Materials). We also do not observe
consistent changes in friction depending on the
order in which temperature was changed. We visu-
ally compared samples with various amounts of
total slip, and the gouge volume and particle size
distribution looked similar for 80 versus 360 mm
of slip. This suggests that friction does not evolve
considerably after the initial “run-in” slip. Such
behavior helps isolate the effects of temperature on
friction.

5. Theoretical Model: Preliminaries

[18] In our experiments, the interaction between the
microscopically rough surfaces and gouge particles
controls the average value of friction on the slip inter-
face. During “hold” periods, some time-dependent
process must result in strengthening of the slip sur-
faces (or the intervening gouge particles). Here we
explore the idea that the logarithmic increase in
frictional strength with time results from increases
in the real contact area due to creep of highly stres-
sed asperities [Dieterich and Kilgore, 1994]. The
fractal nature of our model is intended to account for
both the microscopically rough geometry of bare
surfaces [Brown and Scholz, 1985a] as well as the

fractal size distribution of gouge particles [Sammis
and Biegel, 1989]. We use adhesion theory to link
true contact area between fractal surfaces to static
friction coefficient. The underlying assumption of the
model is that increases in real contact area due to
viscous flattening of contacts under normal load are
the primary cause of the observed logarithmic
strengthening of the slip interface during hold time.
We seek a model that is also able to reproduce basic
characteristics of friction such as Amonton’s laws.

[19] The first Amonton’s law states that the coeffi-
cient of friction is independent of total contact area;
small and large samples of the same material should
have the same friction coefficient. The second law
states that shear force at the onset of sliding is pro-
portional to normal force [Scholz, 2002]. Bowden
and Tabor [1950] formulated adhesion theory to
explain these empirical relations. The basic tenant of
adhesion theory is that when two surfaces come into
contact, most of the normal and shear load is sup-
ported by a small fraction of the nominal contact
area (Figure 5). Asperity contacts, since they are so
small, are highly stressed, possibly to the point of
yielding, close to the theoretical strength of the
order of one tenth of the elastic modulus of the
material [Dieterich and Conrad, 1984; Rice et al.,
2001; Griffith, 1921]. When a normal force N is
applied to the surfaces, the contacts deform and
increase in size (in proportion to the normal load)
until they are just large enough to support the
normal load. A maximum shear force F' applied to
the surfaces cannot exceed a product of the true
contact area of the asperities, 4,, and their intrinsic
shear strength, s.

F =54, 5)

[20] The friction coefficient i is defined as a ratio of
F to N, and according to Equation (5) equals

= sA, N ©6)

[21] We will use the real area of contact between
surfaces, 4,, as a proxy for the coefficient of fric-
tion, assuming that the microscopic yield strength s
to the first order is independent of temperature.
Under this assumption, one can relate second-order
changes in the coefficient of friction with time and
temperature to evolution of the true contact area,

w(t, T) = sA,(t, )N %)
[22] In Equation (7), Amonton’s first law (coeffi-

cient of friction, y, is independent of total contact area,
A) is satisfied. Under this framework, Amonton’s

574



.  Geochemistry "~
_~ Geophysics CJ MITCHELL ET AL.: TEMPERATURE DEPENDENCE OF FRICTIONAL HEALING 10.1029/2012GC004241

' Geosystems

Figure 5. Cartoon of a microscopically rough surface. N and F are the applied normal and shear forces, respectively.
A is the total area of contact. 4,, the real contact area, is the sum of many small areas in which the rough surfaces

actually touch. 4, is a small fraction of 4.

second law (F is proportional to /V, or u is constant)
can be explained in one of two ways. In the first
explanation, asperities are highly stressed and at the
point of plastic yielding, so that normal force, N,
cannot exceed a product of the real contact area, 4,,
and the intrinsic penetration hardness, p. From Equa-
tion (6), u = s/p, a constant provided s and p are
material properties, regardless of the contact geome-
try. If asperities are not at the theoretical strength limit,
Amonton’s second law cannot be explained by de-
formation of a single “representative” elastic contact
[Archard, 1957]. For example, for idealized elastic
contacts of spherical shape, A4, is proportional to the
normal load as 4, oc N*°. According to Equation (6),
A,-must be linearly proportional to NV in order to keep u
constant. In the second explanation, true contact area
is proportional to the normal load. In the limit of
multiple elastic spherical contacts with fractally dis-
tributed sizes, 4, becomes directly proportional to N
[Archard, 1957] (Figure S13 of the Supplementary
Materials). Both natural faults and cut rock samples
are known to have fractal surface geometry with
power spectral density decaying as a power law, with
power of about —3 to —2, which corresponds to a
fractal dimension of 1 to 1.5, over length scales from
100 pm to 0.1 m [Brown and Scholz, 1985a]. Some
samples exhibited slopes outside this range for certain
frequency bands, which yields problems in estimating
fractal dimension and scaling up the root mean square
(RMS) height to greater wavelengths. The size of
our laboratory samples falls within the length scales
mentioned above, so we expect the roughness of our
samples to be well described by the statistics reported
by Brown and Scholz [1985a). Brown and Scholz
[1985a] suggested that a fractional Brownian surface
best describes the observed surface roughness. Brown
and Scholz [1985b] presented a model in which elastic

surfaces with fractal geometry were pressed together.
They showed that closure between the surfaces as a
function of normal stress successfully predicted clo-
sure measured in laboratory experiments on ground
glass surfaces which exhibit fractal profiles. There-
fore, we adopt this geometry in our numerical models.
To reduce the computational burden, we use a 1D
realization of the 2D fractional Brownian surface with
plane-strain conditions [Popov, 2010]. The equivalent
contact area can be calculated as

A, =

() ®)

1

;|

where /; are the lengths of the “touching” intervals of the
1D interface and a rigid flat surface [Popov, 2010].
We also calculated the equivalent contact area as

A=Y (lw) )

i

where w is an arbitrary dimension of the slip interface
in the direction orthogonal to slip vector. We found
that the use of expressions (8) and (9) gives rise to a
negligible difference in the ratio of 4,(¢)/4,,. We have
further simplified the model using equivalence be-
tween two 1D fractal surfaces and one 1D fractal sur-
face with half the Young’s modulus pressed against a
rigid flat surface [Brown and Scholz , 1985b]. This is
justified because the single fractal surface has the same
statistical properties, or the same power spectrum, as
the difference between two fractal surfaces.

[23] To produce time-dependent evolution of the
real contact area under constant normal load, the
material must undergo some form of creep. We
assume a viscoelastic rheology in which strain rate
is some empirical function of deviatoric stress.
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Figure 6. A portion of the finite element model showing model geometry, boundary conditions, loading (g,,=0.05 GPa),
and mesh. The distribution of Mises stress is shown, with the color bar in units of gigapascals. Stress concentrations
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é=Cexp (;—?) Oley (10)

é=Cexp <;—?) exp(Bodey) an

é=Cexp (;—?) [sinh(Bagey)]” (12)

¢ =Cexp (;—?) 0oy €XP (G:ev) (13)
»

where € is strain rate, C is a premultiplying factor, Q is
activation energy, R is the gas constant, 7" is tempera-
ture, 0 4.y 1s deviatoric stress, # is the stress power, B is
an empirical constant, and o, is the Peierls stress.
Note that the values of C, B, and n are different in
each of the laws and for different materials.

[24] The first creep law (Equation 10) is a power law
that, for example, corresponds to migration of
imperfections (dislocations) within a crystal lattice,
with stress exponent n = 3 [ Twiss and Moores, 2007,
Kirby, 1983]. The second law, exponential creep
(Equation 11), is reported to fit steady state creep
data on rocks at high stress (g4;> 200 MPa) better
than the power law [Twiss and Moores, 2007; Tsenn
and Carter, 1987]. The third law (Equation 12)
attempts to fit creep data over a wider range of
stresses [Tsenn and Carter, 1987; Post, 1977]. The
fourth law (Equation 13) was proposed as a good fit
to high stress olivine creep measurements. Like the
exponential and hyperbolic sine laws, the Peierls law
is meant to account for the increase in effective stress
exponent at high stress [Renner et al., 2002; Weertman,
1957; Evans and Goetze, 1979]. In addition to the
viscous creep law presented in Equation (13), we
also specified that there would be a cutoff to viscous

behavior at the Peierls stress, o, and that deforma-
tion at 64, > 0, would be perfectly plastic.

[25] We used the commercial finite element code
Abaqus to perform numerical simulations. First, we
generated the fractional Brownian surface with
variance of 0.1, Hurst exponent H of 0.6, and total
number of points of 5000, using a FORTRAN code
from the National Simulation Resource Center for
Bioengineering at the University of Washington
[Bassingthwaighte, 1996]. We used this surface to
define a sample geometry and generated a mesh of
three-node linear plane-strain triangles. The finest
elements of the mesh are defined by the spacing be-
tween points on the fractal surface. We also created
an analytical rigid flat surface onto which the fractal
surface is pressed. We assumed a viscoelastic rheol-
ogy of the sample, with a viscous creep law presented
in Equations (10), (11), and (12). Then we assumed a
viscoelastoplastic rheology of the sample, with the
viscous creep law presented in Equation (13). We
assigned the following boundary conditions: the
analytical flat surface is stationary, the top edge of the
sample acts as a rigid pin and cannot move in the
horizontal (x) direction, and the fractal surface is free
of shear stress (free slip boundary condition) and is
not allowed to penetrate into or adhere to the rigid
foundation (Figure 6). A normal load, 7, is applied
to the top edge of the sample by ramping linearly up
to the desired value within 1 s, then remaining
constant for 107 s.

[26] One difference between the laboratory experi-
ments and the numerical model is that in the labo-
ratory experiments, the samples were held at both
shear and normal stress during hold periods, while
the modeled contact was only subjected to normal
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stress. To investigate the effect of shear stress on
frictional healing in the laboratory, we conducted
hold tests at room temperature in which we reduced
the shear stress to 0.5 MPa during the hold period.
Compared to the hold tests discussed above, hold
tests in which shear stress was reduced showed a
slight increase in the static coefficient of friction
(1, was greater by about 3%) and no resolvable
change in b. The small difference in results due to
reduced-shear stress during hold periods suggests
that the model may be describing the healing pro-
cess well, even without taking shear stress into
account. Similar reduced-shear experiments were
performed in studies by Karner and Marone [2001]
and Nakatani and Mochizuki [1996]. In hold tests
in which the shear stress was reduced to zero,
Karner and Marone [2001] reported a static coef-
ficient of friction about 8% greater than hold tests
performed at shear stress near the sliding value.
Similarly, Nakatani and Mochizuki [1996] reported
that shear unloading during hold periods increased
coefficient of friction by 10-20%. This is similar to
but of greater magnitude than what we calculate.
Both Karner and Marone [2001] and Nakatani and
Mochizuki [1996] reported a decrease in b in
reduced-shear hold tests, and Karner and Marone
[2001] even reported negative b (time-dependent
weakening) in tests performed at zero shear stress.
This is different from our results, which suggest
that b is independent of the shear stress at which the
sample is held. According to Karner and Marone
[2001], deformation of “force chains” within a
granular layer can describe the observed variations
in y; and b with shear stress. We did not include
shear loading in the model for two reasons. First,
the constitutive relationship for slip at the asperity
scale is not well understood but is expected to have
a large impact on the predicted shear deformation.
Second, our model does not consider breaking of
asperities as well as rolling and breaking of gouge
particles that presumably play an important role in
accommodating shear on natural slip surfaces.
We focus on the effects of normal load alone,
assuming that the microscopic shear strength is
governed by s, while the macroscopic shear strength
is governed by the product s4,(f) (see Equation 7).

6. Numerical Modeling: Results

[27] An acceptable model must be able to reproduce
the first-order characteristics of friction such as the
Amonton’s laws as well as the second-order char-
acteristics such as the observed rate-, state-, and
temperature dependence. First we show that our

model obeys Amonoton’s second law in that fric-
tion force is proportional to normal force. As
described in the previous section, A, should be pro-
portional to N in order to achieve this [Greenwood
and Williamson, 1966]. Equivalently, 4,/4 is pro-
portional to a,, where 4 is the total area of contact.
Here we consider a purely elastic response to an
applied normal load. The black curve in Figure (S14)
of the Supplementary Materials shows the com-
puted value of 4,/4 as a function of g,,. For a normal
stress up to about 0.2 GPa, there is a linear rela-
tionship, so the second law is satisfied. At higher
stress, the contacts become “saturated” and eventu-
ally level off in the limit 4,/4 = 1. To test whether
our model obeys Amonton’s first law (friction is
independent of nominal contact area), we ran the
same numerical test on fractal surfaces 500, 1000,
and 5000 pm long. The results are plotted in
Figure (S14) of the Supplementary Materials and
show the same slope for ¢, < 0.2 GPa, indicating
that the first law is satisfied as well.

[28] Figure 6 shows the distribution of Mises stress
throughout a portion of the model domain. Warm
colors represent high stress, and cool colors repre-
sent low stress. The places where the fractal surface
makes contact with the flat surface are highly
stressed, between 0.5 and 0.9 GPa (greater than
10 times the applied normal stress). For applied
stresses between 5 and 250 MPa, typical of con-
fining stresses used in most rock friction experi-
ments, the maximum normal stress resolved on the
asperities is 2—7 GPa (Figure 7 and Figure S15 of
the Supplementary Materials). Adhesion theory
holds that local contact stresses are close to the
theoretical yield strength of the material, on the or-
der of a few gigapascals [Rice et al., 2001; Diet-
erich and Conrad, 1984]. Our calculations indicate
that the maximum contact stress does not scale
linearly with the applied normal stress (Figure 7D,
light gray line), even in the absence of yielding.
Furthermore, the average normal stress supported
by the contacts is 0.75-1.7 GPa and is nearly in-
dependent of ¢, (Figure 7b, black line). These
results suggest that characteristic stresses of the
order of a few gigapascals can result from elastic
deformation of a fractal surface, and plastic yield-
ing is not required to ensure constant u [ Greenwood
and Williamson, 1966]. In the viscoelastic model,
we ramp ¢, up to 0.05 GPa, higher than the normal
stress applied to the samples in the laboratory,
0.015 GPa. This allows for a better sampling of the
fractal surface (note how the black line in Figure
(S14) of the Supplementary Materials is smoother
than the gray lines), and since the stress at the
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Figure 7. (a) Maximum contact pressure shown in

gray and average contact pressure shown in black calcu-
lated over the whole fractal surface as a function of
applied normal stress. (b) The plot above zoomed in to
0.25 GPa. The average contact pressure changes very
little over the applied stress range corresponding to
confining pressures applied in most laboratory tests
(5-200 MPa). This relationship is a result of the fractal
geometry of the contact surfaces and is required by adhe-
sion theory. At very high applied stresses, the fractal sur-
face becomes ‘“‘saturated,” and contact pressure scales
linearly with applied stress.

contacts is nearly independent of the applied nor-
mal stress within this range of normal stresses, we
do not expect the strain rate (and rate of increase in
contact area) to be affected by this difference. In the
viscoelastic model, the contacts creep and contact
area increases, thereby decreasing the local stress
concentrations. To model the second-order effects
of time and temperature on static friction, we cal-
culate u, and b as

- 1

o= ) 14
SAA,

CWINTY: (15)

and compare to the laboratory data (Figures 10a
and 10b). None of the bulk creep laws, when

applied to the model, could produce a rate of
increase in contact area that matched the rate of
increase in static friction observed in our experi-
ments. For example, the power-law rheology per-
taining to dislocation creep (Equation 10, n = 3)
fails to produce enough deformation in the initial
period (=10° s). This is because the effective vis-
cosity is too high so that the material at first
behaves elastically (not flowing and increasing con-
tact area). Furthermore, when the contact area does
begin to increase, it does so too quickly (Figure 8,
dashed lines). After a parameter search, we found that
the power-law rheology is able to explain the labora-
tory data only if the stress exponent is assumed to be
greater than 40. In this case, the model is able to re-
produce both short-term effects (aging starts almost
immediately) and long-term effects (a relatively con-
stant slope of the aging curves) (Figure 8, solid lines).
At this high stress exponent, changing temperature
up to 500°C has little effect on the slope of the aging
curves, which is consistent with the laboratory data.
The best fitting creep laws with parameters deduced
bases on trial and error are shown in Figure 9.

Power law creep

0.06
——500°C, n=45 N
——300°C, n=45 '
0.0551 — 1g0°C, n=45 N
—20°C, n=45 N
0.05H = = =500°C, n=3 '
- = ~300°C, n=3 AA/(AAInt)
- - -100°C, n=3
0.045{{ - - -20°C, n=3
< A /A
~ 0.04f "
<
0.0351
0.03}
0.0251
0.02— : : : :
107 10' 10° 10° 107
Time, s

Figure 8. Numerical simulation results for fractional
real contact area 4,./A as a function of time. Dashed lines
correspond to simulations using a power law pertaining
to dislocation creep, with stress power n = 3. Solid lines
correspond to simulations using the best fitting power
law, with stress power n = 45. Color represents temper-
ature. Note that the dashed lines have a delay during
which contact area does not increase, and once contact
area does increase, it does so too quickly to match the
lab data. The solid lines show real contact area increas-
ing immediately after the normal stress is applied. The
higher temperature simulations produce higher values
of initial real contact area, similar to the increase in pu,
with temperature observed in the laboratory. The rate
of increase in real contact area changes very little as a
function of temperature, similar to the insensitivity of
slope f3 observed in the lab.
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Figure 9. Viscous creep laws used in numerical
simulations. For all laws, O = 105.86 kJ mol™!, R =
8.314 J mol 'K™', T =573 K. The bulk creep power
law pertaining to dislocation creep is shown in black:
é:Cexp(—R—QT)agev, where C = 0.7017 GPa73sfl,
n = 3. The best fitting power law is shown in red,
where C = 7.017 x 10'"' GPa~*s™!, n = 45. The best
fitting exponential law is shown in green: ¢ =
Cexp(— 2)exp(Bgey), where C=1 x 10757 B =
61 GPa'. The best fitting hyperbolic sine law is
shown in blue: ¢ = Cexp(—)[sinh(Bogey)]", where
C=1x10"s"",B=20GPa', n =3. The best
fitting Peierls law is shown in magenta: ¢=
Cexp(72) ., exp ("d;v>,where C=1x10""GPa %!,

0,

n=40, 0, =35 GPa.

We also explored a second Peierls creep law: € =

1 man

C(gjfv> exp <_R_1? {1 — (J;;V> } ) [Kameyama et al.,
1999; Tsenn and Carter, 1987; Evans and Goetze,
1979], with the additional condition that deforma-
tion would be perfectly plastic at 4o, > 7,,. It could
produce the right slope to fit the experimental data,
but the intercept was consistently too low to match
the experimental data, so we did not include it
with the best fitting laws in Figures 9 and 10.
Figure 10 shows a comparison between the lab
data and the best fitting numerical results for p,
and b as a function of temperature. Numerical
results using each best fitting creep law from
Figure 9 could adequately match the lab data.

7. Discussion

[29] Under the assumption that a fractal contact
geometry is a good representation of sheared rock
surfaces and that viscous flattening of contacts is
responsible for frictional healing, our results indi-
cate that none of the theoretical or empirically

derived bulk creep laws are able to explain the
observed time and temperature-dependent frictional
healing. This result implies several possibilities.
First, it is well known that at high stress levels, the
power law with n = 3, corresponding to dislocation
creep, fails to describe the bulk deformation of
rocks [Twiss and Moores, 2007]. This “power law
breakdown” may be caused by a transition in
deformation mechanisms from dislocation creep to
dislocation glide around stress of approximately
200 MPa, which may be matched better by a power
law with higher n» or an exponential law. For
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Figure 10. (a) u, versus temperature 7. Laboratory
data are shown in black dots and are calculated using
the least squares fit to the data at hold time of 1 s. Results
from numerical simulations are shown in squares and are
calculated using u, = f:jl’, where s = 1.1 GPa, a material
property equal to the shear strength of asperities, 4, is
the real contact area reached at 1 s (immediately after
the application of normal loading), g, = 0.05 GPa, the
applied normal loading, and 4 = 5000 pum? is the total
area. Color symbols denote the best fitting rheology:
power law (red), exponential law (green), hyperbolic
sine law (blue), and Peierls law (magenta). (b) Rate-state
b parameter versus temperature. Symbol colors are the
same as in Figure 10a. Laboratory data are calculated

. A . R R
using b = mﬁ;' Results from numerical simulations are
I _ sM
calculated using b = FINITR
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example, data from high stress creep of clinopyrox-
enite have been fit by both a power law with n = 83
and an exponential law [Tsenn and Carter, 1987,
Kirby and Kronenberg, 1984]. The effective stress
exponent of n ~ 45 deduced in our study may reflect
a similar phenomenon. Second, the bulk rheology
reported for macroscopic samples may not be
applicable to the deformation of the highly stressed
microasperities. Independent measurements of sin-
gle-crystal hardness have been used to predict a
polycrystalline flow law (such as the second Peierls
creep law mentioned in section 6) [Evans and
Goetze, 1979]. Even with modified parameters, this
creep law could not match our experimental data.
Third, the observed aging effects may be dominated
by time-dependent compaction of the gouge layer.
In this case, the observed logarithmic strengthening
may be due to complex particle interactions that take
place in the gouge layer such as sliding and rolling
on the inter-grain boundaries [Frye and Marone,
2002]. Note that even under conditions of purely
uniaxial compression, some fraction of the grain
boundaries will be subject to shear stress simply due
to the oblique orientation of grain contacts with
respect to local principal stresses. Because contact
stresses can be locally high, some sliding and rolling
between grains may cause a reorganization that
leads to a denser gouge packing and greater effec-
tive contact area between the surfaces and grains.
If this process is more efficient than the bulk viscous
deformation of asperities, it could be contributing to
the effective high stress exponent needed to match
the experimental data. Karner and Marone [2001]
measured compaction as a function of hold time to
compare with measurements of static coefficient of
friction. During slide-hold-slide experiments, com-
paction and static friction increased with the loga-
rithm of hold time, with thicker gouge layers
yielding more compaction. While compaction
could also result from viscous flattening of asperi-
ties, the observed correlation of healing with the
thickness of the gouge layer may be evidence for
the importance of grain interactions in the recovery
of frictional strength. Fourth, the strength of con-
tacting regions, s, may be increasing with time or
temperature. It is possible that a combination of
s(¢,T) (bond “quality”) and 4,(z,T) (bond “quantity”)
contributes to the observed increases in u(z,7) [Frye
and Marone, 2002]. Strengthening of the asperities
may be related, e.g., to the development of new
bonds across the contacts. Frye and Marone [2002]
and Dieterich and Conrad [1984] studied the
effects of humidity on frictional healing. Both
studies report that scrupulously dry conditions can
severely reduce frictional healing rates. Water-assisted

mechanisms may be affecting both the bulk creep of
the contacts and the asperity bonds. Hydrolytic
weakening may serve to increase contact area or
contact “quantity” more quickly. Hydrogen bond-
ing and desorption of water were proposed as pos-
sible contact “quality” enhancers, but data collected
from the conducted experiments could not distin-
guish between these two mechanisms [Frye and
Marone, 2002]. Dieterich and Kilgore [1994]
directly measured contact area and static coefficient
of friction for glass and acrylic. They concluded
that growth in contact area is sufficient to explain
growth in frictional strength during hold periods.
That logarithmic strengthening is observed in vari-
ous different materials (rock, acrylic, paper, and
steel) suggests a common underlying physical
mechanism [Baumberger and Caroli, 2006]. Thus,
results obtained for glass and acrylic may be
applicable to a broad range of engineering and
geological materials.

8. Conclusions

[30] We ran a series of heated slide-hold-slide
laboratory experiments to explore the temperature
dependence of frictional healing of Westerly gran-
ite. Our results show increases in static coefficient
of friction at higher temperature and little depen-
dence of healing rate on temperature. While caution
must be used in extrapolating laboratory results to
natural faults, our data suggest that neglecting the
effect of temperature may lead to underestimation
of fault strength under dry conditions by up to 10%.
The fault restrengthening rates are only weakly
temperature dependent under dry conditions. We
performed numerical experiments to test whether
temperature-dependent viscous flattening of asper-
ities could account for the frictional restrengthening
observed in the lab. We assumed a fractal contact
geometry with characteristics similar to those pro-
posed by Brown and Scholz [1985a]. We used the
evolution of the true contact area as a proxy to time-
dependent evolution of the coefficient of friction.
We found that rheology corresponding to disloca-
tion creep (power law with stress exponent of 3)
fails to match the experimental data. Other creep
laws (exponential, hyperbolic sine, and a Peierls
creep law) also failed to match the experimental
data given the parameters reported in the literature.
In order to match the experimental data with a
power law, stress exponent of n > 40 was required.
The other creep laws were also shown to provide
a reasonable fit to the lab data given modified
model parameters. These results may highlight the
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contributions of dislocation glide, grain boundary
sliding, gouge compaction, and time-dependent
increases in the bond strength in frictional healing.
Further work is required to estimate the importance
of the proposed mechanisms for fault healing rates

9. Notation

t, Hold time, s.
t, Hold time =1 s.
A, Real contact area, um?>.
A,, Real contact area at 7, umz.
A Total contact area, um>.
U Static coefficient of friction, dimensionless.
U, Static coefficient of friction at z,,
“Intercept,” dimensionless.
f “Slope” of logarithmic hold time curve,
dimensionless.
0, Normal stress, GPa.
o, Shear stress, GPa.
u« Coefficient of friction at reference velocity,
V«, dimensionless.
a Direct coefficient, dimensionless.
b Evolution coefficient, dimensionless.
¥ Velocity/slip rate between surfaces, um s ".
Ve Reference velocity, um s~
6 State variable, s.
D, Critical displacement, um.
N Normal force, N.
p Penetration hardness of asperities, Nm 2.
F Shear force required to initiate sliding, N.
s Shear strength of asperities, Nm 2.
/;  Length of touching intervals between fractal
surface and rigid flat surface, um.
w  Arbitrary dimension of the slip interface
orthogonal to the slip vector, yum.
¢ Strain rate, s L
C Premultiplying factor in steady state creep
law, GPa™"s ™" for power law and Peierls
law, s~ ! for other laws.
QO Activation energy, kJ mol .
R Gas constant, kJ mol ! K~ 1.
T Temperature, K.
B Empirical constant, GPa™".
04ey Deviatoric stress, GPa.
n  Stress power, dimensionless.
l,m Other empirical fitting powers,
dimensionless
Peierls stress, GPa.
o, Yield stress, GPa.
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